1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
/*
Licensed Materials - Property of IBM
DB2 Storage Engine Enablement
Copyright IBM Corporation 2007,2008
All rights reserved
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
(a) Redistributions of source code must retain this list of conditions, the
copyright notice in section {d} below, and the disclaimer following this
list of conditions.
(b) Redistributions in binary form must reproduce this list of conditions, the
copyright notice in section (d) below, and the disclaimer following this
list of conditions, in the documentation and/or other materials provided
with the distribution.
(c) The name of IBM may not be used to endorse or promote products derived from
this software without specific prior written permission.
(d) The text of the required copyright notice is:
Licensed Materials - Property of IBM
DB2 Storage Engine Enablement
Copyright IBM Corporation 2007,2008
All rights reserved
THIS SOFTWARE IS PROVIDED BY IBM CORPORATION "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL IBM CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
*/
#include "ha_ibmdb2i.h"
/* Helper function for records_in_range.
Input: Bitmap of used key parts.
Output: Number of used key parts. */
static inline int getKeyCntFromMap(key_part_map keypart_map)
{
int cnt = 0;
while (keypart_map)
{
keypart_map = keypart_map >> 1;
cnt++;
}
return (cnt);
}
/**
@brief
Given a starting key and an ending key, estimate the number of rows that
will exist between the two keys.
INPUT
inx Index to use
min_key Min key. Is NULL if no min range
max_key Max key. Is NULL if no max range
NOTES
min_key.flag can have one of the following values:
HA_READ_KEY_EXACT Include the key in the range
HA_READ_AFTER_KEY Don't include key in range
max_key.flag can have one of the following values:
HA_READ_BEFORE_KEY Don't include key in range
HA_READ_AFTER_KEY Include all 'end_key' values in the range
RETURN
HA_POS_ERROR Error or the storage engine cannot estimate the number of rows
1 There are no matching keys in the given range
n > 0 There are approximately n rows in the range
*/
ha_rows ha_ibmdb2i::records_in_range(uint inx,
key_range *min_key,
key_range *max_key)
{
DBUG_ENTER("ha_ibmdb2i::records_in_range");
int rc = 0; // Return code
ha_rows rows = 0; // Row count returned to caller of this method
uint32 spcLen; // Length of space passed to DB2
uint32 keyCnt; // Number of fields in the key composite
uint32 literalCnt = 0; // Number of literals
uint32 boundsOff; // Offset from beginning of space to range bounds
uint32 litDefOff; // Offset from beginning of space to literal definitions
uint32 literalsOff; // Offset from beginning of space to literal values
uint32 cutoff = 0; // Early exit cutoff (currently not used)
uint64 recCnt; // Row count from DB2
uint16 rtnCode; // Return code from DB2
Bounds* boundsPtr; // Pointer to a pair of range bounds
Bound* boundPtr; // Pointer to a single (high or low) range bound
LitDef* litDefPtr; // Pointer to a literal definition
char* literalsPtr; // Pointer to the start of all literal values
char* literalPtr; // Pointer to the start of this literal value
char* tempPtr; // Temporary pointer
char* tempMinPtr; // Temporary pointer into min_key
int minKeyCnt = 0; // Number of fields in the min_key composite
int maxKeyCnt = 0; // Number of fields in the max_key composite
size_t tempLen = 0; // Temporary length
uint16 DB2FieldWidth = 0; // DB2 field width
uint32 workFieldLen = 0; // Length of workarea needed for CCSID conversions
bool overrideInclusion; // Indicator for inclusion/exclusion
char* endOfLiteralPtr; // Pointer to the end of this literal
char* endOfMinPtr; // Pointer to end of min_key
uint16 endByte = 0; // End byte of char or graphic literal (padding not included)
bool reuseLiteral; // Indicator that hi and lo bounds use same literal
char* minPtr = NULL; // Work pointer for traversing min_key
char* maxPtr = NULL; // Work pointer for traversing max_key
/*
Handle the special case of 'x < null' anywhere in the key range. There are
no values less than null, but return 1 so that MySQL does not assume
the empty set for the query.
*/
if (min_key != NULL && max_key != NULL &&
min_key->flag == HA_READ_AFTER_KEY && max_key->flag == HA_READ_BEFORE_KEY &&
min_key->length == max_key->length &&
(memcmp((uchar*)min_key->key,(uchar*)max_key->key,min_key->length)==0))
{
DBUG_PRINT("ha_ibmdb2i::records_in_range",("Estimate 1 row for key %d; special case: < null", inx));
DBUG_RETURN((ha_rows) 1 );
}
/*
Determine the number of fields in the key composite.
*/
if (min_key)
{
minKeyCnt = getKeyCntFromMap(min_key->keypart_map);
minPtr = (char*)min_key->key;
}
if (max_key)
{
maxKeyCnt = getKeyCntFromMap(max_key->keypart_map);
maxPtr = (char*)max_key->key;
}
keyCnt = maxKeyCnt >= minKeyCnt ? maxKeyCnt : minKeyCnt;
/*
Handle the special case where MySQL does not pass either a min or max
key range. In this case, set the key count to 1 (knowing that there
is at least one key field) to flow through and create one bounds structure.
When both the min and max key ranges are nil, the bounds structure will
specify positive and negative infinity and DB2 will estimate the total
number of rows. */
if (keyCnt == 0)
keyCnt = 1;
/*
Allocate the space needed to pass range information to DB2. The
space must be large enough to store the following:
- one pair of bounds (high and low) per field in the key composite
- one literal definition per literal value
- the literal values
- work area for literal CCSID conversions
Since we don't know yet how many of these structures are needed,
allocate enough space for the maximum that we will possibly need.
The workarea for the literal conversion must be big enough to hold the
largest of the DB2 key fields.
*/
KEY& curKey = table->key_info[inx];
for (int i = 0; i < keyCnt; i++)
{
DB2FieldWidth =
db2Table->db2Field(curKey.key_part[i].field->field_index).getByteLengthInRecord();
if (DB2FieldWidth > workFieldLen)
workFieldLen = DB2FieldWidth; // Get length of largest DB2 field
tempLen = tempLen + DB2FieldWidth; // Tally the DB2 field lengths
}
spcLen = (sizeof(Bounds)*keyCnt) + (sizeof(LitDef)*keyCnt*2) + (tempLen*2) + workFieldLen;
ValidatedPointer<char> spcPtr(spcLen); // Pointer to space passed to DB2
memset(spcPtr, 0, spcLen); // Clear the allocated space
/*
Set addressability to the various sections of the DB2 interface space.
*/
boundsOff = 0; // Range bounds are at the start of the space
litDefOff = sizeof(Bounds) * keyCnt; // Literal defs follow all the range bounds
literalsOff = litDefOff + (sizeof(LitDef) * keyCnt * 2); // Literal values are last
boundsPtr = (Bounds_t*)(void*)spcPtr; // Address first bounds structure
tempPtr = (char*)((char*)spcPtr + litDefOff);
litDefPtr = (LitDef_t*)tempPtr; // Address first literal definition
tempPtr = (char*)((char*)spcPtr + literalsOff);
literalsPtr = (char*)tempPtr; // Address start of literal values
literalPtr = literalsPtr; // Address first literal value
/*
For each key part, build the low (min) and high (max) DB2 range bounds.
If literals are specified in the MySQL range, build DB2 literal
definitions and store the literal values for access by DB2.
If no value is specified for a key part, assume infinity. Negative
infinity will cause processing to start at the first index entry.
Positive infinity will cause processing to end at the last index entry.
When infinity is specified in a bound, inclusion/exclusion and position
are ignored, and there is no literal definition or literal value for
the bound.
If the keypart value is null, the null indicator is set in the range
bound and the other fields in the bound are ignored. When the bound is
null, only index entries with the null value will be included in the
estimate. If one bound is null, both bounds must be null. When the bound
is not null, the data offset and length must be set, and the literal
value stored for access by DB2.
*/
for (int partsInUse = 0; partsInUse < keyCnt; ++partsInUse)
{
Field *field= curKey.key_part[partsInUse].field;
overrideInclusion = false;
reuseLiteral = false;
endOfLiteralPtr = NULL;
/*
Build the low bound for the key range.
*/
if ((partsInUse + 1) > minKeyCnt) // if no min_key info for this part
boundsPtr->LoBound.Infinity[0] = QMY_NEG_INFINITY; // select...where 3 between x and y
else
{
if ((curKey.key_part[partsInUse].null_bit) && (char*)minPtr[0])
{ // min_key is null
if (max_key == NULL ||
((partsInUse + 1) > maxKeyCnt)) // select...where x='ab' and y=null and z != 'c'
boundsPtr->LoBound.Infinity[0] = QMY_NEG_INFINITY; // select...where x not null or
// select...where x > null
else // max_key is not null
{
if (min_key->flag == HA_READ_KEY_EXACT)
boundsPtr->LoBound.IsNull[0] = QMY_YES; // select...where x is null
else
{
if ((char*)maxPtr[0])
boundsPtr->LoBound.IsNull[0] = QMY_YES; // select...where a = null and b < 5 (max-before)
// select...where a='a' and b is null and c !='a' (max-after)
else
boundsPtr->LoBound.Infinity[0] = QMY_NEG_INFINITY; // select...where x < y
}
} // end min_key is null
}
else // min_key is not null
{
if (literalCnt) litDefPtr = litDefPtr + 1;
literalCnt = literalCnt + 1;
boundsPtr->LoBound.Position = literalCnt;
/*
Determine inclusion or exclusion.
*/
if (min_key->flag == HA_READ_KEY_EXACT || //select...where a like 'this%'
/* An example for the following conditions is 'select...where a = 5 and b > null'. */
(max_key &&
(memcmp((uchar*)minPtr,(uchar*)maxPtr,
curKey.key_part[partsInUse].store_length)==0)))
{
if ((min_key->flag != HA_READ_KEY_EXACT) ||
(max_key &&
(memcmp((uchar*)minPtr,(uchar*)maxPtr,
curKey.key_part[partsInUse].store_length)==0)))
overrideInclusion = true; // Need inclusion for both min and max
}
else
boundsPtr->LoBound.Embodiment[0] = QMY_EXCLUSION;
litDefPtr->FieldNbr = field->field_index + 1;
DB2Field& db2Field = db2Table->db2Field(field->field_index);
litDefPtr->DataType = db2Field.getType();
/*
Convert the literal to DB2 format.
*/
rc = convertMySQLtoDB2(field,
db2Field,
literalPtr,
(uchar*)minPtr+((curKey.key_part[partsInUse].null_bit)? 1 : 0));
if (rc != 0) break;
litDefPtr->Offset = (uint32_t)(literalPtr - literalsPtr);
litDefPtr->Length = db2Field.getByteLengthInRecord();
tempLen = litDefPtr->Length;
/*
Do additional conversion of a character or graphic value.
*/
CHARSET_INFO* fieldCharSet = field->charset();
if ((field->type() != MYSQL_TYPE_BIT) && // Don't do conversion on BIT data
(field->charset() != &my_charset_bin) && // Don't do conversion on BINARY data
(litDefPtr->DataType == QMY_CHAR || litDefPtr->DataType == QMY_VARCHAR ||
litDefPtr->DataType == QMY_GRAPHIC || litDefPtr->DataType == QMY_VARGRAPHIC))
{
if (litDefPtr->DataType == QMY_VARCHAR ||
litDefPtr->DataType == QMY_VARGRAPHIC)
tempPtr = literalPtr + sizeof(uint16);
else
tempPtr = literalPtr;
/* The following code checks to determine if MySQL is passing a
partial key. DB2 will accept a partial field value, but only
in the last field position of the key composite (and only if
there is no ICU sort sequence on the index). */
tempMinPtr = (char*)minPtr+((curKey.key_part[partsInUse].null_bit)? 1 : 0);
if (field->type() == MYSQL_TYPE_VARCHAR)
{
/* MySQL always stores key lengths as 2 bytes, little-endian. */
tempLen = *(uint8*)tempMinPtr + ((*(uint8*)(tempMinPtr+1)) << 8);
tempMinPtr = (char*)((char*)tempMinPtr + 2);
}
else
tempLen = field->field_length;
/* Determine if we are dealing with a partial key and if so, find the end of the partial key. */
if (litDefPtr->DataType == QMY_CHAR || litDefPtr->DataType == QMY_VARCHAR )
{ /* Char or varchar. If UTF8, no conversion is done to DB2 graphic.) */
endOfMinPtr = (char*)memchr(tempMinPtr,field->charset()->min_sort_char,tempLen);
if (endOfMinPtr)
endOfLiteralPtr = tempPtr + ((uint32_t)(endOfMinPtr - tempMinPtr));
}
else
{
if (strncmp(fieldCharSet->csname, "utf8", sizeof("utf8")) == 0)
{ /* The MySQL charset is UTF8 but we are converting to graphic on DB2. Divide number of UTF8 bytes
by 3 to get the number of characters, then multiple by 2 for double-byte graphic.*/
endOfMinPtr = (char*)memchr(tempMinPtr,field->charset()->min_sort_char,tempLen);
if (endOfMinPtr)
endOfLiteralPtr = tempPtr + (((uint32_t)((endOfMinPtr - tempMinPtr)) / 3) * 2);
}
else
{ /* The DB2 data type is graphic or vargraphic, and we are not converting from UTF8 to graphic. */
endOfMinPtr = (char*)wmemchr((wchar_t*)tempMinPtr,field->charset()->min_sort_char,tempLen/2);
if (endOfMinPtr)
endOfLiteralPtr = tempPtr + (endOfMinPtr - tempMinPtr);
}
}
/* Enforce here that a partial is only allowed on the last field position
of the key composite */
if (endOfLiteralPtr)
{
if ((partsInUse + 1) < minKeyCnt)
{
rc = HA_POS_ERROR;
break;
}
endByte = endOfLiteralPtr - tempPtr;
/* We're making an assumption that if MySQL gives us a partial key,
the length of the partial is the same for both the min_key and max_key. */
}
}
literalPtr = literalPtr + litDefPtr->Length; // Bump pointer for next literal
}
/* If there is a max_key value for this field, and if the max_key value is
the same as the min_key value, then the low bound literal can be reused
for the high bound literal. This eliminates the overhead of copying and
converting the same value twice. */
if (max_key && ((partsInUse + 1) <= maxKeyCnt) &&
(memcmp((uchar*)minPtr,(uchar*)maxPtr,
curKey.key_part[partsInUse].store_length)==0 || endOfLiteralPtr))
reuseLiteral = true;
minPtr += curKey.key_part[partsInUse].store_length;
}
/*
Build the high bound for the key range.
*/
if (max_key == NULL || ((partsInUse + 1) > maxKeyCnt))
boundsPtr->HiBound.Infinity[0] = QMY_POS_INFINITY;
else
{
if ((curKey.key_part[partsInUse].null_bit) && (char*)maxPtr[0])
{
if (min_key == NULL)
boundsPtr->HiBound.Infinity[0] = QMY_POS_INFINITY;
else
boundsPtr->HiBound.IsNull[0] = QMY_YES; // select...where x is null
}
else // max_key field is not null
{
if (boundsPtr->LoBound.IsNull[0] == QMY_YES) // select where x < 10 or x is null
{
rc = HA_POS_ERROR;
break;
}
if (!reuseLiteral)
{
if (literalCnt)
litDefPtr = litDefPtr + 1;
literalCnt = literalCnt + 1;
litDefPtr->FieldNbr = field->field_index + 1;
DB2Field& db2Field = db2Table->db2Field(field->field_index);
litDefPtr->DataType = db2Field.getType();
/*
Convert the literal to DB2 format
*/
rc = convertMySQLtoDB2(field,
db2Field,
literalPtr,
(uchar*)maxPtr+((curKey.key_part[partsInUse].null_bit)? 1 : 0));
if (rc != 0) break;
litDefPtr->Offset = (uint32_t)(literalPtr - literalsPtr);
litDefPtr->Length = db2Field.getByteLengthInRecord();
tempLen = litDefPtr->Length;
/*
Now convert a character or graphic value.
*/
if ((field->type() != MYSQL_TYPE_BIT) &&
(litDefPtr->DataType == QMY_CHAR || litDefPtr->DataType == QMY_VARCHAR ||
litDefPtr->DataType == QMY_GRAPHIC || litDefPtr->DataType == QMY_VARGRAPHIC))
{
if (litDefPtr->DataType == QMY_VARCHAR || litDefPtr->DataType == QMY_VARGRAPHIC)
{
tempPtr = literalPtr + sizeof(uint16);
}
else
tempPtr = literalPtr;
}
literalPtr = literalPtr + litDefPtr->Length; // Bump pointer for next literal
}
boundsPtr->HiBound.Position = literalCnt;
if (max_key->flag == HA_READ_BEFORE_KEY && !overrideInclusion)
boundsPtr->HiBound.Embodiment[0] = QMY_EXCLUSION;
}
maxPtr += curKey.key_part[partsInUse].store_length;
}
/*
Bump to the next field in the key composite.
*/
if ((partsInUse+1) < keyCnt)
boundsPtr = boundsPtr + 1;
}
/*
Call DB2 to estimate the number of rows in the key range.
*/
if (rc == 0)
{
rc = db2i_ileBridge::getBridgeForThread()->recordsInRange((indexHandles[inx] ? indexHandles[inx] : db2Table->indexFile(inx)->getMasterDefnHandle()),
spcPtr,
keyCnt,
literalCnt,
boundsOff,
litDefOff,
literalsOff,
cutoff,
(uint32_t)(literalPtr - (char*)spcPtr),
endByte,
&recCnt,
&rtnCode);
}
/*
Set the row count and return.
Beware that if this method returns a zero row count, MySQL assumes the
result set for the query is zero; never return a zero row count.
*/
if ((rc == 0) && (rtnCode == QMY_SUCCESS || rtnCode == QMY_EARLY_EXIT))
{
rows = recCnt ? (ha_rows)recCnt : 1;
}
rows = (rows > 0 ? rows : HA_POS_ERROR);
setIndexReadEstimate(inx, rows);
DBUG_PRINT("ha_ibmdb2i::recordsInRange",("Estimate %d rows for key %d", uint32(rows), inx));
DBUG_RETURN(rows);
}
|