summaryrefslogtreecommitdiff
path: root/sql/key.cc
blob: b65851cf7c1342702c84c8694c2cf32f3797b7e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   Copyright (c) 2018, 2021, MariaDB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */


/* Functions to handle keys and fields in forms */

#include "mariadb.h"
#include "sql_priv.h"
#include "key.h"                                // key_rec_cmp
#include "field.h"                              // Field

/*
  Search after a key that starts with 'field'

  SYNOPSIS
    find_ref_key()
    key			First key to check
    key_count		How many keys to check
    record		Start of record
    field		Field to search after
    key_length		On partial match, contains length of fields before
			field
    keypart             key part # of a field

  NOTES
   Used when calculating key for NEXT_NUMBER

  IMPLEMENTATION
    If no key starts with field test if field is part of some key. If we find
    one, then return first key and set key_length to the number of bytes
    preceding 'field'.

  RETURN
   -1  field is not part of the key
   #   Key part for key matching key.
       key_length is set to length of key before (not including) field
*/

int find_ref_key(KEY *key, uint key_count, uchar *record, Field *field,
                 uint *key_length, uint *keypart)
{
  int i;
  KEY *key_info;
  uint fieldpos;

  fieldpos= field->offset(record);

  /* Test if some key starts as fieldpos */
  for (i= 0, key_info= key ;
       i < (int) key_count ;
       i++, key_info++)
  {
    if (key_info->key_part[0].offset == fieldpos &&
            key_info->key_part[0].field->type() != MYSQL_TYPE_BIT)
    {                                  		/* Found key. Calc keylength */
      *key_length= *keypart= 0;
      return i;                                 /* Use this key */
    }
  }

  /* Test if some key contains fieldpos */
  for (i= 0, key_info= key;
       i < (int) key_count ;
       i++, key_info++)
  {
    uint j;
    KEY_PART_INFO *key_part;
    *key_length=0;
    for (j=0, key_part=key_info->key_part ;
	 j < key_info->user_defined_key_parts ;
	 j++, key_part++)
    {
      if (key_part->offset == fieldpos &&
            key_part->field->type() != MYSQL_TYPE_BIT)
      {
        *keypart= j;
        return i;                               /* Use this key */
      }
      *key_length+= key_part->store_length;
    }
  }
  return(-1);					/* No key is ok */
}


/**
  Copy part of a record that forms a key or key prefix to a buffer.

    The function takes a complete table record (as e.g. retrieved by
    handler::index_read()), and a description of an index on the same table,
    and extracts the first key_length bytes of the record which are part of a
    key into to_key. If length == 0 then copy all bytes from the record that
    form a key.

  @param to_key      buffer that will be used as a key
  @param from_record full record to be copied from
  @param key_info    descriptor of the index
  @param key_length  specifies length of all keyparts that will be copied
  @param with_zerofill  skipped bytes in the key buffer to be filled with 0
*/

void key_copy(uchar *to_key, const uchar *from_record, const KEY *key_info,
              uint key_length, bool with_zerofill)
{
  uint length;
  KEY_PART_INFO *key_part;

  if (key_length == 0)
    key_length= key_info->key_length;
  for (key_part= key_info->key_part;
       (int) key_length > 0;
       key_part++, to_key+= length, key_length-= length)
  {
    if (key_part->null_bit)
    {
      *to_key++= MY_TEST(from_record[key_part->null_offset] &
                         key_part->null_bit);
      key_length--;
      if (to_key[-1])
      {
        /*
          Don't copy data for null values
          The -1 below is to subtract the null byte which is already handled
        */
        length= MY_MIN(key_length, uint(key_part->store_length)-1);
        if (with_zerofill)
          bzero((char*) to_key, length);
        continue;
      }
    }
    auto *from_ptr= key_part->field->ptr_in_record(from_record);
    if (key_part->key_part_flag & HA_BLOB_PART ||
        key_part->key_part_flag & HA_VAR_LENGTH_PART)
    {
      key_length-= HA_KEY_BLOB_LENGTH;
      length= MY_MIN(key_length, key_part->length);
      uint bytes= key_part->field->get_key_image(to_key, length, from_ptr,
		      key_info->flags & HA_SPATIAL ? Field::itMBR : Field::itRAW);
      if (with_zerofill && bytes < length)
        bzero((char*) to_key + bytes, length - bytes);
      to_key+= HA_KEY_BLOB_LENGTH;
    }
    else
    {
      length= MY_MIN(key_length, key_part->length);
      Field *field= key_part->field;
      CHARSET_INFO *cs= field->charset();
      uint bytes= field->get_key_image(to_key, length, from_ptr, Field::itRAW);
      if (bytes < length)
        cs->fill((char*) to_key + bytes, length - bytes, ' ');
    }
  }
}


/**
  Restore a key from some buffer to record.

    This function converts a key into record format. It can be used in cases
    when we want to return a key as a result row.

  @param to_record   record buffer where the key will be restored to
  @param from_key    buffer that contains a key
  @param key_info    descriptor of the index
  @param key_length  specifies length of all keyparts that will be restored
*/

void key_restore(uchar *to_record, const uchar *from_key, KEY *key_info,
                 uint key_length)
{
  uint length;
  KEY_PART_INFO *key_part;

  if (key_length == 0)
  {
    key_length= key_info->key_length;
  }
  for (key_part= key_info->key_part ;
       (int) key_length > 0 ;
       key_part++, from_key+= length, key_length-= length)
  {
    uchar used_uneven_bits= 0;
    if (key_part->null_bit)
    {
      bool null_value; 
      if ((null_value= *from_key++))
	to_record[key_part->null_offset]|= key_part->null_bit;
      else
	to_record[key_part->null_offset]&= ~key_part->null_bit;
      key_length--;
      if (null_value)
      {
        /*
          Don't copy data for null bytes
          The -1 below is to subtract the null byte which is already handled
        */
        length= MY_MIN(key_length, uint(key_part->store_length)-1);
        continue;
      }
    }
    if (key_part->type == HA_KEYTYPE_BIT)
    {
      Field_bit *field= (Field_bit *) (key_part->field);
      if (field->bit_len)
      {
        uchar bits= *(from_key + key_part->length -
                      field->pack_length_in_rec() - 1);
        set_rec_bits(bits, to_record + key_part->null_offset +
                     (key_part->null_bit == 128),
                     field->bit_ofs, field->bit_len);
        /* we have now used the byte with 'uneven' bits */
        used_uneven_bits= 1;
      }
    }
    if (key_part->key_part_flag & HA_BLOB_PART)
    {
      /*
        This in fact never happens, as we have only partial BLOB
        keys yet anyway, so it's difficult to find any sense to
        restore the part of a record.
        Maybe this branch is to be removed, but now we
        have to ignore GCov compaining.
      */
      uint blob_length= uint2korr(from_key);
      Field_blob *field= (Field_blob*) key_part->field;
      from_key+= HA_KEY_BLOB_LENGTH;
      key_length-= HA_KEY_BLOB_LENGTH;
      field->set_ptr_offset(to_record - field->table->record[0],
                            (ulong) blob_length, from_key);
      length= key_part->length;
    }
    else if (key_part->key_part_flag & HA_VAR_LENGTH_PART)
    {
      Field *field= key_part->field;
      my_ptrdiff_t ptrdiff= to_record - field->table->record[0];
      field->move_field_offset(ptrdiff);
      key_length-= HA_KEY_BLOB_LENGTH;
      length= MY_MIN(key_length, key_part->length);
      MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table, &field->table->write_set);
      field->set_key_image(from_key, length);
      dbug_tmp_restore_column_map(&field->table->write_set, old_map);
      from_key+= HA_KEY_BLOB_LENGTH;
      field->move_field_offset(-ptrdiff);
    }
    else
    {
      length= MY_MIN(key_length, key_part->length);
      /* skip the byte with 'uneven' bits, if used */
      memcpy(to_record + key_part->offset, from_key + used_uneven_bits
             , (size_t) length - used_uneven_bits);
    }
  }
}


/**
  Compare if a key has changed.

  @param table		TABLE
  @param key		key to compare to row
  @param idx		Index used
  @param key_length	Length of key

  @note
    In theory we could just call field->cmp() for all field types,
    but as we are only interested if a key has changed (not if the key is
    larger or smaller than the previous value) we can do things a bit
    faster by using memcmp() instead.

  @retval
    0	If key is equal
  @retval
    1	Key has changed
*/

bool key_cmp_if_same(TABLE *table,const uchar *key,uint idx,uint key_length)
{
  uint store_length;
  KEY_PART_INFO *key_part;
  const uchar *key_end= key + key_length;;

  for (key_part=table->key_info[idx].key_part;
       key < key_end ; 
       key_part++, key+= store_length)
  {
    uint length;
    store_length= key_part->store_length;

    if (key_part->null_bit)
    {
      if (*key != MY_TEST(table->record[0][key_part->null_offset] &
                          key_part->null_bit))
	return 1;
      if (*key)
	continue;
      key++;
      store_length--;
    }
    if (!(key_part->key_part_flag & HA_CAN_MEMCMP))
    {
      if (key_part->field->key_cmp(key, key_part->length))
	return 1;
      continue;
    }
    length= MY_MIN((uint) (key_end-key), store_length);
    if (!(key_part->key_type & (FIELDFLAG_NUMBER+FIELDFLAG_BINARY+
                                FIELDFLAG_PACK)))
    {
      CHARSET_INFO *cs= key_part->field->charset();
      size_t char_length= key_part->length / cs->mbmaxlen;
      const uchar *pos= table->record[0] + key_part->offset;
      if (length > char_length)
      {
        char_length= cs->charpos(pos, pos + length, char_length);
        set_if_smaller(char_length, length);
      }
      if (cs->strnncollsp(key, length, pos, char_length))
        return 1;
      continue;
    }
    if (memcmp(key,table->record[0]+key_part->offset,length))
      return 1;
  }
  return 0;
}


/**
  Unpack a field and append it.

  @param[inout] to           String to append the field contents to.
  @param        field        Field to unpack.
  @param        rec          Record which contains the field data.
  @param        max_length   Maximum length of field to unpack
                             or 0 for unlimited.
  @param        prefix_key   The field is used as a prefix key.
*/

void field_unpack(String *to, Field *field, const uchar *rec, uint max_length,
                  bool prefix_key)
{
  String tmp;
  DBUG_ENTER("field_unpack");
  if (!max_length)
    max_length= field->pack_length();
  if (field)
  {
    if (field->is_null())
    {
      to->append(NULL_clex_str);
      DBUG_VOID_RETURN;
    }
    CHARSET_INFO *cs= field->charset();
    field->val_str(&tmp);
    /*
      For BINARY(N) strip trailing zeroes to make
      the error message nice-looking
    */
    if (field->binary() &&  field->type() == MYSQL_TYPE_STRING && tmp.length())
    {
      const char *tmp_end= tmp.ptr() + tmp.length();
      while (tmp_end > tmp.ptr() && !*--tmp_end) ;
      tmp.length((uint32)(tmp_end - tmp.ptr() + 1));
    }
    if (cs->mbmaxlen > 1 && prefix_key)
    {
      /*
        Prefix key, multi-byte charset.
        For the columns of type CHAR(N), the above val_str()
        call will return exactly "key_part->length" bytes,
        which can break a multi-byte characters in the middle.
        Align, returning not more than "char_length" characters.
      */
      size_t charpos, char_length= max_length / cs->mbmaxlen;
      if ((charpos= cs->charpos(tmp.ptr(),
                                tmp.ptr() + tmp.length(),
                                char_length)) < tmp.length())
        tmp.length(charpos);
    }
    if (max_length < field->pack_length())
      tmp.length(MY_MIN(tmp.length(),max_length));
    ErrConvString err(&tmp);
    to->append(err.lex_cstring());
  }
  else
    to->append(STRING_WITH_LEN("???"));
  DBUG_VOID_RETURN;
}


/*
  unpack key-fields from record to some buffer.

  This is used mainly to get a good error message.  We temporary 
  change the column bitmap so that all columns are readable.

  @param
     to		Store value here in an easy to read form
  @param
     table	Table to use
  @param
     key	Key
*/

void key_unpack(String *to, TABLE *table, KEY *key)
{
  MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
  DBUG_ENTER("key_unpack");

  to->length(0);
  KEY_PART_INFO *key_part_end= key->key_part + key->user_defined_key_parts;
  for (KEY_PART_INFO *key_part= key->key_part;
       key_part < key_part_end;
       key_part++)
  {
    if (key_part->field->invisible > INVISIBLE_USER)
      continue;
    if (to->length())
      to->append('-');
    if (key_part->null_bit)
    {
      if (table->record[0][key_part->null_offset] & key_part->null_bit)
      {
	to->append(NULL_clex_str);
	continue;
      }
    }
    field_unpack(to, key_part->field, table->record[0], key_part->length,
                 MY_TEST(key_part->key_part_flag & HA_PART_KEY_SEG));
 }
  dbug_tmp_restore_column_map(&table->read_set, old_map);
  DBUG_VOID_RETURN;
}


/*
  Check if key uses field that is marked in passed field bitmap.

  SYNOPSIS
    is_key_used()
      table   TABLE object with which keys and fields are associated.
      idx     Key to be checked.
      fields  Bitmap of fields to be checked.

  NOTE
    This function uses TABLE::tmp_set bitmap so the caller should care
    about saving/restoring its state if it also uses this bitmap.

  RETURN VALUE
    TRUE   Key uses field from bitmap
    FALSE  Otherwise
*/

bool is_key_used(TABLE *table, uint idx, const MY_BITMAP *fields)
{
  table->mark_index_columns(idx, &table->tmp_set);
  return bitmap_is_overlapping(&table->tmp_set, fields);
}


/**
  Compare key in row to a given key.

  @param key_part		Key part handler
  @param key			Key to compare to value in table->record[0]
  @param key_length		length of 'key'

  @return
    The return value is SIGN(key_in_row - range_key):
    -   0		Key is equal to range or 'range' == 0 (no range)
    -  -1		Key is less than range
    -   1		Key is larger than range
*/

int key_cmp(KEY_PART_INFO *key_part, const uchar *key, uint key_length)
{
  uint store_length;

  for (const uchar *end=key + key_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    int sort_order = (key_part->key_part_flag & HA_REVERSE_SORT) ? -1 : 1;
    if (key_part->null_bit)
    {
      /* This key part allows null values; NULL is lower than everything */
      bool field_is_null= key_part->field->is_null();
      if (*key)                                 // If range key is null
      {
	/* the range is expecting a null value */
	if (!field_is_null)
	  return sort_order;                         // Found key is > range
        /* null -- exact match, go to next key part */
	continue;
      }
      else if (field_is_null)
	return -sort_order;                     // NULL is less than any value
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
      return -sort_order;
    if (cmp > 0)
      return sort_order;
  }
  return 0;                                     // Keys are equal
}


/**
  Compare two records in index order.

  This method is set-up such that it can be called directly from the
  priority queue and it is attempted to be optimised as much as possible
  since this will be called O(N * log N) times while performing a merge
  sort in various places in the code.

  We retrieve the pointer to table->record[0] using the fact that key_parts
  have an offset making it possible to calculate the start of the record.
  We need to get the diff to the compared record since none of the records
  being compared are stored in table->record[0].

  We first check for NULL values, if there are no NULL values we use
  a compare method that gets two field pointers and a max length
  and return the result of the comparison.

  key is a null terminated array, since in some cases (clustered
  primary key) it must compare more than one index.

  @param key                    Null terminated array of index information
  @param first_rec              Pointer to record compare with
  @param second_rec             Pointer to record compare against first_rec

  @return Return value is SIGN(first_rec - second_rec)
    @retval  0                  Keys are equal
    @retval -1                  second_rec is greater than first_rec
    @retval +1                  first_rec is greater than second_rec
*/

int key_rec_cmp(void *key_p, uchar *first_rec, uchar *second_rec)
{
  KEY **key= (KEY**) key_p;
  KEY *key_info= *(key++);                     // Start with first key
  uint key_parts, key_part_num;
  KEY_PART_INFO *key_part= key_info->key_part;
  uchar *rec0= key_part->field->ptr - key_part->offset;
  my_ptrdiff_t first_diff= first_rec - rec0, sec_diff= second_rec - rec0;
  int result= 0;
  Field *field;
  DBUG_ENTER("key_rec_cmp");

  /* loop over all given keys */
  do
  {
    key_parts= key_info->user_defined_key_parts;
    key_part= key_info->key_part;
    key_part_num= 0;

    /* loop over every key part */
    do
    {
      const int GREATER= key_part->key_part_flag & HA_REVERSE_SORT ? -1 : +1;
      const int LESS= -GREATER;

      field= key_part->field;

      if (key_part->null_bit)
      {
        /* The key_part can contain NULL values */
        bool first_is_null= field->is_real_null(first_diff);
        bool sec_is_null= field->is_real_null(sec_diff);
        /*
          NULL is smaller then everything so if first is NULL and the other
          not then we know that we should return -1 and for the opposite
          we should return +1. If both are NULL then we call it equality
          although it is a strange form of equality, we have equally little
          information of the real value.
        */
        if (!first_is_null)
        {
          if (!sec_is_null)
            ; /* Fall through, no NULL fields */
          else
          {
            DBUG_RETURN(GREATER);
          }
        }
        else if (!sec_is_null)
        {
          DBUG_RETURN(LESS);
        }
        else
          goto next_loop; /* Both were NULL */
      }
      /*
        No null values in the fields
        We use the virtual method cmp_max with a max length parameter.
        For most field types this translates into a cmp without
        max length. The exceptions are the BLOB and VARCHAR field types
        that take the max length into account.
      */
      if ((result= field->cmp_prefix(field->ptr+first_diff, field->ptr+sec_diff,
                                     key_part->length)))
        DBUG_RETURN(result * GREATER);
next_loop:
      key_part++;
      key_part_num++;
    } while (key_part_num < key_parts); /* this key is done */

    key_info= *(key++);
  } while (key_info); /* no more keys to test */
  DBUG_RETURN(0);
}


/*
  Compare two key tuples.

  @brief
    Compare two key tuples, i.e. two key values in KeyTupleFormat.

  @param part          KEY_PART_INFO with key description
  @param key1          First key to compare
  @param key2          Second key to compare 
  @param tuple_length  Length of key1 (and key2, they are the same) in bytes.

  @return
    @retval  0  key1 == key2
    @retval -1  key1 < key2
    @retval +1  key1 > key2 
*/

int key_tuple_cmp(KEY_PART_INFO *part, uchar *key1, uchar *key2, 
                  uint tuple_length)
{
  uchar *key1_end= key1 + tuple_length;
  int UNINIT_VAR(len);
  int res;
  for (;key1 < key1_end; key1 += len, key2 += len, part++)
  {
    len= part->store_length;
    if (part->null_bit)
    {
      if (*key1) // key1 == NULL
      {
        if (!*key2) // key1(NULL) < key2(notNULL)
          return -1;
        continue;
      }
      else if (*key2) // key1(notNULL) > key2 (NULL)
        return 1;
      /* Step over the NULL bytes for key_cmp() call */
      key1++;
      key2++;
      len--;
    }
    if ((res= part->field->key_cmp(key1, key2)))
      return res;
  }
  return 0;
}


/**
  Get hash value for the key from a key buffer 

  @param  key_info       the key descriptor
  @param  used_key_part  number of key parts used for the key
  @param  key            pointer to the buffer with the key value

  @datails
  When hashing we should take special care only of:
  1. NULLs (and keyparts which can be null so one byte reserved for it);
  2. Strings for which we have to take into account their collations
  and the values of their lengths in the prefixes.

  @return  hash value calculated for the key
*/

ulong key_hashnr(KEY *key_info, uint used_key_parts, const uchar *key)
{
  ulong nr=1, nr2=4;
  KEY_PART_INFO *key_part= key_info->key_part;
  KEY_PART_INFO *end_key_part= key_part + used_key_parts;

  for (; key_part < end_key_part; key_part++)
  {
    uchar *pos= (uchar*)key;
    CHARSET_INFO *UNINIT_VAR(cs);
    size_t UNINIT_VAR(length), UNINIT_VAR(pack_length);
    bool is_string= TRUE;

    key+= key_part->length;
    if (key_part->null_bit)
    {
      key++;                       /* Skip null byte */
      if (*pos)                    /* Found null */
      {
        nr^= (nr << 1) | 1;
        /* Add key pack length to key for VARCHAR segments */
        switch (key_part->type) {
        case HA_KEYTYPE_VARTEXT1:
        case HA_KEYTYPE_VARBINARY1:
        case HA_KEYTYPE_VARTEXT2:
        case HA_KEYTYPE_VARBINARY2:
          key+= 2;
          break;
        default:
          ;
        }
    continue;
      }
      pos++;                       /* Skip null byte */
    }
    /* If it is string set parameters of the string */
    switch (key_part->type) {
    case HA_KEYTYPE_TEXT:
      cs= key_part->field->charset();
      length= key_part->length;
      pack_length= 0;
      break;
    case HA_KEYTYPE_BINARY :
      cs= &my_charset_bin;
      length= key_part->length;
      pack_length= 0;
      break;
    case HA_KEYTYPE_VARTEXT1:
    case HA_KEYTYPE_VARTEXT2:
      cs= key_part->field->charset();
      length= uint2korr(pos);
      pack_length= 2;
      break;
    case HA_KEYTYPE_VARBINARY1:
    case HA_KEYTYPE_VARBINARY2:
      cs= &my_charset_bin;
      length= uint2korr(pos);
      pack_length= 2;
      break;
    default:
      is_string= FALSE;
    }

    if (is_string)
    {
      if (cs->mbmaxlen > 1)
      {
        size_t char_length= cs->charpos(pos + pack_length,
                                        pos + pack_length + length,
                                        length / cs->mbmaxlen);
        set_if_smaller(length, char_length);
      }
      cs->hash_sort(pos+pack_length, length, &nr, &nr2);
      key+= pack_length;
    }
    else
    {
      for (; pos < (uchar*)key ; pos++)
      {
        nr^=(ulong) ((((uint) nr & 63)+nr2)*((uint) *pos)) + (nr << 8);
        nr2+=3;
      }
    }
  }
  DBUG_PRINT("exit", ("hash: %lx", nr));
  return(nr);
}


/**
  Check whether two keys in the key buffers are equal

  @param key_info        the key descriptor
  @param  used_key_part  number of key parts used for the keys
  @param key1            pointer to the buffer with the first key 
  @param key2            pointer to the buffer with the second key 

  @detail See details of key_hashnr().

  @retval TRUE  keys in the buffers are NOT equal
  @retval FALSE keys in the buffers are equal
*/

bool key_buf_cmp(KEY *key_info, uint used_key_parts,
                 const uchar *key1, const uchar *key2)
{
  KEY_PART_INFO *key_part= key_info->key_part;
  KEY_PART_INFO *end_key_part= key_part + used_key_parts;

  for (; key_part < end_key_part; key_part++)
  {
    uchar *pos1= (uchar*)key1;
    uchar *pos2= (uchar*)key2;
    CHARSET_INFO *UNINIT_VAR(cs);
    size_t UNINIT_VAR(length1), UNINIT_VAR(length2), UNINIT_VAR(pack_length);
    bool is_string= TRUE;

    key1+= key_part->length;
    key2+= key_part->length;
    if (key_part->null_bit)
    {
      key1++; key2++;                           /* Skip null byte */
      if (*pos1 && *pos2)                       /* Both are null */
      {
        /* Add key pack length to key for VARCHAR segments */
        switch (key_part->type) {
        case HA_KEYTYPE_VARTEXT1:
        case HA_KEYTYPE_VARBINARY1:
        case HA_KEYTYPE_VARTEXT2:
        case HA_KEYTYPE_VARBINARY2:
          key1+= 2; key2+= 2;
          break;
        default:
          ;
        }
        continue;
      }
      if (*pos1 != *pos2)
        return TRUE;
      pos1++; pos2++;
    }

    /* If it is string set parameters of the string */
    switch (key_part->type) {
    case HA_KEYTYPE_TEXT:
      cs= key_part->field->charset();
      length1= length2= key_part->length;
      pack_length= 0;
      break;
    case HA_KEYTYPE_BINARY :
      cs= &my_charset_bin;
      length1= length2= key_part->length;
      pack_length= 0;
      break;
    case HA_KEYTYPE_VARTEXT1:
    case HA_KEYTYPE_VARTEXT2:
      cs= key_part->field->charset();
      length1= uint2korr(pos1);
      length2= uint2korr(pos2);
      pack_length= 2;
      break;
    case HA_KEYTYPE_VARBINARY1:
    case HA_KEYTYPE_VARBINARY2:
      cs= &my_charset_bin;
      length1= uint2korr(pos1);
      length2= uint2korr(pos2);
      pack_length= 2;
      break;
    default:
      is_string= FALSE;
    }

    if (is_string)
    {
      /*
        Compare the strings taking into account length in characters
        and collation
      */
      size_t byte_len1= length1, byte_len2= length2;
      if (cs->mbmaxlen > 1)
      {
        size_t char_length1= cs->charpos(pos1 + pack_length,
                                         pos1 + pack_length + length1,
                                         length1 / cs->mbmaxlen);
        size_t char_length2= cs->charpos(pos2 + pack_length,
                                         pos2 + pack_length + length2,
                                         length2 / cs->mbmaxlen);
        set_if_smaller(length1, char_length1);
        set_if_smaller(length2, char_length2);
      }
      if (length1 != length2 ||
          cs->strnncollsp(pos1 + pack_length, byte_len1,
                          pos2 + pack_length, byte_len2))
        return TRUE;
      key1+= pack_length; key2+= pack_length;
    }
    else
    {
      /* it is OK to compare non-string byte per byte */
      for (; pos1 < (uchar*)key1 ; pos1++, pos2++)
      {
        if (pos1[0] != pos2[0])
          return TRUE;
      }
    }
  }
  return FALSE;
}