summaryrefslogtreecommitdiff
path: root/sql/ha_partition.cc
blob: f3ead2e831b241c91b4db8e6965e8659e9e63f4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
/*
  Copyright (c) 2005, 2019, Oracle and/or its affiliates.
  Copyright (c) 2009, 2022, MariaDB

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; version 2 of the License.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA
*/

/*
  This handler was developed by Mikael Ronstrom for version 5.1 of MySQL.
  It is an abstraction layer on top of other handlers such as MyISAM,
  InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also
  be handled by a storage engine. The current example of this is NDB
  Cluster that has internally handled partitioning. This have benefits in
  that many loops needed in the partition handler can be avoided.

  Partitioning has an inherent feature which in some cases is positive and
  in some cases is negative. It splits the data into chunks. This makes
  the data more manageable, queries can easily be parallelised towards the
  parts and indexes are split such that there are less levels in the
  index trees. The inherent disadvantage is that to use a split index
  one has to scan all index parts which is ok for large queries but for
  small queries it can be a disadvantage.

  Partitioning lays the foundation for more manageable databases that are
  extremely large. It does also lay the foundation for more parallelism
  in the execution of queries. This functionality will grow with later
  versions of MySQL/MariaDB.

  The partition is setup to use table locks. It implements an partition "SHARE"
  that is inserted into a hash by table name. You can use this to store
  information of state that any partition handler object will be able to see
  if it is using the same table.

  Please read the object definition in ha_partition.h before reading the rest
  if this file.
*/

#include "mariadb.h"
#include "sql_priv.h"
#include "sql_parse.h"                          // append_file_to_dir
#include "create_options.h"

#ifdef WITH_PARTITION_STORAGE_ENGINE
#include "ha_partition.h"
#include "sql_table.h"                        // tablename_to_filename
#include "key.h"
#include "sql_plugin.h"
#include "sql_show.h"                        // append_identifier
#include "sql_admin.h"                       // SQL_ADMIN_MSG_TEXT_SIZE
#include "sql_select.h"
#include "ddl_log.h"

#include "debug_sync.h"

/* First 4 bytes in the .par file is the number of 32-bit words in the file */
#define PAR_WORD_SIZE 4
/* offset to the .par file checksum */
#define PAR_CHECKSUM_OFFSET 4
/* offset to the total number of partitions */
#define PAR_NUM_PARTS_OFFSET 8
/* offset to the engines array */
#define PAR_ENGINES_OFFSET 12
#define PARTITION_ENABLED_TABLE_FLAGS (HA_FILE_BASED | \
                                       HA_REC_NOT_IN_SEQ | \
                                       HA_CAN_REPAIR | \
                                       HA_REUSES_FILE_NAMES)
#define PARTITION_DISABLED_TABLE_FLAGS (HA_CAN_GEOMETRY | \
                                        HA_DUPLICATE_POS | \
                                        HA_CAN_INSERT_DELAYED | \
                                        HA_READ_BEFORE_WRITE_REMOVAL |\
                                        HA_CAN_TABLES_WITHOUT_ROLLBACK)

static const char *ha_par_ext= PAR_EXT;

/****************************************************************************
                MODULE create/delete handler object
****************************************************************************/

static handler *partition_create_handler(handlerton *hton,
                                         TABLE_SHARE *share,
                                         MEM_ROOT *mem_root);
static uint partition_flags();
static alter_table_operations alter_table_flags(alter_table_operations flags);


int ha_partition::notify_tabledef_changed(LEX_CSTRING *db,
                                          LEX_CSTRING *org_table_name,
                                          LEX_CUSTRING *frm,
                                          LEX_CUSTRING *version)
{
  char from_buff[FN_REFLEN + 1], from_lc_buff[FN_REFLEN + 1];
  const char *from_path, *name_buffer_ptr, *from;
  int res= 0;
  handler **file= m_file;
  DBUG_ENTER("ha_partition::notify_tabledef_changed");

  from= table->s->normalized_path.str;

  /* setup m_name_buffer_ptr */
  if (read_par_file(table->s->normalized_path.str))
    DBUG_RETURN(1);

  from_path= get_canonical_filename(*file, from, from_lc_buff);
  name_buffer_ptr= m_name_buffer_ptr;
  do
  {
    LEX_CSTRING table_name;
    const char *table_name_ptr;
    if (create_partition_name(from_buff, sizeof(from_buff),
                              from_path, name_buffer_ptr,
                              NORMAL_PART_NAME, FALSE))
      res=1;
    table_name_ptr= from_buff + dirname_length(from_buff);

    lex_string_set3(&table_name, table_name_ptr, strlen(table_name_ptr));

    if (((*file)->ht)->notify_tabledef_changed((*file)->ht, db, &table_name,
                                               frm, version, *file))
      res=1;
    name_buffer_ptr= strend(name_buffer_ptr) + 1;
  } while (*(++file));
  DBUG_RETURN(res);
}


static int
partition_notify_tabledef_changed(handlerton *,
                                  LEX_CSTRING *db,
                                  LEX_CSTRING *table,
                                  LEX_CUSTRING *frm,
                                  LEX_CUSTRING *version,
                                  handler *file)
{
  DBUG_ENTER("partition_notify_tabledef_changed");
  DBUG_RETURN(static_cast<ha_partition*>
              (file)->notify_tabledef_changed(db, table, frm, version));
}


/*
  If frm_error() is called then we will use this to to find out what file
  extensions exist for the storage engine. This is also used by the default
  rename_table and delete_table method in handler.cc.
*/
static const char *ha_partition_ext[]=
{
  ha_par_ext, NullS
};

static PSI_memory_key key_memory_Partition_share;
static PSI_memory_key key_memory_partition_sort_buffer;
static PSI_memory_key key_memory_Partition_admin;

static PSI_memory_key key_memory_ha_partition_file;
//static PSI_memory_key key_memory_ha_partition_engine_array;
static PSI_memory_key key_memory_ha_partition_part_ids;

#ifdef HAVE_PSI_INTERFACE
PSI_mutex_key key_partition_auto_inc_mutex;
PSI_file_key key_file_ha_partition_par;

static PSI_mutex_info all_partition_mutexes[]=
{
  { &key_partition_auto_inc_mutex, "Partition_share::auto_inc_mutex", 0}
};
static PSI_memory_info all_partitioning_memory[]=
{ { &key_memory_Partition_share, "Partition_share", 0},
  { &key_memory_partition_sort_buffer, "partition_sort_buffer", 0},
  { &key_memory_Partition_admin, "Partition_admin", 0},
  { &key_memory_ha_partition_file, "ha_partition::file", 0},
//  { &key_memory_ha_partition_engine_array, "ha_partition::engine_array", 0},
  { &key_memory_ha_partition_part_ids, "ha_partition::part_ids", 0} };
static PSI_file_info all_partition_file[]=
{ { &key_file_ha_partition_par, "ha_partition::parfile", 0} };

static void init_partition_psi_keys(void)
{
  const char* category= "partition";
  int count;

  count= array_elements(all_partitioning_memory);
  mysql_memory_register(category, all_partitioning_memory, count);
  count= array_elements(all_partition_mutexes);
  mysql_mutex_register(category, all_partition_mutexes, count);
  count= array_elements(all_partition_file);
  mysql_file_register(category, all_partition_file, count);
}
#endif /* HAVE_PSI_INTERFACE */

static int partition_initialize(void *p)
{
  handlerton *partition_hton;
  partition_hton= (handlerton *)p;

  partition_hton->db_type= DB_TYPE_PARTITION_DB;
  partition_hton->create= partition_create_handler;

  partition_hton->partition_flags= partition_flags;
  partition_hton->notify_tabledef_changed= partition_notify_tabledef_changed;
  partition_hton->alter_table_flags= alter_table_flags;
  partition_hton->flags= HTON_NOT_USER_SELECTABLE |
                         HTON_HIDDEN |
                         HTON_TEMPORARY_NOT_SUPPORTED;
  partition_hton->tablefile_extensions= ha_partition_ext;

#ifdef HAVE_PSI_INTERFACE
  init_partition_psi_keys();
#endif
  return 0;
}


/**
  Initialize and allocate space for partitions shares.

  @param num_parts  Number of partitions to allocate storage for.

  @return Operation status.
    @retval true  Failure (out of memory).
    @retval false Success.
*/

bool Partition_share::init(uint num_parts)
{
  DBUG_ENTER("Partition_share::init");
  auto_inc_initialized= false;
  partition_name_hash_initialized= false;
  next_auto_inc_val= 0;
  if (partitions_share_refs.init(num_parts))
  {
    DBUG_RETURN(true);
  }
  DBUG_RETURN(false);
}


/*
  Create new partition handler

  SYNOPSIS
    partition_create_handler()
    table                       Table object

  RETURN VALUE
    New partition object
*/

static handler *partition_create_handler(handlerton *hton,
                                         TABLE_SHARE *share,
                                         MEM_ROOT *mem_root)
{
  ha_partition *file= new (mem_root) ha_partition(hton, share);
  if (file && file->initialize_partition(mem_root))
  {
    delete file;
    file= 0;
  }
  return file;
}

static uint partition_flags()
{
  return HA_CAN_PARTITION;
}

static alter_table_operations alter_table_flags(alter_table_operations flags __attribute__((unused)))
{
  return (HA_PARTITION_FUNCTION_SUPPORTED |
          HA_FAST_CHANGE_PARTITION);
}

/*
  Constructor method

  SYNOPSIS
    ha_partition()
    table                       Table object

  RETURN VALUE
    NONE
*/

ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share)
  :handler(hton, share)
{
  DBUG_ENTER("ha_partition::ha_partition(table)");
  ha_partition_init();
  DBUG_VOID_RETURN;
}


/* Initialize all partition variables */

void ha_partition::ha_partition_init()
{
  DBUG_ENTER("ha_partition::ha_partition_init");
  init_alloc_root(PSI_INSTRUMENT_ME, &m_mem_root, 512, 512, MYF(0));
  init_handler_variables();
  DBUG_VOID_RETURN;
}

/*
  Constructor method

  SYNOPSIS
    ha_partition()
    part_info                       Partition info

  RETURN VALUE
    NONE
*/

ha_partition::ha_partition(handlerton *hton, partition_info *part_info)
  :handler(hton, NULL)
{
  DBUG_ENTER("ha_partition::ha_partition(part_info)");
  DBUG_ASSERT(part_info);
  ha_partition_init();
  m_part_info= part_info;
  m_create_handler= TRUE;
  m_is_sub_partitioned= m_part_info->is_sub_partitioned();
  DBUG_VOID_RETURN;
}

/**
  ha_partition constructor method used by ha_partition::clone()

  @param hton               Handlerton (partition_hton)
  @param share              Table share object
  @param part_info_arg      partition_info to use
  @param clone_arg          ha_partition to clone
  @param clme_mem_root_arg  MEM_ROOT to use

  @return New partition handler
*/

ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share,
                           partition_info *part_info_arg,
                           ha_partition *clone_arg,
                           MEM_ROOT *clone_mem_root_arg)
  :handler(hton, share)
{
  DBUG_ENTER("ha_partition::ha_partition(clone)");
  ha_partition_init();
  m_part_info= part_info_arg;
  m_create_handler= TRUE;
  m_is_sub_partitioned= m_part_info->is_sub_partitioned();
  m_is_clone_of= clone_arg;
  m_clone_mem_root= clone_mem_root_arg;
  part_share= clone_arg->part_share;
  m_tot_parts= clone_arg->m_tot_parts;
  DBUG_VOID_RETURN;
}

/*
  Initialize handler object

  SYNOPSIS
    init_handler_variables()

  RETURN VALUE
    NONE
*/

void ha_partition::init_handler_variables()
{
  active_index= MAX_KEY;
  m_mode= 0;
  m_open_test_lock= 0;
  m_file_buffer= NULL;
  m_name_buffer_ptr= NULL;
  m_engine_array= NULL;
  m_connect_string= NULL;
  m_file= NULL;
  m_file_tot_parts= 0;
  m_reorged_file= NULL;
  m_new_file= NULL;
  m_reorged_parts= 0;
  m_added_file= NULL;
  m_tot_parts= 0;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  m_scan_value= 2;
  m_ref_length= 0;
  m_part_spec.end_part= NO_CURRENT_PART_ID;
  m_index_scan_type= partition_no_index_scan;
  m_start_key.key= NULL;
  m_start_key.length= 0;
  m_myisam= FALSE;
  m_innodb= FALSE;
  m_extra_cache= FALSE;
  m_extra_cache_size= 0;
  m_extra_prepare_for_update= FALSE;
  m_extra_cache_part_id= NO_CURRENT_PART_ID;
  m_handler_status= handler_not_initialized;
  m_part_field_array= NULL;
  m_ordered_rec_buffer= NULL;
  m_top_entry= NO_CURRENT_PART_ID;
  m_rec_length= 0;
  m_last_part= 0;
  m_rec0= 0;
  m_err_rec= NULL;
  m_curr_key_info[0]= NULL;
  m_curr_key_info[1]= NULL;
  m_part_func_monotonicity_info= NON_MONOTONIC;
  m_key_not_found= FALSE;
  auto_increment_lock= FALSE;
  auto_increment_safe_stmt_log_lock= FALSE;
  /*
    this allows blackhole to work properly
  */
  m_num_locks= 0;
  m_part_info= NULL;
  m_create_handler= FALSE;
  m_is_sub_partitioned= 0;
  m_is_clone_of= NULL;
  m_clone_mem_root= NULL;
  part_share= NULL;
  m_new_partitions_share_refs.empty();
  m_part_ids_sorted_by_num_of_records= NULL;
  m_partitions_to_open= NULL;

  m_range_info= NULL;
  m_mrr_full_buffer_size= 0;
  m_mrr_new_full_buffer_size= 0;
  m_mrr_full_buffer= NULL;
  m_mrr_range_first= NULL;

  m_pre_calling= FALSE;
  m_pre_call_use_parallel= FALSE;

  ft_first= ft_current=  NULL;
  bulk_access_executing= FALSE;                 // For future

  /*
    Clear bitmaps to allow on one to call my_bitmap_free() on them at any time
  */
  my_bitmap_clear(&m_bulk_insert_started);
  my_bitmap_clear(&m_locked_partitions);
  my_bitmap_clear(&m_partitions_to_reset);
  my_bitmap_clear(&m_key_not_found_partitions);
  my_bitmap_clear(&m_mrr_used_partitions);
  my_bitmap_clear(&m_opened_partitions);
  m_file_sample= NULL;

#ifdef DONT_HAVE_TO_BE_INITALIZED
  m_start_key.flag= 0;
  m_ordered= TRUE;
#endif
}

const char *ha_partition::real_table_type() const
{
  // we can do this since we only support a single engine type
  return m_file[0]->table_type();
}

/*
  Destructor method

  SYNOPSIS
    ~ha_partition()

  RETURN VALUE
    NONE
*/

ha_partition::~ha_partition()
{
  DBUG_ENTER("ha_partition::~ha_partition");
  if (m_new_partitions_share_refs.elements)
    m_new_partitions_share_refs.delete_elements();
  if (m_file != NULL)
  {
    uint i;
    for (i= 0; i < m_tot_parts; i++)
      delete m_file[i];
  }
  destroy_record_priority_queue();
  my_free(m_part_ids_sorted_by_num_of_records);

  if (m_added_file)
  {
    for (handler **ph= m_added_file; *ph; ph++)
      delete (*ph);
  }
  clear_handler_file();
  free_root(&m_mem_root, MYF(0));

  DBUG_VOID_RETURN;
}


/*
  Initialize partition handler object

  SYNOPSIS
    initialize_partition()
    mem_root			Allocate memory through this

  RETURN VALUE
    1                         Error
    0                         Success

  DESCRIPTION

  The partition handler is only a layer on top of other engines. Thus it
  can't really perform anything without the underlying handlers. Thus we
  add this method as part of the allocation of a handler object.

  1) Allocation of underlying handlers
     If we have access to the partition info we will allocate one handler
     instance for each partition.
  2) Allocation without partition info
     The cases where we don't have access to this information is when called
     in preparation for delete_table and rename_table and in that case we
     only need to set HA_FILE_BASED. In that case we will use the .par file
     that contains information about the partitions and their engines and
     the names of each partition.
  3) Table flags initialisation
     We need also to set table flags for the partition handler. This is not
     static since it depends on what storage engines are used as underlying
     handlers.
     The table flags is set in this routine to simulate the behaviour of a
     normal storage engine
     The flag HA_FILE_BASED will be set independent of the underlying handlers
  4) Index flags initialisation
     When knowledge exists on the indexes it is also possible to initialize the
     index flags. Again the index flags must be initialized by using the under-
     lying handlers since this is storage engine dependent.
     The flag HA_READ_ORDER will be reset for the time being to indicate no
     ordered output is available from partition handler indexes. Later a merge
     sort will be performed using the underlying handlers.
  5) has_transactions are calculated here.

*/

bool ha_partition::initialize_partition(MEM_ROOT *mem_root)
{
  handler **file_array, *file;
  ulonglong check_table_flags;
  DBUG_ENTER("ha_partition::initialize_partition");

  if (m_create_handler)
  {
    m_tot_parts= m_part_info->get_tot_partitions();
    DBUG_ASSERT(m_tot_parts > 0);
    if (new_handlers_from_part_info(mem_root))
      DBUG_RETURN(1);
  }
  else if (!table_share || !table_share->normalized_path.str)
  {
    /*
      Called with dummy table share (delete, rename and alter table).
      Don't need to set-up anything.
    */
    DBUG_RETURN(0);
  }
  else if (get_from_handler_file(table_share->normalized_path.str,
                                 mem_root, false))
  {
    my_error(ER_FAILED_READ_FROM_PAR_FILE, MYF(0));
    DBUG_RETURN(1);
  }
  /*
    We create all underlying table handlers here. We do it in this special
    method to be able to report allocation errors.

    Set up has_transactions since they are called often in all kinds of places,
    other parameters are calculated on demand.
    Verify that all partitions have the same table_flags.
  */
  check_table_flags= m_file[0]->ha_table_flags();
  file_array= m_file;
  do
  {
    file= *file_array;
    if (check_table_flags != file->ha_table_flags())
    {
      my_error(ER_MIX_HANDLER_ERROR, MYF(0));
      DBUG_RETURN(1);
    }
  } while (*(++file_array));
  m_handler_status= handler_initialized;
  DBUG_RETURN(0);
}

/****************************************************************************
                MODULE meta data changes
****************************************************************************/
/*
  Delete a table

  SYNOPSIS
    delete_table()
    name                    Full path of table name

  RETURN VALUE
    >0                        Error
    0                         Success

  DESCRIPTION
    Used to delete a table. By the time delete_table() has been called all
    opened references to this table will have been closed (and your globally
    shared references released. The variable name will just be the name of
    the table. You will need to remove any files you have created at this
    point.

    If you do not implement this, the default delete_table() is called from
    handler.cc and it will delete all files with the file extensions returned
    by bas_ext().

    Called from handler.cc by delete_table and  ha_create_table(). Only used
    during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
    the storage engine.
*/

int ha_partition::delete_table(const char *name)
{
  DBUG_ENTER("ha_partition::delete_table");

  DBUG_RETURN(del_ren_table(name, NULL));
}


/*
  Rename a table

  SYNOPSIS
    rename_table()
    from                      Full path of old table name
    to                        Full path of new table name

  RETURN VALUE
    >0                        Error
    0                         Success

  DESCRIPTION
    Renames a table from one name to another from alter table call.

    If you do not implement this, the default rename_table() is called from
    handler.cc and it will rename all files with the file extensions returned
    by bas_ext().

    Called from sql_table.cc by mysql_rename_table().
*/

int ha_partition::rename_table(const char *from, const char *to)
{
  DBUG_ENTER("ha_partition::rename_table");

  DBUG_RETURN(del_ren_table(from, to));
}


/*
  Create the handler file (.par-file)

  SYNOPSIS
    create_partitioning_metadata()
    path                              Path to the new frm file (without ext)
    old_p                             Path to the old frm file (without ext)
    create_info                       Create info generated for CREATE TABLE

  RETURN VALUE
    >0                        Error
    0                         Success

  DESCRIPTION
    create_partitioning_metadata is called to create any handler specific files
    before opening the file with openfrm to later call ::create on the
    file object.
    In the partition handler this is used to store the names of partitions
    and types of engines in the partitions.
*/

int ha_partition::create_partitioning_metadata(const char *path,
                                               const char *old_path,
                                               chf_create_flags action_flag)
{
  partition_element *part;
  DBUG_ENTER("ha_partition::create_partitioning_metadata");

  /*
    We need to update total number of parts since we might write the handler
    file as part of a partition management command
  */
  if (action_flag == CHF_DELETE_FLAG ||
      action_flag == CHF_RENAME_FLAG)
  {
    char name[FN_REFLEN];
    char old_name[FN_REFLEN];

    strxmov(name, path, ha_par_ext, NullS);
    strxmov(old_name, old_path, ha_par_ext, NullS);
    if ((action_flag == CHF_DELETE_FLAG &&
         mysql_file_delete(key_file_ha_partition_par, name, MYF(MY_WME))) ||
        (action_flag == CHF_RENAME_FLAG &&
         mysql_file_rename(key_file_ha_partition_par, old_name, name,
                           MYF(MY_WME))))
    {
      DBUG_RETURN(TRUE);
    }
  }
  else if (action_flag == CHF_CREATE_FLAG)
  {
    if (create_handler_file(path))
    {
      my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
      DBUG_RETURN(1);
    }
  }

  /* m_part_info is only NULL when we failed to create a partition table */
  if (m_part_info)
  {
    part= m_part_info->partitions.head();
    /* part->engine_type may be 0 when we failed to create the partition */
    if (part->engine_type &&
        (part->engine_type)->create_partitioning_metadata &&
        ((part->engine_type)->create_partitioning_metadata)(path, old_path,
                                                            action_flag))
    {
      my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
      DBUG_RETURN(1);
    }
  }
  DBUG_RETURN(0);
}


/*
  Create a partitioned table

  SYNOPSIS
    create()
    name                              Full path of table name
    table_arg                         Table object
    create_info                       Create info generated for CREATE TABLE

  RETURN VALUE
    >0                        Error
    0                         Success

  DESCRIPTION
    create() is called to create a table. The variable name will have the name
    of the table. When create() is called you do not need to worry about
    opening the table. Also, the FRM file will have already been created so
    adjusting create_info will not do you any good. You can overwrite the frm
    file at this point if you wish to change the table definition, but there
    are no methods currently provided for doing that.

    Called from handler.cc by ha_create_table().
*/

int ha_partition::create(const char *name, TABLE *table_arg,
			 HA_CREATE_INFO *create_info)
{
  int error;
  THD *thd= ha_thd();
  char name_buff[FN_REFLEN + 1], name_lc_buff[FN_REFLEN];
  char *name_buffer_ptr;
  const char *path;
  uint i;
  List_iterator_fast <partition_element> part_it(m_part_info->partitions);
  partition_element *part_elem;
  handler **file, **abort_file;
  DBUG_ENTER("ha_partition::create");
  DBUG_PRINT("enter", ("name: '%s'", name));

  DBUG_ASSERT(!fn_frm_ext(name));

  /* Not allowed to create temporary partitioned tables */
  if (create_info && create_info->tmp_table())
  {
    my_error(ER_FEATURE_NOT_SUPPORTED_WITH_PARTITIONING, MYF(0), "CREATE TEMPORARY TABLE");
    DBUG_RETURN(TRUE);
  }
  /*
    The following block should be removed once the table-level data directory
    specification is supported by the partitioning engine (MDEV-28108).
  */
  if (thd_sql_command(thd) == SQLCOM_ALTER_TABLE && create_info)
  {
    if (create_info->data_file_name)
    {
      push_warning_printf(
          thd, Sql_condition::WARN_LEVEL_WARN, WARN_OPTION_IGNORED,
          "<DATA DIRECTORY> table option of old schema is ignored");
    }
    if (create_info->index_file_name)
    {
      push_warning_printf(
          thd, Sql_condition::WARN_LEVEL_WARN, WARN_OPTION_IGNORED,
          "<INDEX DIRECTORY> table option of old schema is ignored");
    }
  }

  if (get_from_handler_file(name, thd->mem_root, false))
    DBUG_RETURN(TRUE);
  DBUG_ASSERT(m_file_buffer);
  name_buffer_ptr= m_name_buffer_ptr;
  file= m_file;
  /*
    Since ha_partition has HA_FILE_BASED, it must alter underlying table names
    if they do not have HA_FILE_BASED and lower_case_table_names == 2.
    See Bug#37402, for Mac OS X.
    The appended #P#<partname>[#SP#<subpartname>] will remain in current case.
    Using the first partitions handler, since mixing handlers is not allowed.
  */
  path= get_canonical_filename(*file, name, name_lc_buff);
  for (i= 0; i < m_part_info->num_parts; i++)
  {
    part_elem= part_it++;
    if (m_is_sub_partitioned)
    {
      uint j;
      List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
      for (j= 0; j < m_part_info->num_subparts; j++)
      {
        part_elem= sub_it++;
        if (unlikely((error= create_partition_name(name_buff,
                                                   sizeof(name_buff), path,
                                                   name_buffer_ptr,
                                                   NORMAL_PART_NAME, FALSE))))
          goto create_error;
        if (unlikely((error= set_up_table_before_create(table_arg, name_buff,
                                                        create_info,
                                                        part_elem)) ||
                     ((error= (*file)->ha_create(name_buff, table_arg,
                                                 create_info)))))
          goto create_error;

        name_buffer_ptr= strend(name_buffer_ptr) + 1;
        file++;
      }
    }
    else
    {
      if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff),
                                                 path, name_buffer_ptr,
                                                 NORMAL_PART_NAME, FALSE))))
        goto create_error;
      if (unlikely((error= set_up_table_before_create(table_arg, name_buff,
                                                      create_info,
                                                      part_elem)) ||
                   ((error= (*file)->ha_create(name_buff, table_arg,
                                               create_info)))))
        goto create_error;

      name_buffer_ptr= strend(name_buffer_ptr) + 1;
      file++;
    }
  }
  DBUG_RETURN(0);

create_error:
  name_buffer_ptr= m_name_buffer_ptr;
  for (abort_file= file, file= m_file; file < abort_file; file++)
  {
    if (!create_partition_name(name_buff, sizeof(name_buff), path,
                               name_buffer_ptr, NORMAL_PART_NAME, FALSE))
      (void) (*file)->delete_table((const char*) name_buff);
    name_buffer_ptr= strend(name_buffer_ptr) + 1;
  }
  handler::delete_table(name);
  DBUG_RETURN(error);
}


/*
  Drop partitions as part of ALTER TABLE of partitions

  SYNOPSIS
    drop_partitions()
    path                        Complete path of db and table name

  RETURN VALUE
    >0                          Failure
    0                           Success

  DESCRIPTION
    Use part_info object on handler object to deduce which partitions to
    drop (each partition has a state attached to it)
*/

int ha_partition::drop_partitions(const char *path)
{
  List_iterator<partition_element> part_it(m_part_info->partitions);
  char part_name_buff[FN_REFLEN + 1];
  uint num_parts= m_part_info->partitions.elements;
  uint num_subparts= m_part_info->num_subparts;
  uint i= 0;
  uint name_variant;
  int  ret_error;
  int  error= 0;
  DBUG_ENTER("ha_partition::drop_partitions");

  /*
    Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
    We use m_file[0] as long as all partitions have the same storage engine.
  */
  DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
                                                   part_name_buff)));
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_TO_BE_DROPPED)
    {
      handler *file;
      /*
        This part is to be dropped, meaning the part or all its subparts.
      */
      name_variant= NORMAL_PART_NAME;
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        uint j= 0, part;
        do
        {
          partition_element *sub_elem= sub_it++;
          part= i * num_subparts + j;
          if (unlikely((ret_error=
                        create_subpartition_name(part_name_buff,
                                                 sizeof(part_name_buff), path,
                                                 part_elem->partition_name,
                                                 sub_elem->partition_name,
                                                 name_variant))))
            error= ret_error;
          file= m_file[part];
          DBUG_PRINT("info", ("Drop subpartition %s", part_name_buff));
          if (unlikely((ret_error= file->delete_table(part_name_buff))))
            error= ret_error;
          if (unlikely(ddl_log_increment_phase(sub_elem->log_entry->
                                                entry_pos)))
            error= 1;
        } while (++j < num_subparts);
      }
      else
      {
        if ((ret_error= create_partition_name(part_name_buff,
                          sizeof(part_name_buff), path,
                          part_elem->partition_name, name_variant, TRUE)))
          error= ret_error;
        else
        {
          file= m_file[i];
          DBUG_PRINT("info", ("Drop partition %s", part_name_buff));
          if (unlikely((ret_error= file->delete_table(part_name_buff))))
            error= ret_error;
          if (unlikely(ddl_log_increment_phase(part_elem->log_entry->
                                                entry_pos)))
            error= 1;
        }
      }
      if (part_elem->part_state == PART_IS_CHANGED)
        part_elem->part_state= PART_NORMAL;
      else
        part_elem->part_state= PART_IS_DROPPED;
    }
  } while (++i < num_parts);
  (void) ddl_log_sync();
  DBUG_RETURN(error);
}


/*
  Rename partitions as part of ALTER TABLE of partitions

  SYNOPSIS
    rename_partitions()
    path                        Complete path of db and table name

  RETURN VALUE
    TRUE                        Failure
    FALSE                       Success

  DESCRIPTION
    When reorganising partitions, adding hash partitions and coalescing
    partitions it can be necessary to rename partitions while holding
    an exclusive lock on the table.
    Which partitions to rename is given by state of partitions found by the
    partition info struct referenced from the handler object
*/

int ha_partition::rename_partitions(const char *path)
{
  List_iterator<partition_element> part_it(m_part_info->partitions);
  List_iterator<partition_element> temp_it(m_part_info->temp_partitions);
  char part_name_buff[FN_REFLEN + 1];
  char norm_name_buff[FN_REFLEN + 1];
  uint num_parts= m_part_info->partitions.elements;
  uint part_count= 0;
  uint num_subparts= m_part_info->num_subparts;
  uint i= 0;
  uint j= 0;
  int error= 0;
  int ret_error;
  uint temp_partitions= m_part_info->temp_partitions.elements;
  handler *file;
  partition_element *part_elem, *sub_elem;
  DBUG_ENTER("ha_partition::rename_partitions");

  /*
    Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
    We use m_file[0] as long as all partitions have the same storage engine.
  */
  DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
                                                   norm_name_buff)));

  DEBUG_SYNC(ha_thd(), "before_rename_partitions");
  if (temp_partitions)
  {
    /*
      These are the reorganised partitions that have already been copied.
      We delete the partitions and log the delete by inactivating the
      delete log entry in the table log. We only need to synchronise
      these writes before moving to the next loop since there is no
      interaction among reorganised partitions, they cannot have the
      same name.
    */
    do
    {
      part_elem= temp_it++;
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        j= 0;
        do
        {
          sub_elem= sub_it++;
          file= m_reorged_file[part_count++];
          if (unlikely((ret_error=
                        create_subpartition_name(norm_name_buff,
                                                 sizeof(norm_name_buff), path,
                                                 part_elem->partition_name,
                                                 sub_elem->partition_name,
                                                 NORMAL_PART_NAME))))
            error= ret_error;
          DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
          if (unlikely((ret_error= file->delete_table(norm_name_buff))))
            error= ret_error;
          else if (unlikely(ddl_log_increment_phase(sub_elem->log_entry->
                                                     entry_pos)))
            error= 1;
          else
            sub_elem->log_entry= NULL; /* Indicate success */
        } while (++j < num_subparts);
      }
      else
      {
        file= m_reorged_file[part_count++];
        if (unlikely((ret_error=
                      create_partition_name(norm_name_buff,
                                            sizeof(norm_name_buff), path,
                                            part_elem->partition_name,
                                            NORMAL_PART_NAME, TRUE))))
          error= ret_error;
        else
        {
          DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
          if (unlikely((ret_error= file->delete_table(norm_name_buff))))
            error= ret_error;
          else if (unlikely(ddl_log_increment_phase(part_elem->log_entry->
                                                     entry_pos)))
            error= 1;
          else
            part_elem->log_entry= NULL; /* Indicate success */
        }
      }
    } while (++i < temp_partitions);
    (void) ddl_log_sync();
  }
  i= 0;
  do
  {
    /*
       When state is PART_IS_CHANGED it means that we have created a new
       TEMP partition that is to be renamed to normal partition name and
       we are to delete the old partition with currently the normal name.

       We perform this operation by
       1) Delete old partition with normal partition name
       2) Signal this in table log entry
       3) Synch table log to ensure we have consistency in crashes
       4) Rename temporary partition name to normal partition name
       5) Signal this to table log entry
       It is not necessary to synch the last state since a new rename
       should not corrupt things if there was no temporary partition.

       The only other parts we need to cater for are new parts that
       replace reorganised parts. The reorganised parts were deleted
       by the code above that goes through the temp_partitions list.
       Thus the synch above makes it safe to simply perform step 4 and 5
       for those entries.
    */
    part_elem= part_it++;
    if (part_elem->part_state == PART_IS_CHANGED ||
        part_elem->part_state == PART_TO_BE_DROPPED ||
        (part_elem->part_state == PART_IS_ADDED && temp_partitions))
    {
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        uint part;

        j= 0;
        do
        {
          sub_elem= sub_it++;
          part= i * num_subparts + j;
          if (unlikely((ret_error=
                        create_subpartition_name(norm_name_buff,
                                                 sizeof(norm_name_buff), path,
                                                 part_elem->partition_name,
                                                 sub_elem->partition_name,
                                                 NORMAL_PART_NAME))))
            error= ret_error;
          if (part_elem->part_state == PART_IS_CHANGED)
          {
            file= m_reorged_file[part_count++];
            DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
            if (unlikely((ret_error= file->delete_table(norm_name_buff))))
              error= ret_error;
            else if (unlikely(ddl_log_increment_phase(sub_elem->log_entry->
                                                       entry_pos)))
              error= 1;
            (void) ddl_log_sync();
          }
          file= m_new_file[part];
          if (unlikely((ret_error=
                        create_subpartition_name(part_name_buff,
                                                 sizeof(part_name_buff), path,
                                                 part_elem->partition_name,
                                                 sub_elem->partition_name,
                                                 TEMP_PART_NAME))))
            error= ret_error;
          DBUG_PRINT("info", ("Rename subpartition from %s to %s",
                     part_name_buff, norm_name_buff));
          if (unlikely((ret_error= file->ha_rename_table(part_name_buff,
                                                         norm_name_buff))))
            error= ret_error;
          else if (unlikely(ddl_log_increment_phase(sub_elem->log_entry->
                                                     entry_pos)))
            error= 1;
          else
            sub_elem->log_entry= NULL;
        } while (++j < num_subparts);
      }
      else
      {
        if (unlikely((ret_error=
                      create_partition_name(norm_name_buff,
                                            sizeof(norm_name_buff), path,
                                            part_elem->partition_name,
                                            NORMAL_PART_NAME, TRUE)) ||
                     (ret_error= create_partition_name(part_name_buff,
                                                       sizeof(part_name_buff),
                                                       path,
                                                       part_elem->
                                                       partition_name,
                                                       TEMP_PART_NAME, TRUE))))
          error= ret_error;
        else
        {
          if (part_elem->part_state == PART_IS_CHANGED)
          {
            file= m_reorged_file[part_count++];
            DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
            if (unlikely((ret_error= file->delete_table(norm_name_buff))))
              error= ret_error;
            else if (unlikely(ddl_log_increment_phase(part_elem->log_entry->
                                                       entry_pos)))
              error= 1;
            (void) ddl_log_sync();
          }
          file= m_new_file[i];
          DBUG_PRINT("info", ("Rename partition from %s to %s",
                     part_name_buff, norm_name_buff));
          if (unlikely((ret_error= file->ha_rename_table(part_name_buff,
                                                         norm_name_buff))))
            error= ret_error;
          else if (unlikely(ddl_log_increment_phase(part_elem->log_entry->
                                                     entry_pos)))
            error= 1;
          else
            part_elem->log_entry= NULL;
        }
      }
    }
  } while (++i < num_parts);
  (void) ddl_log_sync();
  DBUG_RETURN(error);
}


#define OPTIMIZE_PARTS 1
#define ANALYZE_PARTS 2
#define CHECK_PARTS   3
#define REPAIR_PARTS 4
#define ASSIGN_KEYCACHE_PARTS 5
#define PRELOAD_KEYS_PARTS 6

static const LEX_CSTRING opt_op_name[]=
{
  { NULL, 0},
  { STRING_WITH_LEN("optimize") },
  { STRING_WITH_LEN("analyze") },
  { STRING_WITH_LEN("check") },
  { STRING_WITH_LEN("repair") },
  { STRING_WITH_LEN("assign_to_keycache") },
  { STRING_WITH_LEN("preload_keys") }
};


static const LEX_CSTRING msg_warning= { STRING_WITH_LEN("warning") };
#define msg_error error_clex_str


/*
  Optimize table

  SYNOPSIS
    optimize()
    thd               Thread object
    check_opt         Check/analyze/repair/optimize options

  RETURN VALUES
    >0                Error
    0                 Success
*/

int ha_partition::optimize(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::optimize");

  DBUG_RETURN(handle_opt_partitions(thd, check_opt, OPTIMIZE_PARTS));
}


/*
  Analyze table

  SYNOPSIS
    analyze()
    thd               Thread object
    check_opt         Check/analyze/repair/optimize options

  RETURN VALUES
    >0                Error
    0                 Success
*/

int ha_partition::analyze(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::analyze");

  int result= handle_opt_partitions(thd, check_opt, ANALYZE_PARTS);

  if ((result == 0) && m_file[0]
      && (m_file[0]->ha_table_flags() & HA_ONLINE_ANALYZE))
  {
    /* If this is ANALYZE TABLE that will not force table definition cache
       eviction, update statistics for the partition handler. */
    this->info(HA_STATUS_CONST | HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
  }

  DBUG_RETURN(result);
}


/*
  Check table

  SYNOPSIS
    check()
    thd               Thread object
    check_opt         Check/analyze/repair/optimize options

  RETURN VALUES
    >0                Error
    0                 Success
*/

int ha_partition::check(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::check");

  DBUG_RETURN(handle_opt_partitions(thd, check_opt, CHECK_PARTS));
}


/*
  Repair table

  SYNOPSIS
    repair()
    thd               Thread object
    check_opt         Check/analyze/repair/optimize options

  RETURN VALUES
    >0                Error
    0                 Success
*/

int ha_partition::repair(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::repair");

  int res= handle_opt_partitions(thd, check_opt, REPAIR_PARTS);
  DBUG_RETURN(res);
}

/**
  Assign to keycache

  @param thd          Thread object
  @param check_opt    Check/analyze/repair/optimize options

  @return
    @retval >0        Error
    @retval 0         Success
*/

int ha_partition::assign_to_keycache(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::assign_to_keycache");

  DBUG_RETURN(handle_opt_partitions(thd, check_opt, ASSIGN_KEYCACHE_PARTS));
}


/**
  Preload to keycache

  @param thd          Thread object
  @param check_opt    Check/analyze/repair/optimize options

  @return
    @retval >0        Error
    @retval 0         Success
*/

int ha_partition::preload_keys(THD *thd, HA_CHECK_OPT *check_opt)
{
  DBUG_ENTER("ha_partition::preload_keys");

  DBUG_RETURN(handle_opt_partitions(thd, check_opt, PRELOAD_KEYS_PARTS));
}


/*
  Handle optimize/analyze/check/repair of one partition

  SYNOPSIS
    handle_opt_part()
    thd                      Thread object
    check_opt                Options
    file                     Handler object of partition
    flag                     Optimize/Analyze/Check/Repair flag

  RETURN VALUE
    >0                        Failure
    0                         Success
*/

int ha_partition::handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt,
                                  uint part_id, uint flag)
{
  int error;
  handler *file= m_file[part_id];
  DBUG_ENTER("handle_opt_part");
  DBUG_PRINT("enter", ("flag: %u", flag));

  if (flag == OPTIMIZE_PARTS)
    error= file->ha_optimize(thd, check_opt);
  else if (flag == ANALYZE_PARTS)
    error= file->ha_analyze(thd, check_opt);
  else if (flag == CHECK_PARTS)
  {
    error= file->ha_check(thd, check_opt);
    if (!error ||
        error == HA_ADMIN_ALREADY_DONE ||
        error == HA_ADMIN_NOT_IMPLEMENTED)
    {
      if (check_opt->flags & (T_MEDIUM | T_EXTEND))
        error= check_misplaced_rows(part_id, false);
    }
  }
  else if (flag == REPAIR_PARTS)
  {
    error= file->ha_repair(thd, check_opt);
    if (!error ||
        error == HA_ADMIN_ALREADY_DONE ||
        error == HA_ADMIN_NOT_IMPLEMENTED)
    {
      if (check_opt->flags & (T_MEDIUM | T_EXTEND))
        error= check_misplaced_rows(part_id, true);
    }
  }
  else if (flag == ASSIGN_KEYCACHE_PARTS)
    error= file->assign_to_keycache(thd, check_opt);
  else if (flag == PRELOAD_KEYS_PARTS)
    error= file->preload_keys(thd, check_opt);
  else
  {
    DBUG_ASSERT(FALSE);
    error= 1;
  }
  if (error == HA_ADMIN_ALREADY_DONE)
    error= 0;
  DBUG_RETURN(error);
}


/*
   print a message row formatted for ANALYZE/CHECK/OPTIMIZE/REPAIR TABLE
   (modelled after mi_check_print_msg)
   TODO: move this into the handler, or rewrite mysql_admin_table.
*/
bool print_admin_msg(THD* thd, uint len,
                     const LEX_CSTRING *msg_type,
                     const char* db_name, String &table_name,
                     const LEX_CSTRING *op_name, const char *fmt, ...)
  ATTRIBUTE_FORMAT(printf, 7, 8);
bool print_admin_msg(THD* thd, uint len,
                     const LEX_CSTRING *msg_type,
                     const char* db_name, String &table_name,
                     const LEX_CSTRING *op_name, const char *fmt, ...)
{
  va_list args;
  Protocol *protocol= thd->protocol;
  size_t length;
  size_t msg_length;
  char name[NAME_LEN*2+2];
  char *msgbuf;
  bool error= true;

  if (!(msgbuf= (char*) my_malloc(key_memory_Partition_admin, len, MYF(0))))
    return true;
  va_start(args, fmt);
  msg_length= my_vsnprintf(msgbuf, len, fmt, args);
  va_end(args);
  if (msg_length >= (len - 1))
    goto err;
  msgbuf[len - 1]= 0; // healthy paranoia


  if (!thd->vio_ok())
  {
    sql_print_error("%s", msgbuf);
    goto err;
  }

  length=(size_t)(strxmov(name, db_name, ".", table_name.c_ptr_safe(), NullS) - name);
  /*
     TODO: switch from protocol to push_warning here. The main reason we didn't
     it yet is parallel repair, which threads have no THD object accessible via
     current_thd.

     Also we likely need to lock mutex here (in both cases with protocol and
     push_warning).
  */
  DBUG_PRINT("info",("print_admin_msg:  %s, %s, %s, %s", name, op_name,
                     msg_type, msgbuf));
  protocol->prepare_for_resend();
  protocol->store(name, length, system_charset_info);
  protocol->store(op_name, system_charset_info);
  protocol->store(msg_type, system_charset_info);
  protocol->store(msgbuf, msg_length, system_charset_info);
  if (protocol->write())
  {
    sql_print_error("Failed on my_net_write, writing to stderr instead: %s",
                    msgbuf);
    goto err;
  }
  error= false;
err:
  my_free(msgbuf);
  return error;
}


/*
  Handle optimize/analyze/check/repair of partitions

  SYNOPSIS
    handle_opt_partitions()
    thd                      Thread object
    check_opt                Options
    flag                     Optimize/Analyze/Check/Repair flag

  RETURN VALUE
    >0                        Failure
    0                         Success
*/

int ha_partition::handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt,
                                        uint flag)
{
  List_iterator<partition_element> part_it(m_part_info->partitions);
  uint num_parts= m_part_info->num_parts;
  uint num_subparts= m_part_info->num_subparts;
  uint i= 0;
  int error;
  DBUG_ENTER("ha_partition::handle_opt_partitions");
  DBUG_PRINT("enter", ("flag= %u", flag));

  do
  {
    partition_element *part_elem= part_it++;
    /*
      when ALTER TABLE <CMD> PARTITION ...
      it should only do named partitions, otherwise all partitions
    */
    if (!(thd->lex->alter_info.partition_flags & ALTER_PARTITION_ADMIN) ||
        part_elem->part_state == PART_ADMIN)
    {
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element> subpart_it(part_elem->subpartitions);
        partition_element *sub_elem;
        uint j= 0, part;
        do
        {
          sub_elem= subpart_it++;
          part= i * num_subparts + j;
          DBUG_PRINT("info", ("Optimize subpartition %u (%s)",
                     part, sub_elem->partition_name));
          if (unlikely((error= handle_opt_part(thd, check_opt, part, flag))))
          {
            /* print a line which partition the error belongs to */
            if (error != HA_ADMIN_NOT_IMPLEMENTED &&
                error != HA_ADMIN_ALREADY_DONE &&
                error != HA_ADMIN_TRY_ALTER &&
                error != HA_ERR_TABLE_READONLY)
            {
	      print_admin_msg(thd, MYSQL_ERRMSG_SIZE, &msg_error,
                              table_share->db.str, table->alias,
                              &opt_op_name[flag],
                              "Subpartition %s returned error",
                              sub_elem->partition_name);
            }
            /* reset part_state for the remaining partitions */
            do
            {
              if (part_elem->part_state == PART_ADMIN)
                part_elem->part_state= PART_NORMAL;
            } while ((part_elem= part_it++));
            DBUG_RETURN(error);
          }
        } while (++j < num_subparts);
      }
      else
      {
        DBUG_PRINT("info", ("Optimize partition %u (%s)", i,
                            part_elem->partition_name));
        if (unlikely((error= handle_opt_part(thd, check_opt, i, flag))))
        {
          /* print a line which partition the error belongs to */
          if (error != HA_ADMIN_NOT_IMPLEMENTED &&
              error != HA_ADMIN_ALREADY_DONE &&
              error != HA_ADMIN_TRY_ALTER)
          {
	    print_admin_msg(thd, MYSQL_ERRMSG_SIZE, &msg_error,
                            table_share->db.str, table->alias,
                            &opt_op_name[flag], "Partition %s returned error",
                            part_elem->partition_name);
          }
          /* reset part_state for the remaining partitions */
          do
          {
            if (part_elem->part_state == PART_ADMIN)
              part_elem->part_state= PART_NORMAL;
          } while ((part_elem= part_it++));
          DBUG_RETURN(error);
        }
      }
      part_elem->part_state= PART_NORMAL;
    }
  } while (++i < num_parts);
  DBUG_RETURN(FALSE);
}


/**
  @brief Check and repair the table if necessary

  @param thd    Thread object

  @retval TRUE  Error/Not supported
  @retval FALSE Success

  @note Called if open_table_from_share fails and ::is_crashed().
*/

bool ha_partition::check_and_repair(THD *thd)
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::check_and_repair");

  do
  {
    if ((*file)->ha_check_and_repair(thd))
      DBUG_RETURN(TRUE);
  } while (*(++file));
  DBUG_RETURN(FALSE);
}


/**
  @breif Check if the table can be automatically repaired

  @retval TRUE  Can be auto repaired
  @retval FALSE Cannot be auto repaired
*/

bool ha_partition::auto_repair(int error) const
{
  DBUG_ENTER("ha_partition::auto_repair");

  /*
    As long as we only support one storage engine per table,
    we can use the first partition for this function.
  */
  DBUG_RETURN(m_file[0]->auto_repair(error));
}


/**
  @breif Check if the table is crashed

  @retval TRUE  Crashed
  @retval FALSE Not crashed
*/

bool ha_partition::is_crashed() const
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::is_crashed");

  do
  {
    if ((*file)->is_crashed())
      DBUG_RETURN(TRUE);
  } while (*(++file));
  DBUG_RETURN(FALSE);
}


/*
  Prepare by creating a new partition

  SYNOPSIS
    prepare_new_partition()
    table                      Table object
    create_info                Create info from CREATE TABLE
    file                       Handler object of new partition
    part_name                  partition name

  RETURN VALUE
    >0                         Error
    0                          Success
*/

int ha_partition::prepare_new_partition(TABLE *tbl,
                                        HA_CREATE_INFO *create_info,
                                        handler *file, const char *part_name,
                                        partition_element *p_elem,
                                        uint disable_non_uniq_indexes)
{
  int error;
  DBUG_ENTER("prepare_new_partition");

  /*
    This call to set_up_table_before_create() is done for an alter table.
    So this may be the second time around for this partition_element,
    depending on how many partitions and subpartitions there were before,
    and how many there are now.
    The first time, on the CREATE, data_file_name and index_file_name
    came from the parser.  They did not have the file name attached to
    the end.  But if this partition is less than the total number of
    previous partitions, it's data_file_name has the filename attached.
    So we need to take the partition filename off if it exists.
    That file name may be different from part_name, which will be
    attached in append_file_to_dir().
  */
  truncate_partition_filename((char*) p_elem->data_file_name);
  truncate_partition_filename((char*) p_elem->index_file_name);

  if (unlikely((error= set_up_table_before_create(tbl, part_name, create_info,
                                                  p_elem))))
    goto error_create;

  if (!(file->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
    tbl->s->connect_string= p_elem->connect_string;
  create_info->options|= HA_CREATE_TMP_ALTER;
  if ((error= file->ha_create(part_name, tbl, create_info)))
  {
    /*
      Added for safety, InnoDB reports HA_ERR_FOUND_DUPP_KEY
      if the table/partition already exists.
      If we return that error code, then print_error would try to
      get_dup_key on a non-existing partition.
      So return a more reasonable error code.
    */
    if (error == HA_ERR_FOUND_DUPP_KEY)
      error= HA_ERR_TABLE_EXIST;
    goto error_create;
  }
  DBUG_PRINT("info", ("partition %s created", part_name));
  if (unlikely((error= file->ha_open(tbl, part_name, m_mode,
                                     m_open_test_lock | HA_OPEN_NO_PSI_CALL |
                                     HA_OPEN_FOR_CREATE))))
    goto error_open;
  DBUG_PRINT("info", ("partition %s opened", part_name));

  /*
    Note: if you plan to add another call that may return failure,
    better to do it before external_lock() as cleanup_new_partition()
    assumes that external_lock() is last call that may fail here.
    Otherwise see description for cleanup_new_partition().
  */
  if (unlikely((error= file->ha_external_lock(ha_thd(), F_WRLCK))))
    goto error_external_lock;
  DBUG_PRINT("info", ("partition %s external locked", part_name));

  if (disable_non_uniq_indexes)
    file->ha_disable_indexes(HA_KEY_SWITCH_NONUNIQ_SAVE);

  DBUG_RETURN(0);
error_external_lock:
  (void) file->ha_close();
error_open:
  (void) file->delete_table(part_name);
error_create:
  DBUG_RETURN(error);
}


/*
  Cleanup by removing all created partitions after error

  SYNOPSIS
    cleanup_new_partition()
    part_count             Number of partitions to remove

  RETURN VALUE
    NONE

  DESCRIPTION
    This function is called immediately after prepare_new_partition() in
    case the latter fails.

    In prepare_new_partition() last call that may return failure is
    external_lock(). That means if prepare_new_partition() fails,
    partition does not have external lock. Thus no need to call
    external_lock(F_UNLCK) here.

  TODO:
    We must ensure that in the case that we get an error during the process
    that we call external_lock with F_UNLCK, close the table and delete the
    table in the case where we have been successful with prepare_handler.
    We solve this by keeping an array of successful calls to prepare_handler
    which can then be used to undo the call.
*/

void ha_partition::cleanup_new_partition(uint part_count)
{
  DBUG_ENTER("ha_partition::cleanup_new_partition");

  if (m_added_file)
  {
    THD *thd= ha_thd();
    handler **file= m_added_file;
    while ((part_count > 0) && (*file))
    {
      (*file)->ha_external_unlock(thd);
      (*file)->ha_close();

      /* Leave the (*file)->delete_table(part_name) to the ddl-log */

      file++;
      part_count--;
    }
    m_added_file= NULL;
  }
  DBUG_VOID_RETURN;
}

/*
  Implement the partition changes defined by ALTER TABLE of partitions

  SYNOPSIS
    change_partitions()
    create_info                 HA_CREATE_INFO object describing all
                                fields and indexes in table
    path                        Complete path of db and table name
    out: copied                 Output parameter where number of copied
                                records are added
    out: deleted                Output parameter where number of deleted
                                records are added
    pack_frm_data               Reference to packed frm file
    pack_frm_len                Length of packed frm file

  RETURN VALUE
    >0                        Failure
    0                         Success

  DESCRIPTION
    Add and copy if needed a number of partitions, during this operation
    no other operation is ongoing in the server. This is used by
    ADD PARTITION all types as well as by REORGANIZE PARTITION. For
    one-phased implementations it is used also by DROP and COALESCE
    PARTITIONs.
    One-phased implementation needs the new frm file, other handlers will
    get zero length and a NULL reference here.
*/

int ha_partition::change_partitions(HA_CREATE_INFO *create_info,
                                    const char *path,
                                    ulonglong * const copied,
                                    ulonglong * const deleted,
                                    const uchar *pack_frm_data
                                    __attribute__((unused)),
                                    size_t pack_frm_len
                                    __attribute__((unused)))
{
  List_iterator<partition_element> part_it(m_part_info->partitions);
  List_iterator <partition_element> t_it(m_part_info->temp_partitions);
  char part_name_buff[FN_REFLEN + 1];
  uint num_parts= m_part_info->partitions.elements;
  uint num_subparts= m_part_info->num_subparts;
  uint i= 0;
  uint num_remain_partitions, part_count, orig_count;
  handler **new_file_array;
  int error= 1;
  bool first;
  uint temp_partitions= m_part_info->temp_partitions.elements;
  THD *thd= ha_thd();
  DBUG_ENTER("ha_partition::change_partitions");

  /*
    Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
    We use m_file[0] as long as all partitions have the same storage engine.
  */
  DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
                                                   part_name_buff)));
  m_reorged_parts= 0;
  if (!m_part_info->is_sub_partitioned())
    num_subparts= 1;

  /*
    Step 1:
      Calculate number of reorganised partitions and allocate space for
      their handler references.
  */
  if (temp_partitions)
  {
    m_reorged_parts= temp_partitions * num_subparts;
  }
  else
  {
    do
    {
      partition_element *part_elem= part_it++;
      if (part_elem->part_state == PART_CHANGED ||
          part_elem->part_state == PART_REORGED_DROPPED)
      {
        m_reorged_parts+= num_subparts;
      }
    } while (++i < num_parts);
  }
  if (m_reorged_parts &&
      !(m_reorged_file= (handler**) thd->calloc(sizeof(handler*)*
                                                (m_reorged_parts + 1))))
  {
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

  /*
    Step 2:
      Calculate number of partitions after change and allocate space for
      their handler references.
  */
  num_remain_partitions= 0;
  if (temp_partitions)
  {
    num_remain_partitions= num_parts * num_subparts;
  }
  else
  {
    part_it.rewind();
    i= 0;
    do
    {
      partition_element *part_elem= part_it++;
      if (part_elem->part_state == PART_NORMAL ||
          part_elem->part_state == PART_TO_BE_ADDED ||
          part_elem->part_state == PART_CHANGED)
      {
        num_remain_partitions+= num_subparts;
      }
    } while (++i < num_parts);
  }
  if (!(new_file_array= ((handler**)
                         thd->calloc(sizeof(handler*)*
                                     (2*(num_remain_partitions + 1))))))
  {
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }
  m_added_file= &new_file_array[num_remain_partitions + 1];

  /*
    Step 3:
      Fill m_reorged_file with handler references and NULL at the end
  */
  if (m_reorged_parts)
  {
    i= 0;
    part_count= 0;
    first= TRUE;
    part_it.rewind();
    do
    {
      partition_element *part_elem= part_it++;
      if (part_elem->part_state == PART_CHANGED ||
          part_elem->part_state == PART_REORGED_DROPPED)
      {
        memcpy((void*)&m_reorged_file[part_count],
               (void*)&m_file[i*num_subparts],
               sizeof(handler*)*num_subparts);
        part_count+= num_subparts;
      }
      else if (first && temp_partitions &&
               part_elem->part_state == PART_TO_BE_ADDED)
      {
        /*
          When doing an ALTER TABLE REORGANIZE PARTITION a number of
          partitions is to be reorganised into a set of new partitions.
          The reorganised partitions are in this case in the temp_partitions
          list. We copy all of them in one batch and thus we only do this
          until we find the first partition with state PART_TO_BE_ADDED
          since this is where the new partitions go in and where the old
          ones used to be.
        */
        first= FALSE;
        DBUG_ASSERT(((i*num_subparts) + m_reorged_parts) <= m_file_tot_parts);
        memcpy((void*)m_reorged_file, &m_file[i*num_subparts],
               sizeof(handler*)*m_reorged_parts);
      }
    } while (++i < num_parts);
  }

  /*
    Step 4:
      Fill new_array_file with handler references. Create the handlers if
      needed.
  */
  i= 0;
  part_count= 0;
  orig_count= 0;
  first= TRUE;
  part_it.rewind();
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_NORMAL)
    {
      DBUG_ASSERT(orig_count + num_subparts <= m_file_tot_parts);
      memcpy((void*)&new_file_array[part_count], (void*)&m_file[orig_count],
             sizeof(handler*)*num_subparts);
      part_count+= num_subparts;
      orig_count+= num_subparts;
    }
    else if (part_elem->part_state == PART_CHANGED ||
             part_elem->part_state == PART_TO_BE_ADDED)
    {
      uint j= 0;
      Parts_share_refs *p_share_refs;
      /*
        The Handler_shares for each partition's handler can be allocated
        within this handler, since there will not be any more instances of the
        new partitions, until the table is reopened after the ALTER succeeded.
      */
      p_share_refs= new Parts_share_refs;
      if (!p_share_refs)
        DBUG_RETURN(HA_ERR_OUT_OF_MEM);
      if (p_share_refs->init(num_subparts))
        DBUG_RETURN(HA_ERR_OUT_OF_MEM);
      if (m_new_partitions_share_refs.push_back(p_share_refs, thd->mem_root))
        DBUG_RETURN(HA_ERR_OUT_OF_MEM);
      do
      {
        handler **new_file= &new_file_array[part_count++];
        if (!(*new_file=
              get_new_handler(table->s,
                              thd->mem_root,
                              part_elem->engine_type)))
        {
          DBUG_RETURN(HA_ERR_OUT_OF_MEM);
        }
        if ((*new_file)->set_ha_share_ref(&p_share_refs->ha_shares[j]))
        {
          DBUG_RETURN(HA_ERR_OUT_OF_MEM);
        }
      } while (++j < num_subparts);
      if (part_elem->part_state == PART_CHANGED)
        orig_count+= num_subparts;
      else if (temp_partitions && first)
      {
        orig_count+= (num_subparts * temp_partitions);
        first= FALSE;
      }
    }
  } while (++i < num_parts);
  first= FALSE;
  /*
    Step 5:
      Create the new partitions and also open, lock and call external_lock
      on them to prepare them for copy phase and also for later close
      calls
  */

  /*
     Before creating new partitions check whether indexes are disabled
     in the  partitions.
  */

  uint disable_non_uniq_indexes= indexes_are_disabled();

  i= 0;
  part_count= 0;
  part_it.rewind();
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_TO_BE_ADDED ||
        part_elem->part_state == PART_CHANGED)
    {
      /*
        A new partition needs to be created PART_TO_BE_ADDED means an
        entirely new partition and PART_CHANGED means a changed partition
        that will still exist with either more or less data in it.
      */
      uint name_variant= NORMAL_PART_NAME;
      if (part_elem->part_state == PART_CHANGED ||
          (part_elem->part_state == PART_TO_BE_ADDED && temp_partitions))
        name_variant= TEMP_PART_NAME;
      if (m_part_info->is_sub_partitioned())
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        uint j= 0, part;
        do
        {
          partition_element *sub_elem= sub_it++;
          if (unlikely((error=
                        create_subpartition_name(part_name_buff,
                                                 sizeof(part_name_buff), path,
                                                 part_elem->partition_name,
                                                 sub_elem->partition_name,
                                                 name_variant))))
          {
            cleanup_new_partition(part_count);
            DBUG_RETURN(error);
          }
          part= i * num_subparts + j;
          DBUG_PRINT("info", ("Add subpartition %s", part_name_buff));
          if (unlikely((error=
                        prepare_new_partition(table, create_info,
                                              new_file_array[part],
                                              (const char *)part_name_buff,
                                              sub_elem,
                                              disable_non_uniq_indexes))))
          {
            cleanup_new_partition(part_count);
            DBUG_RETURN(error);
          }

          m_added_file[part_count++]= new_file_array[part];
        } while (++j < num_subparts);
      }
      else
      {
        if (unlikely((error=
                      create_partition_name(part_name_buff,
                                            sizeof(part_name_buff), path,
                                            part_elem->partition_name,
                                            name_variant, TRUE))))
        {
          cleanup_new_partition(part_count);
          DBUG_RETURN(error);
        }

        DBUG_PRINT("info", ("Add partition %s", part_name_buff));
        if (unlikely((error=
                      prepare_new_partition(table, create_info,
                                            new_file_array[i],
                                            (const char *)part_name_buff,
                                            part_elem,
                                            disable_non_uniq_indexes))))
        {
          cleanup_new_partition(part_count);
          DBUG_RETURN(error);
        }

        m_added_file[part_count++]= new_file_array[i];
      }
    }
  } while (++i < num_parts);

  /*
    Step 6:
      State update to prepare for next write of the frm file.
  */
  i= 0;
  part_it.rewind();
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_TO_BE_ADDED)
      part_elem->part_state= PART_IS_ADDED;
    else if (part_elem->part_state == PART_CHANGED)
      part_elem->part_state= PART_IS_CHANGED;
    else if (part_elem->part_state == PART_REORGED_DROPPED)
      part_elem->part_state= PART_TO_BE_DROPPED;
  } while (++i < num_parts);
  for (i= 0; i < temp_partitions; i++)
  {
    partition_element *part_elem= t_it++;
    DBUG_ASSERT(part_elem->part_state == PART_TO_BE_REORGED);
    part_elem->part_state= PART_TO_BE_DROPPED;
  }
  DBUG_ASSERT(m_new_file == 0);
  m_new_file= new_file_array;
  for (i= 0; i < part_count; i++)
    m_added_file[i]->extra(HA_EXTRA_BEGIN_ALTER_COPY);
  error= copy_partitions(copied, deleted);
  for (i= 0; i < part_count; i++)
    m_added_file[i]->extra(HA_EXTRA_END_ALTER_COPY);
  if (unlikely(error))
  {
    /*
      Close and unlock the new temporary partitions.
      They will later be deleted through the ddl-log.
    */
    cleanup_new_partition(part_count);
    m_new_file= 0;
  }
  DBUG_RETURN(error);
}


/*
  Copy partitions as part of ALTER TABLE of partitions

  SYNOPSIS
    copy_partitions()
    out:copied                 Number of records copied
    out:deleted                Number of records deleted

  RETURN VALUE
    >0                         Error code
    0                          Success

  DESCRIPTION
    change_partitions has done all the preparations, now it is time to
    actually copy the data from the reorganised partitions to the new
    partitions.
*/

int ha_partition::copy_partitions(ulonglong * const copied,
                                  ulonglong * const deleted)
{
  uint reorg_part= 0;
  int result= 0;
  longlong func_value;
  DBUG_ENTER("ha_partition::copy_partitions");

  if (m_part_info->linear_hash_ind)
  {
    if (m_part_info->part_type == HASH_PARTITION)
      set_linear_hash_mask(m_part_info, m_part_info->num_parts);
    else
      set_linear_hash_mask(m_part_info, m_part_info->num_subparts);
  }
  else if (m_part_info->part_type == VERSIONING_PARTITION)
  {
    if (m_part_info->check_constants(ha_thd(), m_part_info))
      goto init_error;
  }

  while (reorg_part < m_reorged_parts)
  {
    handler *file= m_reorged_file[reorg_part];
    uint32 new_part;

    late_extra_cache(reorg_part);
    if (unlikely((result= file->ha_rnd_init_with_error(1))))
      goto init_error;
    while (TRUE)
    {
      if ((result= file->ha_rnd_next(m_rec0)))
      {
        if (result != HA_ERR_END_OF_FILE)
          goto error;
        /*
          End-of-file reached, break out to continue with next partition or
          end the copy process.
        */
        break;
      }
      /* Found record to insert into new handler */
      if (m_part_info->get_partition_id(m_part_info, &new_part,
                                        &func_value))
      {
        /*
           This record is in the original table but will not be in the new
           table since it doesn't fit into any partition any longer due to
           changed partitioning ranges or list values.
        */
        (*deleted)++;
      }
      else
      {
        /* Copy record to new handler */
        (*copied)++;
        DBUG_ASSERT(!m_new_file[new_part]->row_logging);
        result= m_new_file[new_part]->ha_write_row(m_rec0);
        if (result)
          goto error;
      }
    }
    late_extra_no_cache(reorg_part);
    file->ha_rnd_end();
    reorg_part++;
  }
  DBUG_EXECUTE_IF("debug_abort_copy_partitions",
                  DBUG_RETURN(HA_ERR_UNSUPPORTED); );
  DBUG_RETURN(FALSE);
error:
  m_reorged_file[reorg_part]->ha_rnd_end();
init_error:
  DBUG_RETURN(result);
}

/*
  Update create info as part of ALTER TABLE

  SYNOPSIS
    update_create_info()
    create_info                   Create info from ALTER TABLE

  RETURN VALUE
    NONE

  DESCRIPTION
  Forward this handler call to the storage engine foreach
  partition handler.  The data_file_name for each partition may
  need to be reset if the tablespace was moved.  Use a dummy
  HA_CREATE_INFO structure and transfer necessary data.
*/

void ha_partition::update_create_info(HA_CREATE_INFO *create_info)
{
  DBUG_ENTER("ha_partition::update_create_info");

  /*
    Fix for bug#38751, some engines needs info-calls in ALTER.
    Archive need this since it flushes in ::info.
    HA_STATUS_AUTO is optimized so it will not always be forwarded
    to all partitions, but HA_STATUS_VARIABLE will.
  */
  info(HA_STATUS_VARIABLE | HA_STATUS_OPEN);

  info(HA_STATUS_AUTO);

  if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
    create_info->auto_increment_value= stats.auto_increment_value;

  /*
    DATA DIRECTORY and INDEX DIRECTORY are never applied to the whole
    partitioned table, only its parts.
  */
  my_bool from_alter= (create_info->data_file_name == (const char*) -1);
  create_info->data_file_name= create_info->index_file_name= NULL;

  if (!(m_file[0]->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
    create_info->connect_string= null_clex_str;

  /*
    We do not need to update the individual partition DATA DIRECTORY settings
    since they can be changed by ALTER TABLE ... REORGANIZE PARTITIONS.
  */
  if (from_alter)
    DBUG_VOID_RETURN;

  /*
    send Handler::update_create_info() to the storage engine for each
    partition that currently has a handler object.  Using a dummy
    HA_CREATE_INFO structure to collect DATA and INDEX DIRECTORYs.
  */

  List_iterator<partition_element> part_it(m_part_info->partitions);
  partition_element *part_elem, *sub_elem;
  uint num_subparts= m_part_info->num_subparts;
  uint num_parts= (num_subparts ? m_file_tot_parts / num_subparts :
                   m_file_tot_parts);
  HA_CREATE_INFO dummy_info;
  dummy_info.init();

  /*
    Since update_create_info() can be called from mysql_prepare_alter_table()
    when not all handlers are set up, we look for that condition first.
    If all handlers are not available, do not call update_create_info for any.
  */
  uint i, j, part;
  for (i= 0; i < num_parts; i++)
  {
    part_elem= part_it++;
    if (!part_elem)
      DBUG_VOID_RETURN;
    if (m_is_sub_partitioned)
    {
      List_iterator<partition_element> subpart_it(part_elem->subpartitions);
      for (j= 0; j < num_subparts; j++)
      {
        sub_elem= subpart_it++;
        if (!sub_elem)
          DBUG_VOID_RETURN;
        part= i * num_subparts + j;
        if (part >= m_file_tot_parts || !m_file[part])
          DBUG_VOID_RETURN;
      }
    }
    else
    {
      if (!m_file[i])
        DBUG_VOID_RETURN;
    }
  }
  part_it.rewind();

  for (i= 0; i < num_parts; i++)
  {
    part_elem= part_it++;
    DBUG_ASSERT(part_elem);
    if (m_is_sub_partitioned)
    {
      List_iterator<partition_element> subpart_it(part_elem->subpartitions);
      for (j= 0; j < num_subparts; j++)
      {
        sub_elem= subpart_it++;
        DBUG_ASSERT(sub_elem);
        part= i * num_subparts + j;
        DBUG_ASSERT(part < m_file_tot_parts);
        DBUG_ASSERT(m_file[part]);
        dummy_info.data_file_name= dummy_info.index_file_name = NULL;
        m_file[part]->update_create_info(&dummy_info);
        sub_elem->data_file_name = (char*) dummy_info.data_file_name;
        sub_elem->index_file_name = (char*) dummy_info.index_file_name;
      }
    }
    else
    {
      DBUG_ASSERT(m_file[i]);
      dummy_info.data_file_name= dummy_info.index_file_name= NULL;
      m_file[i]->update_create_info(&dummy_info);
      part_elem->data_file_name = (char*) dummy_info.data_file_name;
      part_elem->index_file_name = (char*) dummy_info.index_file_name;
    }
  }
  DBUG_VOID_RETURN;
}


/**
  Change the internal TABLE_SHARE pointer

  @param table_arg    TABLE object
  @param share        New share to use

  @note Is used in error handling in delete_table.
  All handlers should exist (lock_partitions should not be used)
*/

void ha_partition::change_table_ptr(TABLE *table_arg, TABLE_SHARE *share)
{
  handler **file_array;
  table= table_arg;
  table_share= share;
  /*
    m_file can be NULL when using an old cached table in DROP TABLE, when the
    table just has REMOVED PARTITIONING, see Bug#42438
  */
  if (m_file)
  {
    file_array= m_file;
    DBUG_ASSERT(*file_array);
    do
    {
      (*file_array)->change_table_ptr(table_arg, share);
    } while (*(++file_array));
  }

  if (m_added_file && m_added_file[0])
  {
    /* if in middle of a drop/rename etc */
    file_array= m_added_file;
    do
    {
      (*file_array)->change_table_ptr(table_arg, share);
    } while (*(++file_array));
  }
}


/**
  Handle delete and rename table

    @param from         Full path of old table
    @param to           Full path of new table. May be NULL in case of delete

  @return Operation status
    @retval >0  Error
    @retval 0   Success

  @note  Common routine to handle delete_table and rename_table.
  The routine uses the partition handler file to get the
  names of the partition instances. Both these routines
  are called after creating the handler without table
  object and thus the file is needed to discover the
  names of the partitions and the underlying storage engines.
*/

uint ha_partition::del_ren_table(const char *from, const char *to)
{
  int save_error= 0;
  int error;
  char from_buff[FN_REFLEN + 1], to_buff[FN_REFLEN + 1],
       from_lc_buff[FN_REFLEN], to_lc_buff[FN_REFLEN];
  char *name_buffer_ptr;
  const char *from_path;
  const char *to_path= NULL;
  handler **file, **abort_file;
  THD *thd= ha_thd();
  DBUG_ENTER("ha_partition::del_ren_table");

  if (get_from_handler_file(from, thd->mem_root, false))
    DBUG_RETURN(my_errno ? my_errno : ENOENT);
  DBUG_ASSERT(m_file_buffer);
  DBUG_PRINT("enter", ("from: (%s) to: (%s)", from, to ? to : "(nil)"));
  name_buffer_ptr= m_name_buffer_ptr;

  file= m_file;
  /* The command should be logged with IF EXISTS if using a shared table */
  if (m_file[0]->ht->flags & HTON_TABLE_MAY_NOT_EXIST_ON_SLAVE)
    thd->replication_flags|= OPTION_IF_EXISTS;

  if (to == NULL)
  {
    /*
      Delete table, start by delete the .par file. If error, break, otherwise
      delete as much as possible.
    */
    if (unlikely((error= handler::delete_table(from))))
      DBUG_RETURN(error);
  }

  if (ha_check_if_updates_are_ignored(thd, partition_ht(),
                                      to ? "RENAME" : "DROP"))
    DBUG_RETURN(0);

  /*
    Since ha_partition has HA_FILE_BASED, it must alter underlying table names
    if they do not have HA_FILE_BASED and lower_case_table_names == 2.
    See Bug#37402, for Mac OS X.
    The appended #P#<partname>[#SP#<subpartname>] will remain in current case.
    Using the first partitions handler, since mixing handlers is not allowed.
  */
  from_path= get_canonical_filename(*file, from, from_lc_buff);
  if (to != NULL)
    to_path= get_canonical_filename(*file, to, to_lc_buff);
  do
  {
    if (unlikely((error= create_partition_name(from_buff, sizeof(from_buff),
                                               from_path, name_buffer_ptr,
                                               NORMAL_PART_NAME, FALSE))))
      goto rename_error;

    if (to != NULL)
    {                                           // Rename branch
      if (unlikely((error= create_partition_name(to_buff, sizeof(to_buff),
                                                 to_path, name_buffer_ptr,
                                                 NORMAL_PART_NAME, FALSE))))
        goto rename_error;
      error= (*file)->ha_rename_table(from_buff, to_buff);
      if (unlikely(error))
        goto rename_error;
    }
    else                                        // delete branch
    {
      error= (*file)->delete_table(from_buff);
    }
    name_buffer_ptr= strend(name_buffer_ptr) + 1;
    if (unlikely(error))
      save_error= error;
  } while (*(++file));
  if (to != NULL)
  {
    if (unlikely((error= handler::rename_table(from, to))))
    {
      /* Try to revert everything, ignore errors */
      (void) handler::rename_table(to, from);
      goto rename_error;
    }
  }

  /* Update .par file in the handlers that supports it */
  if ((*m_file)->ht->create_partitioning_metadata)
  {
    error= (*m_file)->ht->create_partitioning_metadata(to, from,
                                                       to == NULL ?
                                                       CHF_DELETE_FLAG :
                                                       CHF_RENAME_FLAG);
    DBUG_EXECUTE_IF("failed_create_partitioning_metadata",
                    { my_message_sql(ER_OUT_OF_RESOURCES,"Simulated crash",MYF(0));
                      error= 1;
                    });
    if (error)
    {
      if (to)
      {
        (void) handler::rename_table(to, from);
        (void) (*m_file)->ht->create_partitioning_metadata(from, to,
                                                           CHF_RENAME_FLAG);
        goto rename_error;
      }
      else
        save_error=error;
    }
  }
  DBUG_RETURN(save_error);

rename_error:
  name_buffer_ptr= m_name_buffer_ptr;
  for (abort_file= file, file= m_file; file < abort_file; file++)
  {
    /* Revert the rename, back from 'to' to the original 'from' */
    if (!create_partition_name(from_buff, sizeof(from_buff), from_path,
                               name_buffer_ptr, NORMAL_PART_NAME, FALSE) &&
        !create_partition_name(to_buff, sizeof(to_buff), to_path,
                               name_buffer_ptr, NORMAL_PART_NAME, FALSE))
    {
      /* Ignore error here */
      (void) (*file)->ha_rename_table(to_buff, from_buff);
    }
    name_buffer_ptr= strend(name_buffer_ptr) + 1;
  }
  DBUG_RETURN(error);
}

uint ha_partition::count_query_cache_dependant_tables(uint8 *tables_type)
{
  DBUG_ENTER("ha_partition::count_query_cache_dependant_tables");
  /* Here we rely on the fact that all tables are of the same type */
  uint8 type= m_file[0]->table_cache_type();
  (*tables_type)|= type;
  DBUG_PRINT("enter", ("cnt: %u", (uint) m_tot_parts));
  /*
    We need save underlying tables only for HA_CACHE_TBL_ASKTRANSACT:
    HA_CACHE_TBL_NONTRANSACT - because all changes goes through partition table
    HA_CACHE_TBL_NOCACHE - because will not be cached
    HA_CACHE_TBL_TRANSACT - QC need to know that such type present
  */
  DBUG_RETURN(type == HA_CACHE_TBL_ASKTRANSACT ? m_tot_parts : 0);
}

my_bool ha_partition::
reg_query_cache_dependant_table(THD *thd,
                                char *engine_key, uint engine_key_len,
                                char *cache_key, uint cache_key_len,
                                uint8 type,
                                Query_cache *cache,
                                Query_cache_block_table **block_table,
                                handler *file,
                                uint *n)
{
  DBUG_ENTER("ha_partition::reg_query_cache_dependant_table");
  qc_engine_callback engine_callback;
  ulonglong engine_data;
  /* ask undelying engine */
  if (!file->register_query_cache_table(thd, engine_key,
                                        engine_key_len,
                                        &engine_callback,
                                        &engine_data))
  {
    DBUG_PRINT("qcache", ("Handler does not allow caching for %.*s",
                          engine_key_len, engine_key));
    /*
      As this can change from call to call, don't reset set
      thd->lex->safe_to_cache_query
    */
    thd->query_cache_is_applicable= 0;        // Query can't be cached
    DBUG_RETURN(TRUE);
  }
  (++(*block_table))->n= ++(*n);
  if (!cache->insert_table(thd, cache_key_len,
                           cache_key, (*block_table),
                           (uint32) table_share->db.length,
                           (uint8) (cache_key_len -
                                    table_share->table_cache_key.length),
                           type,
                           engine_callback, engine_data,
                           FALSE))
    DBUG_RETURN(TRUE);
  DBUG_RETURN(FALSE);
}


my_bool ha_partition::
register_query_cache_dependant_tables(THD *thd,
                                      Query_cache *cache,
                                      Query_cache_block_table **block_table,
                                      uint *n)
{
  char *engine_key_end, *query_cache_key_end;
  uint i;
  uint num_parts= m_part_info->num_parts;
  uint num_subparts= m_part_info->num_subparts;
  int diff_length;
  List_iterator<partition_element> part_it(m_part_info->partitions);
  char engine_key[FN_REFLEN], query_cache_key[FN_REFLEN];
  DBUG_ENTER("ha_partition::register_query_cache_dependant_tables");

  /* see ha_partition::count_query_cache_dependant_tables */
  if (m_file[0]->table_cache_type() != HA_CACHE_TBL_ASKTRANSACT)
    DBUG_RETURN(FALSE); // nothing to register

  /* prepare static part of the key */
  memcpy(engine_key, table_share->normalized_path.str,
         table_share->normalized_path.length);
  memcpy(query_cache_key, table_share->table_cache_key.str,
         table_share->table_cache_key.length);

  diff_length= ((int) table_share->table_cache_key.length -
                (int) table_share->normalized_path.length -1);

  engine_key_end= engine_key + table_share->normalized_path.length;
  query_cache_key_end= query_cache_key + table_share->table_cache_key.length -1;

  engine_key_end[0]= engine_key_end[2]= query_cache_key_end[0]=
    query_cache_key_end[2]= '#';
  query_cache_key_end[1]= engine_key_end[1]= 'P';
  engine_key_end+= 3;
  query_cache_key_end+= 3;

  i= 0;
  do
  {
    partition_element *part_elem= part_it++;
    char *engine_pos= strmov(engine_key_end, part_elem->partition_name);
    if (m_is_sub_partitioned)
    {
      List_iterator<partition_element> subpart_it(part_elem->subpartitions);
      partition_element *sub_elem;
      uint j= 0, part;
      engine_pos[0]= engine_pos[3]= '#';
      engine_pos[1]= 'S';
      engine_pos[2]= 'P';
      engine_pos += 4;
      do
      {
        char *end;
        uint length;
        sub_elem= subpart_it++;
        part= i * num_subparts + j;
        /* we store the end \0 as part of the key */
        end= strmov(engine_pos, sub_elem->partition_name) + 1;
        length= (uint)(end - engine_key);
        /* Copy the suffix and end 0 to query cache key */
        memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end));
        if (reg_query_cache_dependant_table(thd, engine_key, length,
                                            query_cache_key,
                                            length + diff_length,
                                            m_file[part]->table_cache_type(),
                                            cache,
                                            block_table, m_file[part],
                                            n))
          DBUG_RETURN(TRUE);
      } while (++j < num_subparts);
    }
    else
    {
      char *end= engine_pos+1;                  // copy end \0
      uint length= (uint)(end - engine_key);
      /* Copy the suffix and end 0 to query cache key */
      memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end));
      if (reg_query_cache_dependant_table(thd, engine_key, length,
                                          query_cache_key,
                                          length + diff_length,
                                          m_file[i]->table_cache_type(),
                                          cache,
                                          block_table, m_file[i],
                                          n))
        DBUG_RETURN(TRUE);
    }
  } while (++i < num_parts);
  DBUG_PRINT("info", ("cnt: %u", (uint)m_tot_parts));
  DBUG_RETURN(FALSE);
}


/**
  Set up table share object before calling create on underlying handler

  @param table             Table object
  @param info              Create info
  @param part_elem[in,out] Pointer to used partition_element, searched if NULL

  @return    status
    @retval  TRUE  Error
    @retval  FALSE Success

  @details
    Set up
    1) Comment on partition
    2) MAX_ROWS, MIN_ROWS on partition
    3) Index file name on partition
    4) Data file name on partition
    5) Engine-defined attributes on partition
*/

int ha_partition::set_up_table_before_create(TABLE *tbl,
                    const char *partition_name_with_path,
                    HA_CREATE_INFO *info,
                    partition_element *part_elem)
{
  int error= 0;
  LEX_CSTRING part_name;
  THD *thd= ha_thd();
  DBUG_ENTER("set_up_table_before_create");

  DBUG_ASSERT(part_elem);

  if (!part_elem)
    DBUG_RETURN(1);
  tbl->s->max_rows= part_elem->part_max_rows;
  tbl->s->min_rows= part_elem->part_min_rows;
  part_name.str= strrchr(partition_name_with_path, FN_LIBCHAR)+1;
  part_name.length= strlen(part_name.str);
  if ((part_elem->index_file_name &&
      (error= append_file_to_dir(thd,
                                 (const char**)&part_elem->index_file_name,
                                 &part_name))) ||
      (part_elem->data_file_name &&
      (error= append_file_to_dir(thd,
                                 (const char**)&part_elem->data_file_name,
                                 &part_name))))
  {
    DBUG_RETURN(error);
  }
  info->index_file_name= part_elem->index_file_name;
  info->data_file_name= part_elem->data_file_name;
  info->connect_string= part_elem->connect_string;
  if (info->connect_string.length)
    info->used_fields|= HA_CREATE_USED_CONNECTION;
  tbl->s->connect_string= part_elem->connect_string;
  if (part_elem->option_list)
    tbl->s->option_list= part_elem->option_list;
  if (part_elem->option_struct)
    tbl->s->option_struct= part_elem->option_struct;
  DBUG_RETURN(0);
}


/*
  Add two names together

  SYNOPSIS
    name_add()
    out:dest                          Destination string
    first_name                        First name
    sec_name                          Second name

  RETURN VALUE
    >0                                Error
    0                                 Success

  DESCRIPTION
    Routine used to add two names with '_' in between then. Service routine
    to create_handler_file
    Include the NULL in the count of characters since it is needed as separator
    between the partition names.
*/

static uint name_add(char *dest, const char *first_name, const char *sec_name)
{
  return (uint) (strxmov(dest, first_name, "#SP#", sec_name, NullS) -dest) + 1;
}


/**
  Create the special .par file

  @param name  Full path of table name

  @return Operation status
    @retval FALSE  Error code
    @retval TRUE   Success

  @note
    Method used to create handler file with names of partitions, their
    engine types and the number of partitions.
*/

bool ha_partition::create_handler_file(const char *name)
{
  partition_element *part_elem, *subpart_elem;
  size_t i, j, part_name_len, subpart_name_len;
  size_t tot_partition_words, tot_name_len, num_parts;
  size_t tot_parts= 0;
  size_t tot_len_words, tot_len_byte, chksum, tot_name_words;
  char *name_buffer_ptr;
  uchar *file_buffer, *engine_array;
  bool result= TRUE;
  char file_name[FN_REFLEN];
  char part_name[FN_REFLEN];
  char subpart_name[FN_REFLEN];
  File file;
  List_iterator_fast <partition_element> part_it(m_part_info->partitions);
  DBUG_ENTER("create_handler_file");

  num_parts= m_part_info->partitions.elements;
  DBUG_PRINT("enter", ("table name: %s  num_parts: %zu", name, num_parts));
  tot_name_len= 0;
  for (i= 0; i < num_parts; i++)
  {
    part_elem= part_it++;
    if (part_elem->part_state != PART_NORMAL &&
        part_elem->part_state != PART_TO_BE_ADDED &&
        part_elem->part_state != PART_CHANGED)
      continue;
    tablename_to_filename(part_elem->partition_name, part_name,
                          FN_REFLEN);
    part_name_len= strlen(part_name);
    if (!m_is_sub_partitioned)
    {
      tot_name_len+= part_name_len + 1;
      tot_parts++;
    }
    else
    {
      List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
      for (j= 0; j < m_part_info->num_subparts; j++)
      {
	subpart_elem= sub_it++;
        tablename_to_filename(subpart_elem->partition_name,
                              subpart_name,
                              FN_REFLEN);
	subpart_name_len= strlen(subpart_name);
	tot_name_len+= part_name_len + subpart_name_len + 5;
        tot_parts++;
      }
    }
  }
  /*
     File format:
     Length in words              4 byte
     Checksum                     4 byte
     Total number of partitions   4 byte
     Array of engine types        n * 4 bytes where
     n = (m_tot_parts + 3)/4
     Length of name part in bytes 4 bytes
     (Names in filename format)
     Name part                    m * 4 bytes where
     m = ((length_name_part + 3)/4)*4

     All padding bytes are zeroed
  */
  tot_partition_words= (tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;
  tot_name_words= (tot_name_len + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;
  /* 4 static words (tot words, checksum, tot partitions, name length) */
  tot_len_words= 4 + tot_partition_words + tot_name_words;
  tot_len_byte= PAR_WORD_SIZE * tot_len_words;
  if (!(file_buffer= (uchar *) my_malloc(key_memory_ha_partition_file,
                                         tot_len_byte, MYF(MY_ZEROFILL))))
    DBUG_RETURN(TRUE);
  engine_array= (file_buffer + PAR_ENGINES_OFFSET);
  name_buffer_ptr= (char*) (engine_array + tot_partition_words * PAR_WORD_SIZE
                            + PAR_WORD_SIZE);
  part_it.rewind();
  for (i= 0; i < num_parts; i++)
  {
    part_elem= part_it++;
    if (part_elem->part_state != PART_NORMAL &&
        part_elem->part_state != PART_TO_BE_ADDED &&
        part_elem->part_state != PART_CHANGED)
      continue;
    if (!m_is_sub_partitioned)
    {
      tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN);
      name_buffer_ptr= strmov(name_buffer_ptr, part_name)+1;
      *engine_array= (uchar) ha_legacy_type(part_elem->engine_type);
      DBUG_PRINT("info", ("engine: %u", *engine_array));
      engine_array++;
    }
    else
    {
      List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
      for (j= 0; j < m_part_info->num_subparts; j++)
      {
	subpart_elem= sub_it++;
        tablename_to_filename(part_elem->partition_name, part_name,
                              FN_REFLEN);
        tablename_to_filename(subpart_elem->partition_name, subpart_name,
                              FN_REFLEN);
	name_buffer_ptr+= name_add(name_buffer_ptr,
				   part_name,
				   subpart_name);
        *engine_array= (uchar) ha_legacy_type(subpart_elem->engine_type);
        DBUG_PRINT("info", ("engine: %u", *engine_array));
	engine_array++;
      }
    }
  }
  chksum= 0;
  int4store(file_buffer, tot_len_words);
  int4store(file_buffer + PAR_NUM_PARTS_OFFSET, tot_parts);
  int4store(file_buffer + PAR_ENGINES_OFFSET +
            (tot_partition_words * PAR_WORD_SIZE),
            tot_name_len);
  for (i= 0; i < tot_len_words; i++)
    chksum^= uint4korr(file_buffer + PAR_WORD_SIZE * i);
  int4store(file_buffer + PAR_CHECKSUM_OFFSET, chksum);
  /*
    Add .par extension to the file name.
    Create and write and close file
    to be used at open, delete_table and rename_table
  */
  fn_format(file_name, name, "", ha_par_ext, MY_APPEND_EXT);
  if ((file= mysql_file_create(key_file_ha_partition_par,
                               file_name, CREATE_MODE, O_RDWR | O_TRUNC,
                               MYF(MY_WME))) >= 0)
  {
    result= mysql_file_write(file, (uchar *) file_buffer, tot_len_byte,
                             MYF(MY_WME | MY_NABP)) != 0;

    /* Write connection information (for federatedx engine) */
    part_it.rewind();
    for (i= 0; i < num_parts && !result; i++)
    {
      uchar buffer[4];
      part_elem= part_it++;
      size_t length= part_elem->connect_string.length;
      int4store(buffer, length);
      if (my_write(file, buffer, 4, MYF(MY_WME | MY_NABP)) ||
          my_write(file, (uchar *) part_elem->connect_string.str, length,
                   MYF(MY_WME | MY_NABP)))
      {
        result= TRUE;
        break;
      }
    }
    (void) mysql_file_close(file, MYF(0));
    if (result)
      mysql_file_delete(key_file_ha_partition_par, file_name, MYF(MY_WME));
  }
  else
    result= TRUE;
  my_free(file_buffer);
  DBUG_RETURN(result);
}


/**
  Clear handler variables and free some memory
*/

void ha_partition::clear_handler_file()
{
  if (m_engine_array)
    plugin_unlock_list(NULL, m_engine_array, m_tot_parts);
  free_root(&m_mem_root, MYF(MY_KEEP_PREALLOC));
  m_file_buffer= NULL;
  m_engine_array= NULL;
  m_connect_string= NULL;
}


/**
  Create underlying handler objects

  @param mem_root  Allocate memory through this

  @return Operation status
    @retval TRUE   Error
    @retval FALSE  Success
*/

bool ha_partition::create_handlers(MEM_ROOT *mem_root)
{
  uint i;
  uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
  handlerton *hton0;
  DBUG_ENTER("create_handlers");

  if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
    DBUG_RETURN(TRUE);
  m_file_tot_parts= m_tot_parts;
  bzero((char*) m_file, alloc_len);
  for (i= 0; i < m_tot_parts; i++)
  {
    handlerton *hton= plugin_data(m_engine_array[i], handlerton*);
    if (!(m_file[i]= get_new_handler(table_share, mem_root, hton)))
      DBUG_RETURN(TRUE);
    DBUG_PRINT("info", ("engine_type: %u", hton->db_type));
  }
  /* For the moment we only support partition over the same table engine */
  hton0= plugin_data(m_engine_array[0], handlerton*);
  if (hton0 == myisam_hton)
  {
    DBUG_PRINT("info", ("MyISAM"));
    m_myisam= TRUE;
  }
  /* INNODB may not be compiled in... */
  else if (ha_legacy_type(hton0) == DB_TYPE_INNODB)
  {
    DBUG_PRINT("info", ("InnoDB"));
    m_innodb= TRUE;
  }
  DBUG_RETURN(FALSE);
}


/*
  Create underlying handler objects from partition info

  SYNOPSIS
    new_handlers_from_part_info()
    mem_root		Allocate memory through this

  RETURN VALUE
    TRUE                  Error
    FALSE                 Success
*/

bool ha_partition::new_handlers_from_part_info(MEM_ROOT *mem_root)
{
  uint i, j, part_count;
  partition_element *part_elem;
  uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
  List_iterator_fast <partition_element> part_it(m_part_info->partitions);
  DBUG_ENTER("ha_partition::new_handlers_from_part_info");

  if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
    goto error;

  m_file_tot_parts= m_tot_parts;
  bzero((char*) m_file, alloc_len);
  DBUG_ASSERT(m_part_info->num_parts > 0);

  i= 0;
  part_count= 0;
  /*
    Don't know the size of the underlying storage engine, invent a number of
    bytes allocated for error message if allocation fails
  */
  do
  {
    part_elem= part_it++;
    if (m_is_sub_partitioned)
    {
      for (j= 0; j < m_part_info->num_subparts; j++)
      {
	if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
                                                    part_elem->engine_type)))
          goto error;
	DBUG_PRINT("info", ("engine_type: %u",
                   (uint) ha_legacy_type(part_elem->engine_type)));
      }
    }
    else
    {
      if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
                                                  part_elem->engine_type)))
        goto error;
      DBUG_PRINT("info", ("engine_type: %u",
                 (uint) ha_legacy_type(part_elem->engine_type)));
    }
  } while (++i < m_part_info->num_parts);
  if (part_elem->engine_type == myisam_hton)
  {
    DBUG_PRINT("info", ("MyISAM"));
    m_myisam= TRUE;
  }
  DBUG_RETURN(FALSE);
error:
  DBUG_RETURN(TRUE);
}


/**
  Read the .par file to get the partitions engines and names

  @param name  Name of table file (without extension)

  @return Operation status
    @retval true   Failure
    @retval false  Success

  @note On success, m_file_buffer is allocated and must be
  freed by the caller. m_name_buffer_ptr and m_tot_parts is also set.
*/

bool ha_partition::read_par_file(const char *name)
{
  char buff[FN_REFLEN];
  uchar *tot_name_len_offset;
  File file;
  uchar *file_buffer;
  uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum;
  DBUG_ENTER("ha_partition::read_par_file");
  DBUG_PRINT("enter", ("table name: '%s'", name));

  if (m_file_buffer)
    DBUG_RETURN(false);
  fn_format(buff, name, "", ha_par_ext, MY_APPEND_EXT);

  /* Following could be done with mysql_file_stat to read in whole file */
  if ((file= mysql_file_open(key_file_ha_partition_par,
                             buff, O_RDONLY | O_SHARE, MYF(0))) < 0)
    DBUG_RETURN(TRUE);
  if (mysql_file_read(file, (uchar *) &buff[0], PAR_WORD_SIZE, MYF(MY_NABP)))
    goto err1;
  len_words= uint4korr(buff);
  len_bytes= PAR_WORD_SIZE * len_words;
  if (mysql_file_seek(file, 0, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR)
    goto err1;
  if (!(file_buffer= (uchar*) alloc_root(&m_mem_root, len_bytes)))
    goto err1;
  if (mysql_file_read(file, file_buffer, len_bytes, MYF(MY_NABP)))
    goto err2;

  chksum= 0;
  for (i= 0; i < len_words; i++)
    chksum ^= uint4korr((file_buffer) + PAR_WORD_SIZE * i);
  if (chksum)
    goto err2;
  m_tot_parts= uint4korr((file_buffer) + PAR_NUM_PARTS_OFFSET);
  DBUG_PRINT("info", ("No of parts: %u", m_tot_parts));
  tot_partition_words= (m_tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;

  tot_name_len_offset= file_buffer + PAR_ENGINES_OFFSET +
                       PAR_WORD_SIZE * tot_partition_words;
  tot_name_words= (uint4korr(tot_name_len_offset) + PAR_WORD_SIZE - 1) /
                  PAR_WORD_SIZE;
  /*
    Verify the total length = tot size word, checksum word, num parts word +
    engines array + name length word + name array.
  */
  if (len_words != (tot_partition_words + tot_name_words + 4))
    goto err2;
  m_file_buffer= file_buffer;          // Will be freed in clear_handler_file()
  m_name_buffer_ptr= (char*) (tot_name_len_offset + PAR_WORD_SIZE);

  if (!(m_connect_string= (LEX_CSTRING*)
        alloc_root(&m_mem_root, m_tot_parts * sizeof(LEX_CSTRING))))
    goto err2;
  bzero(m_connect_string, m_tot_parts * sizeof(LEX_CSTRING));

  /* Read connection arguments (for federated X engine) */
  for (i= 0; i < m_tot_parts; i++)
  {
    LEX_CSTRING connect_string;
    uchar buffer[4];
    char *tmp;
    if (my_read(file, buffer, 4, MYF(MY_NABP)))
    {
      /* No extra options; Probably not a federatedx engine */
      break;
    }
    connect_string.length= uint4korr(buffer);
    connect_string.str= tmp= (char*) alloc_root(&m_mem_root,
                                                connect_string.length+1);
    if (my_read(file, (uchar*) connect_string.str, connect_string.length,
                MYF(MY_NABP)))
      break;
    tmp[connect_string.length]= 0;
    m_connect_string[i]= connect_string;
  }

  (void) mysql_file_close(file, MYF(0));
  DBUG_RETURN(false);

err2:
err1:
  (void) mysql_file_close(file, MYF(0));
  DBUG_RETURN(true);
}


/**
  Setup m_engine_array

  @param mem_root  MEM_ROOT to use for allocating new handlers

  @return Operation status
    @retval false  Success
    @retval true   Failure
*/

bool ha_partition::setup_engine_array(MEM_ROOT *mem_root,
                                      handlerton* first_engine)
{
  uint i;
  uchar *buff;
  handlerton **engine_array;
  enum legacy_db_type db_type, first_db_type;

  DBUG_ASSERT(!m_file);
  DBUG_ENTER("ha_partition::setup_engine_array");
  engine_array= (handlerton **) my_alloca(m_tot_parts * sizeof(handlerton*));
  if (!engine_array)
    DBUG_RETURN(true);

  buff= (uchar *) (m_file_buffer + PAR_ENGINES_OFFSET);

  first_db_type= (enum legacy_db_type) buff[0];
  if (!(m_engine_array= (plugin_ref*)
        alloc_root(&m_mem_root, m_tot_parts * sizeof(plugin_ref))))
    goto err;

  for (i= 0; i < m_tot_parts; i++)
  {
    db_type= (enum legacy_db_type) buff[i];
    if (db_type != first_db_type)
    {
      DBUG_PRINT("error", ("partition %u engine %d is not same as "
                           "first partition %d", i, db_type,
                           (int) first_db_type));
      DBUG_ASSERT(0);
      clear_handler_file();
      goto err;
    }
    m_engine_array[i]= ha_lock_engine(NULL, first_engine);
    if (!m_engine_array[i])
    {
      clear_handler_file();
      goto err;
    }
  }

  my_afree(engine_array);

  if (create_handlers(mem_root))
  {
    clear_handler_file();
    DBUG_RETURN(true);
  }

  DBUG_RETURN(false);

err:
  my_afree(engine_array);
  DBUG_RETURN(true);
}


handlerton *ha_partition::get_def_part_engine(const char *name)
{
  if (table_share)
  {
    if (table_share->default_part_plugin)
      return plugin_data(table_share->default_part_plugin, handlerton *);
  }
  else
  {
    // DROP TABLE, for example
    char buff[FN_REFLEN];
    File file;
    MY_STAT state;
    uchar *frm_image= 0;
    handlerton *hton= 0;
    bool use_legacy_type= false;

    fn_format(buff, name, "", reg_ext, MY_APPEND_EXT);

    file= mysql_file_open(key_file_frm, buff, O_RDONLY | O_SHARE, MYF(0));
    if (file < 0)
      return NULL;

    if (mysql_file_fstat(file, &state, MYF(MY_WME)))
      goto err;
    if (state.st_size <= 64)
      goto err;
    if (!(frm_image= (uchar*)my_malloc(key_memory_Partition_share,
                                       state.st_size, MYF(MY_WME))))
      goto err;
    if (mysql_file_read(file, frm_image, state.st_size, MYF(MY_NABP)))
      goto err;

    if (frm_image[64] != '/')
    {
      const uchar *e2= frm_image + 64;
      const uchar *e2end = e2 + uint2korr(frm_image + 4);
      if (e2end > frm_image + state.st_size)
        goto err;
      while (e2 + 3 < e2end)
      {
        uchar type= *e2++;
        size_t length= extra2_read_len(&e2, e2end);
        if (!length)
          goto err;
        if (type == EXTRA2_DEFAULT_PART_ENGINE)
        {
          LEX_CSTRING name= { (char*)e2, length };
          plugin_ref plugin= ha_resolve_by_name(ha_thd(), &name, false);
          if (plugin)
            hton= plugin_data(plugin, handlerton *);
          goto err;
        }
        e2+= length;
      }
    }
    use_legacy_type= true;
err:
    my_free(frm_image);
    mysql_file_close(file, MYF(0));
    if (!use_legacy_type)
      return hton;
  }

  return ha_resolve_by_legacy_type(ha_thd(),
                  (enum legacy_db_type)m_file_buffer[PAR_ENGINES_OFFSET]);
}


/**
  Get info about partition engines and their names from the .par file

  @param name      Full path of table name
  @param mem_root  Allocate memory through this
  @param is_clone  If it is a clone, don't create new handlers

  @return Operation status
    @retval true   Error
    @retval false  Success

  @note Open handler file to get partition names, engine types and number of
  partitions.
*/

bool ha_partition::get_from_handler_file(const char *name, MEM_ROOT *mem_root,
                                         bool is_clone)
{
  DBUG_ENTER("ha_partition::get_from_handler_file");
  DBUG_PRINT("enter", ("table name: '%s'", name));

  if (m_file_buffer)
    DBUG_RETURN(false);

  if (read_par_file(name))
    DBUG_RETURN(true);

  handlerton *default_engine= get_def_part_engine(name);
  if (!default_engine)
    DBUG_RETURN(true);

  if (!is_clone && setup_engine_array(mem_root, default_engine))
    DBUG_RETURN(true);

  DBUG_RETURN(false);
}


/****************************************************************************
                MODULE open/close object
****************************************************************************/

/**
  Get the partition name.

  @param       part   Struct containing name and length
  @param[out]  length Length of the name

  @return Partition name
*/

static uchar *get_part_name(PART_NAME_DEF *part, size_t *length,
                            my_bool not_used __attribute__((unused)))
{
  *length= part->length;
  return part->partition_name;
}


/**
  Insert a partition name in the partition_name_hash.

  @param name        Name of partition
  @param part_id     Partition id (number)
  @param is_subpart  Set if the name belongs to a subpartition

  @return Operation status
    @retval true   Failure
    @retval false  Success
*/

bool ha_partition::insert_partition_name_in_hash(const char *name, uint part_id,
                                                 bool is_subpart)
{
  PART_NAME_DEF *part_def;
  uchar *part_name;
  size_t part_name_length;
  DBUG_ENTER("ha_partition::insert_partition_name_in_hash");
  /*
    Calculate and store the length here, to avoid doing it when
    searching the hash.
  */
  part_name_length= strlen(name);
  /*
    Must use memory that lives as long as table_share.
    Freed in the Partition_share destructor.
    Since we use my_multi_malloc, then my_free(part_def) will also free
    part_name, as a part of my_hash_free.
  */
  if (!my_multi_malloc(key_memory_Partition_share, MY_WME,
                       &part_def, sizeof(PART_NAME_DEF),
                       &part_name, part_name_length + 1,
                       NULL))
    DBUG_RETURN(true);
  memcpy(part_name, name, part_name_length + 1);
  part_def->partition_name= part_name;
  part_def->length= (uint)part_name_length;
  part_def->part_id= part_id;
  part_def->is_subpart= is_subpart;
  if (my_hash_insert(&part_share->partition_name_hash, (uchar *) part_def))
  {
    my_free(part_def);
    DBUG_RETURN(true);
  }
  DBUG_RETURN(false);
}


/**
  Populate the partition_name_hash in part_share.
*/

bool ha_partition::populate_partition_name_hash()
{
  List_iterator<partition_element> part_it(m_part_info->partitions);
  uint num_parts= m_part_info->num_parts;
  uint num_subparts= m_is_sub_partitioned ? m_part_info->num_subparts : 1;
  uint tot_names;
  uint i= 0;
  DBUG_ASSERT(part_share);

  DBUG_ENTER("ha_partition::populate_partition_name_hash");

  /*
    partition_name_hash is only set once and never changed
    -> OK to check without locking.
  */

  if (part_share->partition_name_hash_initialized)
    DBUG_RETURN(false);
  lock_shared_ha_data();
  if (part_share->partition_name_hash_initialized)
  {
    unlock_shared_ha_data();
    DBUG_RETURN(false);
  }
  tot_names= m_is_sub_partitioned ? m_tot_parts + num_parts : num_parts;
  if (my_hash_init(key_memory_Partition_share,
                   &part_share->partition_name_hash, system_charset_info,
                   tot_names, 0, 0, (my_hash_get_key) get_part_name, my_free,
                   HASH_UNIQUE))
  {
    unlock_shared_ha_data();
    DBUG_RETURN(TRUE);
  }

  do
  {
    partition_element *part_elem= part_it++;
    DBUG_ASSERT(part_elem->part_state == PART_NORMAL);
    if (part_elem->part_state == PART_NORMAL)
    {
      if (insert_partition_name_in_hash(part_elem->partition_name,
                                        i * num_subparts, false))
        goto err;
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element>
                                    subpart_it(part_elem->subpartitions);
        partition_element *sub_elem;
        uint j= 0;
        do
        {
          sub_elem= subpart_it++;
          if (insert_partition_name_in_hash(sub_elem->partition_name,
                                            i * num_subparts + j, true))
            goto err;

        } while (++j < num_subparts);
      }
    }
  } while (++i < num_parts);

  part_share->partition_name_hash_initialized= true;
  unlock_shared_ha_data();

  DBUG_RETURN(FALSE);
err:
  my_hash_free(&part_share->partition_name_hash);
  unlock_shared_ha_data();

  DBUG_RETURN(TRUE);
}


/**
  Set Handler_share pointer and allocate Handler_share pointers
  for each partition and set those.

  @param ha_share_arg  Where to store/retrieve the Partitioning_share pointer
                       to be shared by all instances of the same table.

  @return Operation status
    @retval true  Failure
    @retval false Success
*/

bool ha_partition::set_ha_share_ref(Handler_share **ha_share_arg)
{
  Handler_share **ha_shares;
  uint i;
  DBUG_ENTER("ha_partition::set_ha_share_ref");

  DBUG_ASSERT(!part_share);
  DBUG_ASSERT(table_share);
  DBUG_ASSERT(!m_is_clone_of);
  DBUG_ASSERT(m_tot_parts);
  if (handler::set_ha_share_ref(ha_share_arg))
    DBUG_RETURN(true);
  if (!(part_share= get_share()))
    DBUG_RETURN(true);
  DBUG_ASSERT(part_share->partitions_share_refs.num_parts >= m_tot_parts);
  ha_shares= part_share->partitions_share_refs.ha_shares;
  for (i= 0; i < m_tot_parts; i++)
  {
    if (m_file[i]->set_ha_share_ref(&ha_shares[i]))
      DBUG_RETURN(true);
  }
  DBUG_RETURN(false);
}


/**
  Get the PARTITION_SHARE for the table.

  @return Operation status
    @retval true   Error
    @retval false  Success

  @note Gets or initializes the Partition_share object used by partitioning.
  The Partition_share is used for handling the auto_increment etc.
*/

Partition_share *ha_partition::get_share()
{
  Partition_share *tmp_share;
  DBUG_ENTER("ha_partition::get_share");
  DBUG_ASSERT(table_share);

  lock_shared_ha_data();
  if (!(tmp_share= static_cast<Partition_share*>(get_ha_share_ptr())))
  {
    tmp_share= new Partition_share;
    if (!tmp_share)
      goto err;
    if (tmp_share->init(m_tot_parts))
    {
      delete tmp_share;
      tmp_share= NULL;
      goto err;
    }
    set_ha_share_ptr(static_cast<Handler_share*>(tmp_share));
  }
err:
  unlock_shared_ha_data();
  DBUG_RETURN(tmp_share);
}



/**
  Helper function for freeing all internal bitmaps.
*/

void ha_partition::free_partition_bitmaps()
{
  /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */
  my_bitmap_free(&m_bulk_insert_started);
  my_bitmap_free(&m_locked_partitions);
  my_bitmap_free(&m_partitions_to_reset);
  my_bitmap_free(&m_key_not_found_partitions);
  my_bitmap_free(&m_opened_partitions);
  my_bitmap_free(&m_mrr_used_partitions);
}


/**
  Helper function for initializing all internal bitmaps.

  Note:
  All bitmaps, including partially allocated, are freed in
  free_partion_bitmaps()
*/

bool ha_partition::init_partition_bitmaps()
{
  DBUG_ENTER("ha_partition::init_partition_bitmaps");

  /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */
  if (my_bitmap_init(&m_bulk_insert_started, NULL, m_tot_parts + 1))
    DBUG_RETURN(true);

  /* Initialize the bitmap we use to keep track of locked partitions */
  if (my_bitmap_init(&m_locked_partitions, NULL, m_tot_parts))
    DBUG_RETURN(true);

  /*
    Initialize the bitmap we use to keep track of partitions which may have
    something to reset in ha_reset().
  */
  if (my_bitmap_init(&m_partitions_to_reset, NULL, m_tot_parts))
    DBUG_RETURN(true);

  /*
    Initialize the bitmap we use to keep track of partitions which returned
    HA_ERR_KEY_NOT_FOUND from index_read_map.
  */
  if (my_bitmap_init(&m_key_not_found_partitions, NULL, m_tot_parts))
    DBUG_RETURN(true);

  if (my_bitmap_init(&m_mrr_used_partitions, NULL, m_tot_parts))
    DBUG_RETURN(true);

  if (my_bitmap_init(&m_opened_partitions, NULL, m_tot_parts))
    DBUG_RETURN(true);

  m_file_sample= NULL;

  /* Initialize the bitmap for read/lock_partitions */
  if (!m_is_clone_of)
  {
    DBUG_ASSERT(!m_clone_mem_root);
    if (m_part_info->set_partition_bitmaps(NULL))
      DBUG_RETURN(true);
  }
  DBUG_RETURN(false);
}


/*
  Open handler object
SYNOPSIS
    open()
    name                  Full path of table name
    mode                  Open mode flags
    test_if_locked        ?

  RETURN VALUE
    >0                    Error
    0                     Success

  DESCRIPTION
    Used for opening tables. The name will be the name of the file.
    A table is opened when it needs to be opened. For instance
    when a request comes in for a select on the table (tables are not
    open and closed for each request, they are cached).

    Called from handler.cc by handler::ha_open(). The server opens all tables
    by calling ha_open() which then calls the handler specific open().
*/

int ha_partition::open(const char *name, int mode, uint test_if_locked)
{
  int error= HA_ERR_INITIALIZATION;
  handler **file;
  char name_buff[FN_REFLEN + 1];
  ulonglong check_table_flags;
  DBUG_ENTER("ha_partition::open");

  DBUG_ASSERT(table->s == table_share);
  ref_length= 0;
  m_mode= mode;
  m_open_test_lock= test_if_locked;
  m_part_field_array= m_part_info->full_part_field_array;
  if (get_from_handler_file(name, &table->mem_root, MY_TEST(m_is_clone_of)))
    DBUG_RETURN(error);
  if (populate_partition_name_hash())
  {
    DBUG_RETURN(HA_ERR_INITIALIZATION);
  }
  m_start_key.length= 0;
  m_rec0= table->record[0];
  m_rec_length= table_share->reclength;
  if (!m_part_ids_sorted_by_num_of_records)
  {
    if (!(m_part_ids_sorted_by_num_of_records=
            (uint32*) my_malloc(key_memory_ha_partition_part_ids,
                                m_tot_parts * sizeof(uint32), MYF(MY_WME))))
      DBUG_RETURN(error);
    uint32 i;
    /* Initialize it with all partition ids. */
    for (i= 0; i < m_tot_parts; i++)
      m_part_ids_sorted_by_num_of_records[i]= i;
  }

  if (init_partition_bitmaps())
    goto err_alloc;

  if (!MY_TEST(m_is_clone_of) &&
      unlikely((error=
                m_part_info->set_partition_bitmaps(m_partitions_to_open))))
    goto err_alloc;

  /* Allocate memory used with MMR */
  if (!(m_range_info= (void **)
        my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME),
                        &m_range_info, sizeof(range_id_t) * m_tot_parts,
                        &m_stock_range_seq, sizeof(uint) * m_tot_parts,
                        &m_mrr_buffer, sizeof(HANDLER_BUFFER) * m_tot_parts,
                        &m_mrr_buffer_size, sizeof(uint) * m_tot_parts,
                        &m_part_mrr_range_length, sizeof(uint) * m_tot_parts,
                        &m_part_mrr_range_first,
                        sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts,
                        &m_part_mrr_range_current,
                        sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts,
                        &m_partition_part_key_multi_range_hld,
                        sizeof(PARTITION_PART_KEY_MULTI_RANGE_HLD) * m_tot_parts,
                        NullS)))
    goto err_alloc;

  bzero(m_mrr_buffer, m_tot_parts * sizeof(HANDLER_BUFFER));
  bzero(m_part_mrr_range_first,
        sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts);

  if (m_is_clone_of)
  {
    uint i, alloc_len;
    char *name_buffer_ptr;
    DBUG_ASSERT(m_clone_mem_root);
    /* Allocate an array of handler pointers for the partitions handlers. */
    alloc_len= (m_tot_parts + 1) * sizeof(handler*);
    if (!(m_file= (handler **) alloc_root(m_clone_mem_root, alloc_len)))
    {
      error= HA_ERR_INITIALIZATION;
      goto err_alloc;
    }
    memset(m_file, 0, alloc_len);
    name_buffer_ptr= m_name_buffer_ptr;
    /*
      Populate them by cloning the original partitions. This also opens them.
      Note that file->ref is allocated too.
    */
    file= m_is_clone_of->m_file;
    for (i= 0; i < m_tot_parts; i++)
    {
      if (!bitmap_is_set(&m_is_clone_of->m_opened_partitions, i))
      {
        /* Here we should just create the handler instance, not open it. */
        if (!(m_file[i]= get_new_handler(table->s, m_clone_mem_root,
                                         file[i]->ht)))
        {
          error= HA_ERR_INITIALIZATION;
          file= &m_file[i];
          goto err_handler;
        }
        if (m_file[i]->set_ha_share_ref(file[i]->ha_share))
        {
          error= HA_ERR_INITIALIZATION;
          goto err_handler;
        }
        continue;
      }

      if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff),
                                                 name, name_buffer_ptr,
                                                 NORMAL_PART_NAME, FALSE))))
        goto err_handler;
      /* ::clone() will also set ha_share from the original. */
      if (!(m_file[i]= file[i]->clone(name_buff, m_clone_mem_root)))
      {
        error= HA_ERR_INITIALIZATION;
        file= &m_file[i];
        goto err_handler;
      }
      if (!m_file_sample)
        m_file_sample= m_file[i];
      name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
      bitmap_set_bit(&m_opened_partitions, i);
    }
  }
  else
  {
    check_insert_or_replace_autoincrement();
    if (unlikely((error= open_read_partitions(name_buff, sizeof(name_buff)))))
      goto err_handler;
    m_num_locks= m_file_sample->lock_count();
  }
  /*
    We want to know the upper bound for locks, to allocate enough memory.
    There is no performance lost if we simply return in lock_count() the
    maximum number locks needed, only some minor over allocation of memory
    in get_lock_data().
  */
  m_num_locks*= m_tot_parts;

  file= m_file;
  ref_length= get_open_file_sample()->ref_length;
  check_table_flags= ((get_open_file_sample()->ha_table_flags() &
                       ~(PARTITION_DISABLED_TABLE_FLAGS)) |
                      (PARTITION_ENABLED_TABLE_FLAGS));
  while (*(++file))
  {
    if (!bitmap_is_set(&m_opened_partitions, (uint)(file - m_file)))
      continue;
    /* MyISAM can have smaller ref_length for partitions with MAX_ROWS set */
    set_if_bigger(ref_length, ((*file)->ref_length));
    /*
      Verify that all partitions have the same set of table flags.
      Mask all flags that partitioning enables/disables.
    */
    if (check_table_flags != (((*file)->ha_table_flags() &
                               ~(PARTITION_DISABLED_TABLE_FLAGS)) |
                              (PARTITION_ENABLED_TABLE_FLAGS)))
    {
      error= HA_ERR_INITIALIZATION;
      /* set file to last handler, so all of them are closed */
      file= &m_file[m_tot_parts - 1];
      goto err_handler;
    }
  }
  key_used_on_scan= get_open_file_sample()->key_used_on_scan;
  implicit_emptied= get_open_file_sample()->implicit_emptied;
  /*
    Add 2 bytes for partition id in position ref length.
    ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS
  */
  ref_length+= PARTITION_BYTES_IN_POS;
  m_ref_length= ref_length;

  /*
    Release buffer read from .par file. It will not be reused again after
    being opened once.
  */
  clear_handler_file();

  DBUG_ASSERT(part_share);
  lock_shared_ha_data();
  /* Protect against cloned file, for which we don't need engine name */
  if (m_file[0])
    part_share->partition_engine_name= real_table_type();
  else
    part_share->partition_engine_name= 0;       // Checked in ha_table_exists()
  unlock_shared_ha_data();

  /*
    Some handlers update statistics as part of the open call. This will in
    some cases corrupt the statistics of the partition handler and thus
    to ensure we have correct statistics we call info from open after
    calling open on all individual handlers.
  */
  m_handler_status= handler_opened;
  if (m_part_info->part_expr)
    m_part_func_monotonicity_info=
                            m_part_info->part_expr->get_monotonicity_info();
  else if (m_part_info->list_of_part_fields)
    m_part_func_monotonicity_info= MONOTONIC_STRICT_INCREASING;
  info(HA_STATUS_VARIABLE | HA_STATUS_CONST | HA_STATUS_OPEN);
  DBUG_RETURN(0);

err_handler:
  DEBUG_SYNC(ha_thd(), "partition_open_error");
  DBUG_ASSERT(m_tot_parts > 0);
  for (uint i= m_tot_parts - 1; ; --i)
  {
    if (bitmap_is_set(&m_opened_partitions, i))
      m_file[i]->ha_close();
    if (!i)
      break;
  }
err_alloc:
  free_partition_bitmaps();
  my_free(m_range_info);
  m_range_info= 0;

  DBUG_RETURN(error);
}


/*
  Disabled since it is not possible to prune yet.
  without pruning, it need to rebind/unbind every partition in every
  statement which uses a table from the table cache. Will also use
  as many PSI_tables as there are partitions.
*/

#ifdef HAVE_M_PSI_PER_PARTITION
void ha_partition::unbind_psi()
{
  uint i;

  DBUG_ENTER("ha_partition::unbind_psi");
  handler::unbind_psi();
  for (i= 0; i < m_tot_parts; i++)
  {
    DBUG_ASSERT(m_file[i] != NULL);
    m_file[i]->unbind_psi();
  }
  DBUG_VOID_RETURN;
}

int ha_partition::rebind()
{
  uint i;

  DBUG_ENTER("ha_partition::rebind");
  if (int error= handler::rebind())
    DBUG_RETURN(error);
  for (i= 0; i < m_tot_parts; i++)
  {
    DBUG_ASSERT(m_file[i] != NULL);
    if (int error= m_file[i]->rebind())
    {
      while (i)
        m_file[--i]->unbind_psi();
      handler::unbind_psi();
      DBUG_RETURN(error);
    }
  }
  DBUG_RETURN(0);
}
#endif /* HAVE_M_PSI_PER_PARTITION */


/*
  Check if the table definition has changed for the part tables
  We use the first partition for the check.
*/

int ha_partition::discover_check_version()
{
  return m_file[0]->discover_check_version();
}

/**
  Clone the open and locked partitioning handler.

  @param  mem_root  MEM_ROOT to use.

  @return Pointer to the successfully created clone or NULL

  @details
  This function creates a new ha_partition handler as a clone/copy. The
  original (this) must already be opened and locked. The clone will use
  the originals m_part_info.
  It also allocates memory for ref + ref_dup.
  In ha_partition::open() it will clone its original handlers partitions
  which will allocate then on the correct MEM_ROOT and also open them.
*/

handler *ha_partition::clone(const char *name, MEM_ROOT *mem_root)
{
  ha_partition *new_handler;

  DBUG_ENTER("ha_partition::clone");
  new_handler= new (mem_root) ha_partition(ht, table_share, m_part_info,
                                           this, mem_root);
  if (!new_handler)
    DBUG_RETURN(NULL);

  /*
    We will not clone each partition's handler here, it will be done in
    ha_partition::open() for clones. Also set_ha_share_ref is not needed
    here, since 1) ha_share is copied in the constructor used above
    2) each partition's cloned handler will set it from its original.
  */

  /*
    Allocate new_handler->ref here because otherwise ha_open will allocate it
    on this->table->mem_root and we will not be able to reclaim that memory
    when the clone handler object is destroyed.
  */
  if (!(new_handler->ref= (uchar*) alloc_root(mem_root,
                                              ALIGN_SIZE(m_ref_length)*2)))
    goto err;

  if (new_handler->ha_open(table, name,
                           table->db_stat,
                           HA_OPEN_IGNORE_IF_LOCKED | HA_OPEN_NO_PSI_CALL))
    goto err;

  DBUG_RETURN((handler*) new_handler);

err:
  delete new_handler;
  DBUG_RETURN(NULL);
}


/*
  Close handler object

  SYNOPSIS
    close()

  RETURN VALUE
    >0                   Error code
    0                    Success

  DESCRIPTION
    Called from sql_base.cc, sql_select.cc, and table.cc.
    In sql_select.cc it is only used to close up temporary tables or during
    the process where a temporary table is converted over to being a
    myisam table.
    For sql_base.cc look at close_data_tables().
*/

int ha_partition::close(void)
{
  bool first= TRUE;
  handler **file;
  uint i;
  st_partition_ft_info *tmp_ft_info;
  DBUG_ENTER("ha_partition::close");
  DBUG_ASSERT(table->s == table_share);
  DBUG_ASSERT(m_part_info);

  destroy_record_priority_queue();

  for (; ft_first ; ft_first= tmp_ft_info)
  {
    tmp_ft_info= ft_first->next;
    my_free(ft_first);
  }

  /* Free active mrr_ranges */
  for (i= 0; i < m_tot_parts; i++)
  {
    if (m_part_mrr_range_first[i])
    {
      PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_first=
        m_part_mrr_range_first[i];
      do
      {
        PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_current;
        tmp_mrr_range_current= tmp_mrr_range_first;
        tmp_mrr_range_first= tmp_mrr_range_first->next;
        my_free(tmp_mrr_range_current);
      } while (tmp_mrr_range_first);
    }
  }
  if (m_mrr_range_first)
  {
    do
    {
      m_mrr_range_current= m_mrr_range_first;
      m_mrr_range_first= m_mrr_range_first->next;
      if (m_mrr_range_current->key[0])
        my_free(m_mrr_range_current->key[0]);
      if (m_mrr_range_current->key[1])
        my_free(m_mrr_range_current->key[1]);
      my_free(m_mrr_range_current);
    } while (m_mrr_range_first);
  }
  my_free(m_range_info);
  m_range_info= NULL;                           // Safety

  if (m_mrr_full_buffer)
  {
    my_free(m_mrr_full_buffer);
    m_mrr_full_buffer= NULL;
    m_mrr_full_buffer_size= 0;
  }
  file= m_file;

repeat:
  do
  {
    if (!first || bitmap_is_set(&m_opened_partitions, (uint)(file - m_file)))
      (*file)->ha_close();
  } while (*(++file));

  free_partition_bitmaps();

  if (first && m_added_file && m_added_file[0])
  {
    file= m_added_file;
    first= FALSE;
    goto repeat;
  }

  m_handler_status= handler_closed;
  DBUG_RETURN(0);
}

/****************************************************************************
                MODULE start/end statement
****************************************************************************/
/*
  A number of methods to define various constants for the handler. In
  the case of the partition handler we need to use some max and min
  of the underlying handlers in most cases.
*/

/*
  Set external locks on table

  SYNOPSIS
    external_lock()
    thd                    Thread object
    lock_type              Type of external lock

  RETURN VALUE
    >0                   Error code
    0                    Success

  DESCRIPTION
    First you should go read the section "locking functions for mysql" in
    lock.cc to understand this.
    This create a lock on the table. If you are implementing a storage engine
    that can handle transactions look at ha_berkeley.cc to see how you will
    want to go about doing this. Otherwise you should consider calling
    flock() here.
    Originally this method was used to set locks on file level to enable
    several MySQL Servers to work on the same data. For transactional
    engines it has been "abused" to also mean start and end of statements
    to enable proper rollback of statements and transactions. When LOCK
    TABLES has been issued the start_stmt method takes over the role of
    indicating start of statement but in this case there is no end of
    statement indicator(?).

    Called from lock.cc by lock_external() and unlock_external(). Also called
    from sql_table.cc by copy_data_between_tables().
*/

int ha_partition::external_lock(THD *thd, int lock_type)
{
  int error;
  uint i, first_used_partition;
  MY_BITMAP *used_partitions;
  DBUG_ENTER("ha_partition::external_lock");

  DBUG_ASSERT(!auto_increment_lock);
  DBUG_ASSERT(!auto_increment_safe_stmt_log_lock);

  if (lock_type == F_UNLCK)
    used_partitions= &m_locked_partitions;
  else
    used_partitions= &(m_part_info->lock_partitions);

  first_used_partition= bitmap_get_first_set(used_partitions);

  for (i= first_used_partition;
       i < m_tot_parts;
       i= bitmap_get_next_set(used_partitions, i))
  {
    DBUG_PRINT("info", ("external_lock(thd, %d) part %u", lock_type, i));
    if (unlikely((error= m_file[i]->ha_external_lock(thd, lock_type))))
    {
      if (lock_type != F_UNLCK)
        goto err_handler;
    }
    DBUG_PRINT("info", ("external_lock part %u lock %d", i, lock_type));
    if (lock_type != F_UNLCK)
      bitmap_set_bit(&m_locked_partitions, i);
  }
  if (lock_type == F_UNLCK)
  {
    bitmap_clear_all(used_partitions);
    if (m_lock_type == F_WRLCK && m_part_info->vers_require_hist_part(thd))
      m_part_info->vers_check_limit(thd);
  }
  else
  {
    /* Add touched partitions to be included in reset(). */
    bitmap_union(&m_partitions_to_reset, used_partitions);
  }

  if (m_added_file && m_added_file[0])
  {
    handler **file= m_added_file;
    DBUG_ASSERT(lock_type == F_UNLCK);
    do
    {
      (void) (*file)->ha_external_lock(thd, lock_type);
    } while (*(++file));
  }
  if (lock_type == F_WRLCK && m_part_info->part_expr)
    m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0);

  DBUG_RETURN(0);

err_handler:
  uint j;
  for (j= first_used_partition;
       j < i;
       j= bitmap_get_next_set(&m_locked_partitions, j))
  {
    (void) m_file[j]->ha_external_unlock(thd);
  }
  bitmap_clear_all(&m_locked_partitions);
  DBUG_RETURN(error);
}


/*
  Get the lock(s) for the table and perform conversion of locks if needed

  SYNOPSIS
    store_lock()
    thd                   Thread object
    to                    Lock object array
    lock_type             Table lock type

  RETURN VALUE
    >0                   Error code
    0                    Success

  DESCRIPTION
    The idea with handler::store_lock() is the following:

    The statement decided which locks we should need for the table
    for updates/deletes/inserts we get WRITE locks, for SELECT... we get
    read locks.

    Before adding the lock into the table lock handler (see thr_lock.c)
    mysqld calls store lock with the requested locks.  Store lock can now
    modify a write lock to a read lock (or some other lock), ignore the
    lock (if we don't want to use MySQL table locks at all) or add locks
    for many tables (like we do when we are using a MERGE handler).

    Berkeley DB for partition  changes all WRITE locks to TL_WRITE_ALLOW_WRITE
    (which signals that we are doing WRITES, but we are still allowing other
    reader's and writer's.

    When releasing locks, store_lock() is also called. In this case one
    usually doesn't have to do anything.

    store_lock is called when holding a global mutex to ensure that only
    one thread at a time changes the locking information of tables.

    In some exceptional cases MySQL may send a request for a TL_IGNORE;
    This means that we are requesting the same lock as last time and this
    should also be ignored. (This may happen when someone does a flush
    table when we have opened a part of the tables, in which case mysqld
    closes and reopens the tables and tries to get the same locks as last
    time).  In the future we will probably try to remove this.

    Called from lock.cc by get_lock_data().
*/

THR_LOCK_DATA **ha_partition::store_lock(THD *thd,
					 THR_LOCK_DATA **to,
					 enum thr_lock_type lock_type)
{
  uint i;
  DBUG_ENTER("ha_partition::store_lock");
  DBUG_ASSERT(thd == current_thd);

  /*
    This can be called from get_lock_data() in mysql_lock_abort_for_thread(),
    even when thd != table->in_use. In that case don't use partition pruning,
    but use all partitions instead to avoid using another threads structures.
  */
  if (thd != table->in_use)
  {
    for (i= 0; i < m_tot_parts; i++)
      to= m_file[i]->store_lock(thd, to, lock_type);
  }
  else
  {
    MY_BITMAP *used_partitions= lock_type == TL_UNLOCK ||
                                lock_type == TL_IGNORE ?
                                &m_locked_partitions :
                                &m_part_info->lock_partitions;

    for (i= bitmap_get_first_set(used_partitions);
         i < m_tot_parts;
         i= bitmap_get_next_set(used_partitions, i))
    {
      DBUG_PRINT("info", ("store lock %u iteration", i));
      to= m_file[i]->store_lock(thd, to, lock_type);
    }
  }
  DBUG_RETURN(to);
}

/*
  Start a statement when table is locked

  SYNOPSIS
    start_stmt()
    thd                  Thread object
    lock_type            Type of external lock

  RETURN VALUE
    >0                   Error code
    0                    Success

  DESCRIPTION
    This method is called instead of external lock when the table is locked
    before the statement is executed.
*/

int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type)
{
  int error= 0;
  uint i;
  /* Assert that read_partitions is included in lock_partitions */
  DBUG_ASSERT(bitmap_is_subset(&m_part_info->read_partitions,
                               &m_part_info->lock_partitions));
  /*
    m_locked_partitions is set in previous external_lock/LOCK TABLES.
    Current statement's lock requests must not include any partitions
    not previously locked.
  */
  DBUG_ASSERT(bitmap_is_subset(&m_part_info->lock_partitions,
                               &m_locked_partitions));
  DBUG_ENTER("ha_partition::start_stmt");

  for (i= bitmap_get_first_set(&(m_part_info->lock_partitions));
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
  {
    if (unlikely((error= m_file[i]->start_stmt(thd, lock_type))))
      DBUG_RETURN(error);
    /* Add partition to be called in reset(). */
    bitmap_set_bit(&m_partitions_to_reset, i);
  }
  if (lock_type >= TL_FIRST_WRITE)
  {
    if (m_part_info->part_expr)
      m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0);
  }
  DBUG_RETURN(error);
}


/**
  Get number of lock objects returned in store_lock

  @returns Number of locks returned in call to store_lock

  @desc
    Returns the maxinum possible number of store locks needed in call to
    store lock.
*/

uint ha_partition::lock_count() const
{
  DBUG_ENTER("ha_partition::lock_count");
  DBUG_RETURN(m_num_locks);
}


/*
  Unlock last accessed row

  SYNOPSIS
    unlock_row()

  RETURN VALUE
    NONE

  DESCRIPTION
    Record currently processed was not in the result set of the statement
    and is thus unlocked. Used for UPDATE and DELETE queries.
*/

void ha_partition::unlock_row()
{
  DBUG_ENTER("ha_partition::unlock_row");
  m_file[m_last_part]->unlock_row();
  DBUG_VOID_RETURN;
}

/**
  Check if semi consistent read was used

  SYNOPSIS
    was_semi_consistent_read()

  RETURN VALUE
    TRUE   Previous read was a semi consistent read
    FALSE  Previous read was not a semi consistent read

  DESCRIPTION
    See handler.h:
    In an UPDATE or DELETE, if the row under the cursor was locked by another
    transaction, and the engine used an optimistic read of the last
    committed row value under the cursor, then the engine returns 1 from this
    function. MySQL must NOT try to update this optimistic value. If the
    optimistic value does not match the WHERE condition, MySQL can decide to
    skip over this row. Currently only works for InnoDB. This can be used to
    avoid unnecessary lock waits.

    If this method returns nonzero, it will also signal the storage
    engine that the next read will be a locking re-read of the row.
*/
bool ha_partition::was_semi_consistent_read()
{
  DBUG_ENTER("ha_partition::was_semi_consistent_read");
  DBUG_ASSERT(m_last_part < m_tot_parts);
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
  DBUG_RETURN(m_file[m_last_part]->was_semi_consistent_read());
}

/**
  Use semi consistent read if possible

  SYNOPSIS
    try_semi_consistent_read()
    yes   Turn on semi consistent read

  RETURN VALUE
    NONE

  DESCRIPTION
    See handler.h:
    Tell the engine whether it should avoid unnecessary lock waits.
    If yes, in an UPDATE or DELETE, if the row under the cursor was locked
    by another transaction, the engine may try an optimistic read of
    the last committed row value under the cursor.
    Note: prune_partitions are already called before this call, so using
    pruning is OK.
*/
void ha_partition::try_semi_consistent_read(bool yes)
{
  uint i;
  DBUG_ENTER("ha_partition::try_semi_consistent_read");

  i= bitmap_get_first_set(&(m_part_info->read_partitions));
  DBUG_ASSERT(i != MY_BIT_NONE);
  for (;
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    m_file[i]->try_semi_consistent_read(yes);
  }
  DBUG_VOID_RETURN;
}


/****************************************************************************
                MODULE change record
****************************************************************************/

/*
  Insert a row to the table

  SYNOPSIS
    write_row()
    buf                        The row in MySQL Row Format

  RETURN VALUE
    >0                         Error code
    0                          Success

  DESCRIPTION
    write_row() inserts a row. buf() is a byte array of data, normally
    record[0].

    You can use the field information to extract the data from the native byte
    array type.

    Example of this would be:
    for (Field **field=table->field ; *field ; field++)
    {
      ...
    }

    See ha_tina.cc for a variant of extracting all of the data as strings.
    ha_berkeley.cc has a variant of how to store it intact by "packing" it
    for ha_berkeley's own native storage type.

    Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
    sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.

    ADDITIONAL INFO:

    We have to set auto_increment fields, because those may be used in
    determining which partition the row should be written to.
*/

int ha_partition::write_row(const uchar * buf)
{
  uint32 part_id;
  int error;
  longlong func_value;
  bool have_auto_increment= table->next_number_field && buf == table->record[0];
  MY_BITMAP *old_map;
  THD *thd= ha_thd();
  sql_mode_t org_sql_mode= thd->variables.sql_mode;
  bool saved_auto_inc_field_not_null= table->auto_increment_field_not_null;
  DBUG_ENTER("ha_partition::write_row");
  DBUG_PRINT("enter", ("partition this: %p", this));

  /*
    If we have an auto_increment column and we are writing a changed row
    or a new row, then update the auto_increment value in the record.
  */
  if (have_auto_increment)
  {
    if (!table_share->next_number_keypart)
      if (unlikely(error= update_next_auto_inc_val()))
        goto exit;

    /*
      If we have failed to set the auto-increment value for this row,
      it is highly likely that we will not be able to insert it into
      the correct partition. We must check and fail if necessary.
    */
    if (unlikely(error= update_auto_increment()))
      goto exit;

    /*
      Don't allow generation of auto_increment value the partitions handler.
      If a partitions handler would change the value, then it might not
      match the partition any longer.
      This can occur if 'SET INSERT_ID = 0; INSERT (NULL)',
      So allow this by adding 'MODE_NO_AUTO_VALUE_ON_ZERO' to sql_mode.
      The partitions handler::next_insert_id must always be 0. Otherwise
      we need to forward release_auto_increment, or reset it for all
      partitions.
    */
    if (table->next_number_field->val_int() == 0)
    {
      table->auto_increment_field_not_null= TRUE;
      thd->variables.sql_mode|= MODE_NO_AUTO_VALUE_ON_ZERO;
    }
  }
  old_map= dbug_tmp_use_all_columns(table, &table->read_set);
  error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
  dbug_tmp_restore_column_map(&table->read_set, old_map);
  if (unlikely(error))
  {
    m_part_info->err_value= func_value;
    goto exit;
  }
  if (!bitmap_is_set(&(m_part_info->lock_partitions), part_id))
  {
    DBUG_PRINT("info", ("Write to non-locked partition %u (func_value: %ld)",
                        part_id, (long) func_value));
    error= HA_ERR_NOT_IN_LOCK_PARTITIONS;
    goto exit;
  }
  m_last_part= part_id;
  DBUG_PRINT("info", ("Insert in partition %u", part_id));

  start_part_bulk_insert(thd, part_id);

  DBUG_ASSERT(!m_file[part_id]->row_logging);
  error= m_file[part_id]->ha_write_row(buf);
  if (!error && have_auto_increment && !table->s->next_number_keypart)
    set_auto_increment_if_higher(table->next_number_field);

exit:
  table->auto_increment_field_not_null= saved_auto_inc_field_not_null;
  thd->variables.sql_mode= org_sql_mode;
  DBUG_RETURN(error);
}


/*
  Update an existing row

  SYNOPSIS
    update_row()
    old_data                 Old record in MySQL Row Format
    new_data                 New record in MySQL Row Format

  RETURN VALUE
    >0                         Error code
    0                          Success

  DESCRIPTION
    Yes, update_row() does what you expect, it updates a row. old_data will
    have the previous row record in it, while new_data will have the newest
    data in it.
    Keep in mind that the server can do updates based on ordering if an
    ORDER BY clause was used. Consecutive ordering is not guaranteed.

    Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
    new_data is always record[0]
    old_data is always record[1]
*/

int ha_partition::update_row(const uchar *old_data, const uchar *new_data)
{
  THD *thd= ha_thd();
  uint32 new_part_id, old_part_id= m_last_part;
  int error= 0;
  DBUG_ENTER("ha_partition::update_row");
  m_err_rec= NULL;

  // Need to read partition-related columns, to locate the row's partition:
  DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set,
                               table->read_set));
#ifndef DBUG_OFF
  /*
    The protocol for updating a row is:
    1) position the handler (cursor) on the row to be updated,
       either through the last read row (rnd or index) or by rnd_pos.
    2) call update_row with both old and new full records as arguments.

    This means that m_last_part should already be set to actual partition
    where the row was read from. And if that is not the same as the
    calculated part_id we found a misplaced row, we return an error to
    notify the user that something is broken in the row distribution
    between partitions! Since we don't check all rows on read, we return an
    error instead of correcting m_last_part, to make the user aware of the
    problem!

    Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol,
    so this is not supported for this engine.
  */
  error= get_part_for_buf(old_data, m_rec0, m_part_info, &old_part_id);
  DBUG_ASSERT(!error);
  DBUG_ASSERT(old_part_id == m_last_part);
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), old_part_id));
#endif

  if (unlikely((error= get_part_for_buf(new_data, m_rec0, m_part_info,
                                        &new_part_id))))
    goto exit;
  if (unlikely(!bitmap_is_set(&(m_part_info->lock_partitions), new_part_id)))
  {
    error= HA_ERR_NOT_IN_LOCK_PARTITIONS;
    goto exit;
  }


  m_last_part= new_part_id;
  start_part_bulk_insert(thd, new_part_id);
  DBUG_ASSERT(!m_file[new_part_id]->row_logging);
  if (new_part_id == old_part_id)
  {
    DBUG_PRINT("info", ("Update in partition %u", (uint) new_part_id));
    error= m_file[new_part_id]->ha_update_row(old_data, new_data);
    goto exit;
  }
  else
  {
    Field *saved_next_number_field= table->next_number_field;
    /*
      Don't allow generation of auto_increment value for update.
      table->next_number_field is never set on UPDATE.
      But is set for INSERT ... ON DUPLICATE KEY UPDATE,
      and since update_row() does not generate or update an auto_inc value,
      we cannot have next_number_field set when moving a row
      to another partition with write_row(), since that could
      generate/update the auto_inc value.
      This gives the same behavior for partitioned vs non partitioned tables.
    */
    table->next_number_field= NULL;
    DBUG_PRINT("info", ("Update from partition %u to partition %u",
			(uint) old_part_id, (uint) new_part_id));
    error= m_file[new_part_id]->ha_write_row((uchar*) new_data);
    table->next_number_field= saved_next_number_field;
    if (unlikely(error))
      goto exit;

    error= m_file[old_part_id]->ha_delete_row(old_data);
    if (unlikely(error))
      goto exit;
  }

exit:
  /*
    if updating an auto_increment column, update
    part_share->next_auto_inc_val if needed.
    (not to be used if auto_increment on secondary field in a multi-column
    index)
    Sql_cmd_update::update_single_table() does not set table->next_number_field,
    so we use table->found_next_number_field instead.
    Also checking that the field is marked in the write set.
  */
  if (table->found_next_number_field &&
      new_data == table->record[0] &&
      !table->s->next_number_keypart &&
      bitmap_is_set(table->write_set,
                    table->found_next_number_field->field_index))
  {
    update_next_auto_inc_val();
    if (part_share->auto_inc_initialized)
      set_auto_increment_if_higher(table->found_next_number_field);
  }
  DBUG_RETURN(error);
}


/*
  Remove an existing row

  SYNOPSIS
    delete_row
    buf                      Deleted row in MySQL Row Format

  RETURN VALUE
    >0                       Error Code
    0                        Success

  DESCRIPTION
    This will delete a row. buf will contain a copy of the row to be deleted.
    The server will call this right after the current row has been read
    (from either a previous rnd_xxx() or index_xxx() call).
    If you keep a pointer to the last row or can access a primary key it will
    make doing the deletion quite a bit easier.
    Keep in mind that the server does no guarantee consecutive deletions.
    ORDER BY clauses can be used.

    Called in sql_acl.cc and sql_udf.cc to manage internal table information.
    Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select
    it is used for removing duplicates while in insert it is used for REPLACE
    calls.

    buf is either record[0] or record[1]
*/

int ha_partition::delete_row(const uchar *buf)
{
  int error;
  DBUG_ENTER("ha_partition::delete_row");
  m_err_rec= NULL;

  DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set,
                               table->read_set));
#ifndef DBUG_OFF
  THD* thd = ha_thd();
  /*
    The protocol for deleting a row is:
    1) position the handler (cursor) on the row to be deleted,
       either through the last read row (rnd or index) or by rnd_pos.
    2) call delete_row with the full record as argument.

    This means that m_last_part should already be set to actual partition
    where the row was read from. And if that is not the same as the
    calculated part_id we found a misplaced row, we return an error to
    notify the user that something is broken in the row distribution
    between partitions! Since we don't check all rows on read, we return an
    error instead of forwarding the delete to the correct (m_last_part)
    partition!

    Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol,
    so this is not supported for this engine.

    For partitions by system_time, get_part_for_buf() is always either current
    or last historical partition, but DELETE HISTORY can delete from any
    historical partition. So, skip the check in this case.
  */
  if (!thd->lex->vers_conditions.delete_history)
  {
    uint32 part_id;
    error= get_part_for_buf(buf, m_rec0, m_part_info, &part_id);
    DBUG_ASSERT(!error);
    DBUG_ASSERT(part_id == m_last_part);
  }
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), m_last_part));
#endif

  if (!bitmap_is_set(&(m_part_info->lock_partitions), m_last_part))
    DBUG_RETURN(HA_ERR_NOT_IN_LOCK_PARTITIONS);

  DBUG_ASSERT(!m_file[m_last_part]->row_logging);
  error= m_file[m_last_part]->ha_delete_row(buf);
  DBUG_RETURN(error);
}


/*
  Delete all rows in a table

  SYNOPSIS
    delete_all_rows()

  RETURN VALUE
    >0                       Error Code
    0                        Success

  DESCRIPTION
    Used to delete all rows in a table. Both for cases of truncate and
    for cases where the optimizer realizes that all rows will be
    removed as a result of a SQL statement.

    Called from item_sum.cc by Item_func_group_concat::clear(),
    Item_sum_count::clear(), and Item_func_group_concat::clear().
    Called from sql_delete.cc by Sql_cmd_delete::delete_single_table().
    Called from sql_select.cc by JOIN::reset().
    Called from sql_union.cc by st_select_lex_unit::exec().
*/

int ha_partition::delete_all_rows()
{
  int error;
  uint i;
  DBUG_ENTER("ha_partition::delete_all_rows");

  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    /* Can be pruned, like DELETE FROM t PARTITION (pX) */
    if (unlikely((error= m_file[i]->ha_delete_all_rows())))
      DBUG_RETURN(error);
  }
  DBUG_RETURN(0);
}


/**
  Manually truncate the table.

  @retval  0    Success.
  @retval  > 0  Error code.
*/

int ha_partition::truncate()
{
  int error;
  handler **file;
  DBUG_ENTER("ha_partition::truncate");

  /*
    TRUNCATE also means resetting auto_increment. Hence, reset
    it so that it will be initialized again at the next use.
  */
  lock_auto_increment();
  part_share->next_auto_inc_val= 0;
  part_share->auto_inc_initialized= false;
  unlock_auto_increment();

  file= m_file;
  do
  {
    if (unlikely((error= (*file)->ha_truncate())))
      DBUG_RETURN(error);
  } while (*(++file));
  DBUG_RETURN(0);
}


/**
  Truncate a set of specific partitions.

  @remark Auto increment value will be truncated in that partition as well!

  ALTER TABLE t TRUNCATE PARTITION ...
*/

int ha_partition::truncate_partition(Alter_info *alter_info, bool *binlog_stmt)
{
  int error= 0;
  List_iterator<partition_element> part_it(m_part_info->partitions);
  uint num_parts= m_part_info->num_parts;
  uint num_subparts= m_part_info->num_subparts;
  uint i= 0;
  DBUG_ENTER("ha_partition::truncate_partition");

  /* Only binlog when it starts any call to the partitions handlers */
  *binlog_stmt= false;

  if (set_part_state(alter_info, m_part_info, PART_ADMIN))
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);

  /*
    TRUNCATE also means resetting auto_increment. Hence, reset
    it so that it will be initialized again at the next use.
  */
  lock_auto_increment();
  part_share->next_auto_inc_val= 0;
  part_share->auto_inc_initialized= FALSE;
  unlock_auto_increment();

  *binlog_stmt= true;

  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_ADMIN)
    {
      if (m_is_sub_partitioned)
      {
        List_iterator<partition_element>
                                    subpart_it(part_elem->subpartitions);
        partition_element *sub_elem;
        uint j= 0, part;
        do
        {
          sub_elem= subpart_it++;
          part= i * num_subparts + j;
          DBUG_PRINT("info", ("truncate subpartition %u (%s)",
                              part, sub_elem->partition_name));
          if (unlikely((error= m_file[part]->ha_truncate())))
            break;
          sub_elem->part_state= PART_NORMAL;
        } while (++j < num_subparts);
      }
      else
      {
        DBUG_PRINT("info", ("truncate partition %u (%s)", i,
                            part_elem->partition_name));
        error= m_file[i]->ha_truncate();
      }
      part_elem->part_state= PART_NORMAL;
    }
  } while (!error && (++i < num_parts));
  DBUG_RETURN(error);
}


/*
  Start a large batch of insert rows

  SYNOPSIS
    start_bulk_insert()
    rows                  Number of rows to insert
    flags                 Flags to control index creation

  RETURN VALUE
    NONE

  DESCRIPTION
    rows == 0 means we will probably insert many rows
*/
void ha_partition::start_bulk_insert(ha_rows rows, uint flags)
{
  DBUG_ENTER("ha_partition::start_bulk_insert");

  m_bulk_inserted_rows= 0;
  bitmap_clear_all(&m_bulk_insert_started);
  /* use the last bit for marking if bulk_insert_started was called */
  bitmap_set_bit(&m_bulk_insert_started, m_tot_parts);
  DBUG_VOID_RETURN;
}


/*
  Check if start_bulk_insert has been called for this partition,
  if not, call it and mark it called
*/
void ha_partition::start_part_bulk_insert(THD *thd, uint part_id)
{
  long old_buffer_size;
  if (!bitmap_is_set(&m_bulk_insert_started, part_id) &&
      bitmap_is_set(&m_bulk_insert_started, m_tot_parts))
  {
    DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), part_id));
    old_buffer_size= thd->variables.read_buff_size;
    /* Update read_buffer_size for this partition */
    thd->variables.read_buff_size= estimate_read_buffer_size(old_buffer_size);
    m_file[part_id]->ha_start_bulk_insert(guess_bulk_insert_rows());
    bitmap_set_bit(&m_bulk_insert_started, part_id);
    thd->variables.read_buff_size= old_buffer_size;
  }
  m_bulk_inserted_rows++;
}

/*
  Estimate the read buffer size for each partition.
  SYNOPSIS
    ha_partition::estimate_read_buffer_size()
    original_size  read buffer size originally set for the server
  RETURN VALUE
    estimated buffer size.
  DESCRIPTION
    If the estimated number of rows to insert is less than 10 (but not 0)
    the new buffer size is same as original buffer size.
    In case of first partition of when partition function is monotonic
    new buffer size is same as the original buffer size.
    For rest of the partition total buffer of 10*original_size is divided
    equally if number of partition is more than 10 other wise each partition
    will be allowed to use original buffer size.
*/
long ha_partition::estimate_read_buffer_size(long original_size)
{
  /*
    If number of rows to insert is less than 10, but not 0,
    return original buffer size.
  */
  if (estimation_rows_to_insert && (estimation_rows_to_insert < 10))
    return (original_size);
  /*
    If first insert/partition and monotonic partition function,
    allow using buffer size originally set.
   */
  if (!m_bulk_inserted_rows &&
      m_part_func_monotonicity_info != NON_MONOTONIC &&
      m_tot_parts > 1)
    return original_size;
  /*
    Allow total buffer used in all partition to go up to 10*read_buffer_size.
    11*read_buffer_size in case of monotonic partition function.
  */

  if (m_tot_parts < 10)
      return original_size;
  return (original_size * 10 / m_tot_parts);
}

/*
  Try to predict the number of inserts into this partition.

  If less than 10 rows (including 0 which means Unknown)
    just give that as a guess
  If monotonic partitioning function was used
    guess that 50 % of the inserts goes to the first partition
  For all other cases, guess on equal distribution between the partitions
*/
ha_rows ha_partition::guess_bulk_insert_rows()
{
  DBUG_ENTER("guess_bulk_insert_rows");

  if (estimation_rows_to_insert < 10)
    DBUG_RETURN(estimation_rows_to_insert);

  /* If first insert/partition and monotonic partition function, guess 50%.  */
  if (!m_bulk_inserted_rows &&
      m_part_func_monotonicity_info != NON_MONOTONIC &&
      m_tot_parts > 1)
    DBUG_RETURN(estimation_rows_to_insert / 2);

  /* Else guess on equal distribution (+1 is to avoid returning 0/Unknown) */
  if (m_bulk_inserted_rows < estimation_rows_to_insert)
    DBUG_RETURN(((estimation_rows_to_insert - m_bulk_inserted_rows)
                / m_tot_parts) + 1);
  /* The estimation was wrong, must say 'Unknown' */
  DBUG_RETURN(0);
}


void ha_partition::sum_copy_info(handler *file)
{
  copy_info.records+= file->copy_info.records;
  copy_info.touched+= file->copy_info.touched;
  copy_info.copied+=  file->copy_info.copied;
  copy_info.deleted+= file->copy_info.deleted;
  copy_info.updated+= file->copy_info.updated;
}


void ha_partition::sum_copy_infos()
{
  handler **file_array;
  bzero(&copy_info, sizeof(copy_info));
  file_array= m_file;
  do
  {
    if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
      sum_copy_info(*file_array);
  } while (*(++file_array));
}

void ha_partition::reset_copy_info()
{
  handler **file_array;
  bzero(&copy_info, sizeof(copy_info));
  file_array= m_file;
  do
  {
    if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
      bzero(&(*file_array)->copy_info, sizeof(copy_info));
  } while (*(++file_array));
}



/*
  Finish a large batch of insert rows

  SYNOPSIS
    end_bulk_insert()

  RETURN VALUE
    >0                      Error code
    0                       Success

  Note: end_bulk_insert can be called without start_bulk_insert
        being called, see bug#44108.

*/

int ha_partition::end_bulk_insert()
{
  int error= 0;
  uint i;
  DBUG_ENTER("ha_partition::end_bulk_insert");

  if (!bitmap_is_set(&m_bulk_insert_started, m_tot_parts))
    DBUG_RETURN(error);

  for (i= bitmap_get_first_set(&m_bulk_insert_started);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_bulk_insert_started, i))
  {
    int tmp;
    if ((tmp= m_file[i]->ha_end_bulk_insert()))
      error= tmp;
    sum_copy_info(m_file[i]);
  }
  bitmap_clear_all(&m_bulk_insert_started);
  DBUG_RETURN(error);
}


/****************************************************************************
                MODULE full table scan
****************************************************************************/
/*
  Initialize engine for random reads

  SYNOPSIS
    ha_partition::rnd_init()
    scan	0  Initialize for random reads through rnd_pos()
		1  Initialize for random scan through rnd_next()

  RETURN VALUE
    >0          Error code
    0           Success

  DESCRIPTION
    rnd_init() is called when the server wants the storage engine to do a
    table scan or when the server wants to access data through rnd_pos.

    When scan is used we will scan one handler partition at a time.
    When preparing for rnd_pos we will init all handler partitions.
    No extra cache handling is needed when scanning is not performed.

    Before initialising we will call rnd_end to ensure that we clean up from
    any previous incarnation of a table scan.
    Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
    sql_table.cc, and sql_update.cc.
*/

int ha_partition::rnd_init(bool scan)
{
  int error;
  uint i= 0;
  uint32 part_id;
  DBUG_ENTER("ha_partition::rnd_init");

  /*
    For operations that may need to change data, we may need to extend
    read_set.
  */
  if (get_lock_type() == F_WRLCK)
  {
    /*
      If write_set contains any of the fields used in partition and
      subpartition expression, we need to set all bits in read_set because
      the row may need to be inserted in a different [sub]partition. In
      other words update_row() can be converted into write_row(), which
      requires a complete record.
    */
    if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
                              table->write_set))
    {
      DBUG_PRINT("info", ("partition set full bitmap"));
      bitmap_set_all(table->read_set);
    }
    else
    {
      /*
        Some handlers only read fields as specified by the bitmap for the
        read set. For partitioned handlers we always require that the
        fields of the partition functions are read such that we can
        calculate the partition id to place updated and deleted records.
      */
      DBUG_PRINT("info", ("partition set part_field bitmap"));
      bitmap_union(table->read_set, &m_part_info->full_part_field_set);
    }
  }

  /* Now we see what the index of our first important partition is */
  DBUG_PRINT("info", ("m_part_info->read_partitions: %p",
                      m_part_info->read_partitions.bitmap));
  part_id= bitmap_get_first_set(&(m_part_info->read_partitions));
  DBUG_PRINT("info", ("m_part_spec.start_part: %u", (uint) part_id));

  if (part_id == MY_BIT_NONE)
  {
    error= 0;
    goto err1;
  }

  /*
    We have a partition and we are scanning with rnd_next
    so we bump our cache
  */
  DBUG_PRINT("info", ("rnd_init on partition: %u", (uint) part_id));
  if (scan)
  {
    /*
      rnd_end() is needed for partitioning to reset internal data if scan
      is already in use
    */
    rnd_end();
    late_extra_cache(part_id);

    m_index_scan_type= partition_no_index_scan;
  }

  for (i= part_id;
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    if (unlikely((error= m_file[i]->ha_rnd_init(scan))))
      goto err;
  }

  m_scan_value= scan;
  m_part_spec.start_part= part_id;
  m_part_spec.end_part= m_tot_parts - 1;
  m_rnd_init_and_first= TRUE;
  DBUG_PRINT("info", ("m_scan_value: %u", m_scan_value));
  DBUG_RETURN(0);

err:
  if (scan)
    late_extra_no_cache(part_id);

  /* Call rnd_end for all previously inited partitions. */
  for (;
       part_id < i;
       part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id))
  {
    m_file[part_id]->ha_rnd_end();
  }
err1:
  m_scan_value= 2;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  DBUG_RETURN(error);
}


/*
  End of a table scan

  SYNOPSIS
    rnd_end()

  RETURN VALUE
    >0          Error code
    0           Success
*/

int ha_partition::rnd_end()
{
  DBUG_ENTER("ha_partition::rnd_end");
  switch (m_scan_value) {
  case 2:                                       // Error
    break;
  case 1:                                       // Table scan
    if (m_part_spec.start_part != NO_CURRENT_PART_ID)
      late_extra_no_cache(m_part_spec.start_part);
    /* fall through */
  case 0:
    uint i;
    for (i= bitmap_get_first_set(&m_part_info->read_partitions);
         i < m_tot_parts;
         i= bitmap_get_next_set(&m_part_info->read_partitions, i))
    {
      m_file[i]->ha_rnd_end();
    }
    break;
  }
  m_scan_value= 2;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  DBUG_RETURN(0);
}


/*
  read next row during full table scan (scan in random row order)

  SYNOPSIS
    rnd_next()
    buf		buffer that should be filled with data

  RETURN VALUE
    >0          Error code
    0           Success

  DESCRIPTION
    This is called for each row of the table scan. When you run out of records
    you should return HA_ERR_END_OF_FILE.
    The Field structure for the table is the key to getting data into buf
    in a manner that will allow the server to understand it.

    Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
    sql_table.cc, and sql_update.cc.
*/

int ha_partition::rnd_next(uchar *buf)
{
  handler *file;
  int result= HA_ERR_END_OF_FILE, error;
  uint part_id= m_part_spec.start_part;
  DBUG_ENTER("ha_partition::rnd_next");
  DBUG_PRINT("enter", ("partition this: %p", this));

  /* upper level will increment this once again at end of call */
  decrement_statistics(&SSV::ha_read_rnd_next_count);

  if (part_id == NO_CURRENT_PART_ID)
  {
    /*
      The original set of partitions to scan was empty and thus we report
      the result here.
    */
    goto end;
  }

  DBUG_ASSERT(m_scan_value == 1);

  if (m_rnd_init_and_first)
  {
    m_rnd_init_and_first= FALSE;
    error= handle_pre_scan(FALSE, check_parallel_search());
    if (m_pre_calling || error)
      DBUG_RETURN(error);
  }

  file= m_file[part_id];

  while (TRUE)
  {
    result= file->ha_rnd_next(buf);
    if (!result)
    {
      m_last_part= part_id;
      DBUG_PRINT("info", ("partition m_last_part: %u", (uint) m_last_part));
      m_part_spec.start_part= part_id;
      table->status= 0;
      DBUG_RETURN(0);
    }

    /*
      if we get here, then the current partition ha_rnd_next returned failure
    */
    if (result != HA_ERR_END_OF_FILE)
      goto end_dont_reset_start_part;         // Return error

    /* End current partition */
    late_extra_no_cache(part_id);
    /* Shift to next partition */
    part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id);
    if (part_id >= m_tot_parts)
    {
      result= HA_ERR_END_OF_FILE;
      break;
    }
    m_last_part= part_id;
    DBUG_PRINT("info", ("partition m_last_part: %u", (uint) m_last_part));
    m_part_spec.start_part= part_id;
    file= m_file[part_id];
    late_extra_cache(part_id);
  }

end:
  DBUG_PRINT("exit", ("reset start_part"));
  m_part_spec.start_part= NO_CURRENT_PART_ID;
end_dont_reset_start_part:
  DBUG_RETURN(result);
}


/*
  Save position of current row

  SYNOPSIS
    position()
    record             Current record in MySQL Row Format

  RETURN VALUE
    NONE

  DESCRIPTION
    position() is called after each call to rnd_next() if the data needs
    to be ordered. You can do something like the following to store
    the position:
    ha_store_ptr(ref, ref_length, current_position);

    The server uses ref to store data. ref_length in the above case is
    the size needed to store current_position. ref is just a byte array
    that the server will maintain. If you are using offsets to mark rows, then
    current_position should be the offset. If it is a primary key like in
    BDB, then it needs to be a primary key.

    Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
*/

void ha_partition::position(const uchar *record)
{
  handler *file= m_file[m_last_part];
  size_t pad_length;
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
  DBUG_ENTER("ha_partition::position");

  file->position(record);
  int2store(ref, m_last_part);
  memcpy((ref + PARTITION_BYTES_IN_POS), file->ref, file->ref_length);
  pad_length= m_ref_length - PARTITION_BYTES_IN_POS - file->ref_length;
  if (pad_length)
    memset((ref + PARTITION_BYTES_IN_POS + file->ref_length), 0, pad_length);

  DBUG_VOID_RETURN;
}


/*
  Read row using position

  SYNOPSIS
    rnd_pos()
    out:buf                     Row read in MySQL Row Format
    position                    Position of read row

  RETURN VALUE
    >0                          Error code
    0                           Success

  DESCRIPTION
    This is like rnd_next, but you are given a position to use
    to determine the row. The position will be of the type that you stored in
    ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
    or position you saved when position() was called.
    Called from filesort.cc records.cc sql_insert.cc sql_select.cc
    sql_update.cc.
*/

int ha_partition::rnd_pos(uchar * buf, uchar *pos)
{
  uint part_id;
  handler *file;
  DBUG_ENTER("ha_partition::rnd_pos");
  decrement_statistics(&SSV::ha_read_rnd_count);

  part_id= uint2korr((const uchar *) pos);
  DBUG_ASSERT(part_id < m_tot_parts);
  file= m_file[part_id];
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id));
  m_last_part= part_id;
  DBUG_RETURN(file->ha_rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS)));
}


/*
  Read row using position using given record to find

  SYNOPSIS
    rnd_pos_by_record()
    record             Current record in MySQL Row Format

  RETURN VALUE
    >0                 Error code
    0                  Success

  DESCRIPTION
    this works as position()+rnd_pos() functions, but does some extra work,
    calculating m_last_part - the partition to where the 'record'
    should go.

    called from replication (log_event.cc)
*/

int ha_partition::rnd_pos_by_record(uchar *record)
{
  DBUG_ENTER("ha_partition::rnd_pos_by_record");

  if (unlikely(get_part_for_buf(record, m_rec0, m_part_info, &m_last_part)))
    DBUG_RETURN(1);

  int err= m_file[m_last_part]->rnd_pos_by_record(record);
  DBUG_RETURN(err);
}


/****************************************************************************
                MODULE index scan
****************************************************************************/
/*
  Positions an index cursor to the index specified in the handle. Fetches the
  row if available. If the key value is null, begin at the first key of the
  index.

  There are loads of optimisations possible here for the partition handler.
  The same optimisations can also be checked for full table scan although
  only through conditions and not from index ranges.
  Phase one optimisations:
    Check if the fields of the partition function are bound. If so only use
    the single partition it becomes bound to.
  Phase two optimisations:
    If it can be deducted through range or list partitioning that only a
    subset of the partitions are used, then only use those partitions.
*/


/**
  Setup the ordered record buffer and the priority queue.
*/

bool ha_partition::init_record_priority_queue()
{
  DBUG_ENTER("ha_partition::init_record_priority_queue");
  DBUG_ASSERT(!m_ordered_rec_buffer);
  /*
    Initialize the ordered record buffer.
  */
  size_t alloc_len;
  uint used_parts= bitmap_bits_set(&m_part_info->read_partitions);

  if (used_parts == 0) /* Do nothing since no records expected. */
    DBUG_RETURN(false);

  /* Allocate record buffer for each used partition. */
  m_priority_queue_rec_len= m_rec_length + ORDERED_REC_OFFSET;
  if (!m_using_extended_keys)
    m_priority_queue_rec_len+= get_open_file_sample()->ref_length;
  alloc_len= used_parts * m_priority_queue_rec_len;
  /* Allocate a key for temporary use when setting up the scan. */
  alloc_len+= table_share->max_key_length;
  Ordered_blob_storage **blob_storage;
  Ordered_blob_storage *objs;
  const size_t n_all= used_parts * table->s->blob_fields;

  if (!my_multi_malloc(key_memory_partition_sort_buffer, MYF(MY_WME),
                       &m_ordered_rec_buffer, alloc_len,
                       &blob_storage, n_all * sizeof *blob_storage,
                       &objs, n_all * sizeof *objs, NULL))
    DBUG_RETURN(true);

  /*
    We set-up one record per partition and each record has 2 bytes in
    front where the partition id is written. This is used by ordered
    index_read.
    We also set-up a reference to the first record for temporary use in
    setting up the scan.
  */
  char *ptr= (char*) m_ordered_rec_buffer;
  uint i;
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    DBUG_PRINT("info", ("init rec-buf for part %u", i));
    if (table->s->blob_fields)
    {
      for (uint j= 0; j < table->s->blob_fields; ++j, ++objs)
        blob_storage[j]= new (objs) Ordered_blob_storage;
      *((Ordered_blob_storage ***) ptr)= blob_storage;
      blob_storage+= table->s->blob_fields;
    }
    int2store(ptr + sizeof(String **), i);
    ptr+= m_priority_queue_rec_len;
  }
  m_start_key.key= (const uchar*)ptr;

  /* Initialize priority queue, initialized to reading forward. */
  int (*cmp_func)(void *, uchar *, uchar *);
  void *cmp_arg= (void*) this;
  if (!m_using_extended_keys && !(table_flags() & HA_SLOW_CMP_REF))
    cmp_func= cmp_key_rowid_part_id;
  else
    cmp_func= cmp_key_part_id;
  DBUG_PRINT("info", ("partition queue_init(1) used_parts: %u", used_parts));
  if (init_queue(&m_queue, used_parts, ORDERED_PART_NUM_OFFSET,
                 0, cmp_func, cmp_arg, 0, 0))
  {
    my_free(m_ordered_rec_buffer);
    m_ordered_rec_buffer= NULL;
    DBUG_RETURN(true);
  }
  DBUG_RETURN(false);
}


/**
  Destroy the ordered record buffer and the priority queue.
*/

void ha_partition::destroy_record_priority_queue()
{
  DBUG_ENTER("ha_partition::destroy_record_priority_queue");
  if (m_ordered_rec_buffer)
  {
    if (table->s->blob_fields)
    {
      char *ptr= (char *) m_ordered_rec_buffer;
      for (uint i= bitmap_get_first_set(&m_part_info->read_partitions);
            i < m_tot_parts;
            i= bitmap_get_next_set(&m_part_info->read_partitions, i))
      {
        Ordered_blob_storage **blob_storage= *((Ordered_blob_storage ***) ptr);
        for (uint b= 0; b < table->s->blob_fields; ++b)
          blob_storage[b]->blob.free();
        ptr+= m_priority_queue_rec_len;
      }
    }

    delete_queue(&m_queue);
    my_free(m_ordered_rec_buffer);
    m_ordered_rec_buffer= NULL;
  }
  DBUG_VOID_RETURN;
}


/*
  Initialize handler before start of index scan

  SYNOPSIS
    index_init()
    inx                Index number
    sorted             Is rows to be returned in sorted order

  RETURN VALUE
    >0                 Error code
    0                  Success

  DESCRIPTION
    index_init is always called before starting index scans (except when
    starting through index_read_idx and using read_range variants).
*/

int ha_partition::index_init(uint inx, bool sorted)
{
  int error= 0;
  uint i;
  DBUG_ENTER("ha_partition::index_init");
  DBUG_PRINT("enter", ("partition this: %p  inx: %u  sorted: %u", this, inx, sorted));

  active_index= inx;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  m_start_key.length= 0;
  m_ordered= sorted;
  m_ordered_scan_ongoing= FALSE;
  m_curr_key_info[0]= table->key_info+inx;
  if (pk_is_clustering_key(table->s->primary_key))
  {
    /*
      if PK is clustered, then the key cmp must use the pk to
      differentiate between equal key in given index.
    */
    DBUG_PRINT("info", ("Clustered pk, using pk as secondary cmp"));
    m_curr_key_info[1]= table->key_info+table->s->primary_key;
    m_curr_key_info[2]= NULL;
    m_using_extended_keys= TRUE;
  }
  else
  {
    m_curr_key_info[1]= NULL;
    m_using_extended_keys= FALSE;
  }

  if (init_record_priority_queue())
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);

  /*
    Some handlers only read fields as specified by the bitmap for the
    read set. For partitioned handlers we always require that the
    fields of the partition functions are read such that we can
    calculate the partition id to place updated and deleted records.
    But this is required for operations that may need to change data only.
  */
  if (get_lock_type() == F_WRLCK)
  {
    DBUG_PRINT("info", ("partition set part_field bitmap"));
    bitmap_union(table->read_set, &m_part_info->full_part_field_set);
  }
  if (sorted)
  {
    /*
      An ordered scan is requested. We must make sure all fields of the
      used index are in the read set, as partitioning requires them for
      sorting (see ha_partition::handle_ordered_index_scan).

      The SQL layer may request an ordered index scan without having index
      fields in the read set when
       - it needs to do an ordered scan over an index prefix.
       - it evaluates ORDER BY with SELECT COUNT(*) FROM t1.

      TODO: handle COUNT(*) queries via unordered scan.
    */
    KEY **key_info= m_curr_key_info;
    do
    {
      for (i= 0; i < (*key_info)->user_defined_key_parts; i++)
        (*key_info)->key_part[i].field->register_field_in_read_map();
    } while (*(++key_info));
  }
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    if (unlikely((error= m_file[i]->ha_index_init(inx, sorted))))
      goto err;

    DBUG_EXECUTE_IF("ha_partition_fail_index_init", {
      i++;
      error= HA_ERR_NO_PARTITION_FOUND;
      goto err;
    });
  }
err:
  if (unlikely(error))
  {
    /* End the previously initialized indexes. */
    uint j;
    for (j= bitmap_get_first_set(&m_part_info->read_partitions);
         j < i;
         j= bitmap_get_next_set(&m_part_info->read_partitions, j))
    {
      (void) m_file[j]->ha_index_end();
    }
    destroy_record_priority_queue();
  }
  DBUG_RETURN(error);
}


/*
  End of index scan

  SYNOPSIS
    index_end()

  RETURN VALUE
    >0                 Error code
    0                  Success

  DESCRIPTION
    index_end is called at the end of an index scan to clean up any
    things needed to clean up.
*/

int ha_partition::index_end()
{
  int error= 0;
  handler **file;
  DBUG_ENTER("ha_partition::index_end");

  active_index= MAX_KEY;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  file= m_file;
  do
  {
    if ((*file)->inited == INDEX)
    {
      int tmp;
      if ((tmp= (*file)->ha_index_end()))
        error= tmp;
    }
    else if ((*file)->inited == RND)
    {
      // Possible due to MRR
      int tmp;
      if ((tmp= (*file)->ha_rnd_end()))
        error= tmp;
    }
  } while (*(++file));
  destroy_record_priority_queue();
  DBUG_RETURN(error);
}


/*
  Read one record in an index scan and start an index scan

  SYNOPSIS
    index_read_map()
    buf                    Read row in MySQL Row Format
    key                    Key parts in consecutive order
    keypart_map            Which part of key is used
    find_flag              What type of key condition is used

  RETURN VALUE
    >0                 Error code
    0                  Success

  DESCRIPTION
    index_read_map starts a new index scan using a start key. The MySQL Server
    will check the end key on its own. Thus to function properly the
    partitioned handler need to ensure that it delivers records in the sort
    order of the MySQL Server.
    index_read_map can be restarted without calling index_end on the previous
    index scan and without calling index_init. In this case the index_read_map
    is on the same index as the previous index_scan. This is particularly
    used in conjuntion with multi read ranges.
*/

int ha_partition::index_read_map(uchar *buf, const uchar *key,
                                 key_part_map keypart_map,
                                 enum ha_rkey_function find_flag)
{
  DBUG_ENTER("ha_partition::index_read_map");
  decrement_statistics(&SSV::ha_read_key_count);
  end_range= 0;
  m_index_scan_type= partition_index_read;
  m_start_key.key= key;
  m_start_key.keypart_map= keypart_map;
  m_start_key.flag= find_flag;
  DBUG_RETURN(common_index_read(buf, TRUE));
}


/* Compare two part_no partition numbers */
static int cmp_part_ids(uchar *ref1, uchar *ref2)
{
  uint32 diff2= uint2korr(ref2);
  uint32 diff1= uint2korr(ref1);
  if (diff2 > diff1)
    return -1;
  if (diff2 < diff1)
    return 1;
  return 0;
}


/*
  @brief
    Provide ordering by (key_value, part_no).
*/

extern "C" int cmp_key_part_id(void *ptr, uchar *ref1, uchar *ref2)
{
  ha_partition *file= (ha_partition*)ptr;
  if (int res= key_rec_cmp(file->m_curr_key_info,
                           ref1 + PARTITION_BYTES_IN_POS,
                           ref2 + PARTITION_BYTES_IN_POS))
    return res;
  return cmp_part_ids(ref1, ref2);
}

/*
  @brief
    Provide ordering by (key_value, underying_table_rowid, part_no).
*/
extern "C" int cmp_key_rowid_part_id(void *ptr, uchar *ref1, uchar *ref2)
{
  ha_partition *file= (ha_partition*)ptr;
  int res;

  if ((res= key_rec_cmp(file->m_curr_key_info, ref1 + PARTITION_BYTES_IN_POS,
                        ref2 + PARTITION_BYTES_IN_POS)))
  {
    return res;
  }
  if ((res= file->get_open_file_sample()->cmp_ref(ref1 +
          PARTITION_BYTES_IN_POS + file->m_rec_length,
          ref2 + PARTITION_BYTES_IN_POS + file->m_rec_length)))
  {
    return res;
  }
  return cmp_part_ids(ref1, ref2);
}


/**
  Common routine for a number of index_read variants

  @param buf             Buffer where the record should be returned.
  @param have_start_key  TRUE <=> the left endpoint is available, i.e.
                         we're in index_read call or in read_range_first
                         call and the range has left endpoint.
                         FALSE <=> there is no left endpoint (we're in
                         read_range_first() call and the range has no left
                         endpoint).

  @return Operation status
    @retval 0      OK
    @retval HA_ERR_END_OF_FILE   Whole index scanned, without finding the record.
    @retval HA_ERR_KEY_NOT_FOUND Record not found, but index cursor positioned.
    @retval other  error code.

  @details
    Start scanning the range (when invoked from read_range_first()) or doing
    an index lookup (when invoked from index_read_XXX):
     - If possible, perform partition selection
     - Find the set of partitions we're going to use
     - Depending on whether we need ordering:
        NO:  Get the first record from first used partition (see
             handle_unordered_scan_next_partition)
        YES: Fill the priority queue and get the record that is the first in
             the ordering
*/

int ha_partition::common_index_read(uchar *buf, bool have_start_key)
{
  int error;
  uint UNINIT_VAR(key_len); /* used if have_start_key==TRUE */
  bool reverse_order= FALSE;
  DBUG_ENTER("ha_partition::common_index_read");

  DBUG_PRINT("info", ("m_ordered %u m_ordered_scan_ong %u",
                      m_ordered, m_ordered_scan_ongoing));

  if (have_start_key)
  {
    m_start_key.length= key_len= calculate_key_len(table, active_index,
                                                   m_start_key.key,
                                                   m_start_key.keypart_map);
    DBUG_PRINT("info", ("have_start_key map %lu find_flag %u len %u",
                        m_start_key.keypart_map, m_start_key.flag, key_len));
    DBUG_ASSERT(key_len);
  }
  if (unlikely((error= partition_scan_set_up(buf, have_start_key))))
  {
    DBUG_RETURN(error);
  }

  if (have_start_key &&
      (m_start_key.flag == HA_READ_PREFIX_LAST ||
       m_start_key.flag == HA_READ_PREFIX_LAST_OR_PREV ||
       m_start_key.flag == HA_READ_BEFORE_KEY))
  {
    reverse_order= TRUE;
    m_ordered_scan_ongoing= TRUE;
  }
  DBUG_PRINT("info", ("m_ordered %u m_o_scan_ong %u have_start_key %u",
                      m_ordered, m_ordered_scan_ongoing, have_start_key));
  if (!m_ordered_scan_ongoing)
   {
    /*
      We use unordered index scan when read_range is used and flag
      is set to not use ordered.
      We also use an unordered index scan when the number of partitions to
      scan is only one.
      The unordered index scan will use the partition set created.
    */
    DBUG_PRINT("info", ("doing unordered scan"));
    error= handle_pre_scan(FALSE, FALSE);
    if (likely(!error))
      error= handle_unordered_scan_next_partition(buf);
  }
  else
  {
    /*
      In all other cases we will use the ordered index scan. This will use
      the partition set created by the get_partition_set method.
    */
    error= handle_ordered_index_scan(buf, reverse_order);
  }
  DBUG_RETURN(error);
}


/*
  Start an index scan from leftmost record and return first record

  SYNOPSIS
    index_first()
    buf                 Read row in MySQL Row Format

  RETURN VALUE
    >0                  Error code
    0                   Success

  DESCRIPTION
    index_first() asks for the first key in the index.
    This is similar to index_read except that there is no start key since
    the scan starts from the leftmost entry and proceeds forward with
    index_next.

    Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
    and sql_select.cc.
*/

int ha_partition::index_first(uchar * buf)
{
  DBUG_ENTER("ha_partition::index_first");
  decrement_statistics(&SSV::ha_read_first_count);

  end_range= 0;
  m_index_scan_type= partition_index_first;
  DBUG_RETURN(common_first_last(buf));
}


/*
  Start an index scan from rightmost record and return first record

  SYNOPSIS
    index_last()
    buf                 Read row in MySQL Row Format

  RETURN VALUE
    >0                  Error code
    0                   Success

  DESCRIPTION
    index_last() asks for the last key in the index.
    This is similar to index_read except that there is no start key since
    the scan starts from the rightmost entry and proceeds forward with
    index_prev.

    Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
    and sql_select.cc.
*/

int ha_partition::index_last(uchar * buf)
{
  DBUG_ENTER("ha_partition::index_last");
  decrement_statistics(&SSV::ha_read_last_count);

  m_index_scan_type= partition_index_last;
  DBUG_RETURN(common_first_last(buf));
}

/*
  Common routine for index_first/index_last

  SYNOPSIS
    ha_partition::common_first_last()

  see index_first for rest
*/

int ha_partition::common_first_last(uchar *buf)
{
  int error;

  if (unlikely((error= partition_scan_set_up(buf, FALSE))))
    return error;
  if (!m_ordered_scan_ongoing &&
      m_index_scan_type != partition_index_last)
  {
    if (unlikely((error= handle_pre_scan(FALSE, check_parallel_search()))))
      return error;
   return handle_unordered_scan_next_partition(buf);
  }
  return handle_ordered_index_scan(buf, FALSE);
}


/*
  Optimization of the default implementation to take advantage of dynamic
  partition pruning.
*/
int ha_partition::index_read_idx_map(uchar *buf, uint index,
                                     const uchar *key,
                                     key_part_map keypart_map,
                                     enum ha_rkey_function find_flag)
{
  int error= HA_ERR_KEY_NOT_FOUND;
  DBUG_ENTER("ha_partition::index_read_idx_map");
  decrement_statistics(&SSV::ha_read_key_count);

  if (find_flag == HA_READ_KEY_EXACT)
  {
    uint part;
    m_start_key.key= key;
    m_start_key.keypart_map= keypart_map;
    m_start_key.flag= find_flag;
    m_start_key.length= calculate_key_len(table, index, m_start_key.key,
                                          m_start_key.keypart_map);

    get_partition_set(table, buf, index, &m_start_key, &m_part_spec);

    /* The start part is must be marked as used. */
    DBUG_ASSERT(m_part_spec.start_part > m_part_spec.end_part ||
                bitmap_is_set(&(m_part_info->read_partitions),
                              m_part_spec.start_part));

    for (part= m_part_spec.start_part;
         part <= m_part_spec.end_part;
         part= bitmap_get_next_set(&m_part_info->read_partitions, part))
    {
      error= m_file[part]->ha_index_read_idx_map(buf, index, key,
                                                 keypart_map, find_flag);
      if (likely(error != HA_ERR_KEY_NOT_FOUND &&
                 error != HA_ERR_END_OF_FILE))
        break;
    }
    if (part <= m_part_spec.end_part)
      m_last_part= part;
  }
  else
  {
    /*
      If not only used with READ_EXACT, we should investigate if possible
      to optimize for other find_flag's as well.
    */
    DBUG_ASSERT(0);
    /* fall back on the default implementation */
    error= handler::index_read_idx_map(buf, index, key, keypart_map, find_flag);
  }
  DBUG_RETURN(error);
}


/*
  Read next record in a forward index scan

  SYNOPSIS
    index_next()
    buf                   Read row in MySQL Row Format

  RETURN VALUE
    >0                    Error code
    0                     Success

  DESCRIPTION
    Used to read forward through the index.
*/

int ha_partition::index_next(uchar * buf)
{
  DBUG_ENTER("ha_partition::index_next");
  decrement_statistics(&SSV::ha_read_next_count);

  /*
    TODO(low priority):
    If we want partition to work with the HANDLER commands, we
    must be able to do index_last() -> index_prev() -> index_next()
    and if direction changes, we must step back those partitions in
    the record queue so we don't return a value from the wrong direction.
  */
  if (m_index_scan_type == partition_index_last)
    DBUG_RETURN(HA_ERR_WRONG_COMMAND);
  if (!m_ordered_scan_ongoing)
  {
    DBUG_RETURN(handle_unordered_next(buf, FALSE));
  }
  DBUG_RETURN(handle_ordered_next(buf, FALSE));
}


/*
  Read next record special

  SYNOPSIS
    index_next_same()
    buf                   Read row in MySQL Row Format
    key                   Key
    keylen                Length of key

  RETURN VALUE
    >0                    Error code
    0                     Success

  DESCRIPTION
    This routine is used to read the next but only if the key is the same
    as supplied in the call.
*/

int ha_partition::index_next_same(uchar *buf, const uchar *key, uint keylen)
{
  DBUG_ENTER("ha_partition::index_next_same");
  decrement_statistics(&SSV::ha_read_next_count);

  DBUG_ASSERT(keylen == m_start_key.length);
  if (m_index_scan_type == partition_index_last)
    DBUG_RETURN(HA_ERR_WRONG_COMMAND);
  if (!m_ordered_scan_ongoing)
    DBUG_RETURN(handle_unordered_next(buf, TRUE));
  DBUG_RETURN(handle_ordered_next(buf, TRUE));
}


int ha_partition::index_read_last_map(uchar *buf,
                                          const uchar *key,
                                          key_part_map keypart_map)
{
  DBUG_ENTER("ha_partition::index_read_last_map");

  m_ordered= true;                              // Safety measure
  end_range= NULL;
  m_index_scan_type= partition_index_read_last;
  m_start_key.key= key;
  m_start_key.keypart_map= keypart_map;
  m_start_key.flag= HA_READ_PREFIX_LAST;
  DBUG_RETURN(common_index_read(buf, true));
}


/*
  Read next record when performing index scan backwards

  SYNOPSIS
    index_prev()
    buf                   Read row in MySQL Row Format

  RETURN VALUE
    >0                    Error code
    0                     Success

  DESCRIPTION
    Used to read backwards through the index.
*/

int ha_partition::index_prev(uchar * buf)
{
  DBUG_ENTER("ha_partition::index_prev");
  decrement_statistics(&SSV::ha_read_prev_count);

  /* TODO: read comment in index_next */
  if (m_index_scan_type == partition_index_first)
    DBUG_RETURN(HA_ERR_WRONG_COMMAND);
  DBUG_RETURN(handle_ordered_prev(buf));
}


/*
  Start a read of one range with start and end key

  SYNOPSIS
    read_range_first()
    start_key           Specification of start key
    end_key             Specification of end key
    eq_range_arg        Is it equal range
    sorted              Should records be returned in sorted order

  RETURN VALUE
    >0                    Error code
    0                     Success

  DESCRIPTION
    We reimplement read_range_first since we don't want the compare_key
    check at the end. This is already performed in the partition handler.
    read_range_next is very much different due to that we need to scan
    all underlying handlers.
*/

int ha_partition::read_range_first(const key_range *start_key,
				   const key_range *end_key,
				   bool eq_range_arg, bool sorted)
{
  int error;
  DBUG_ENTER("ha_partition::read_range_first");

  m_ordered= sorted;
  eq_range= eq_range_arg;
  set_end_range(end_key);

  range_key_part= m_curr_key_info[0]->key_part;
  if (start_key)
    m_start_key= *start_key;
  else
    m_start_key.key= NULL;

  m_index_scan_type= partition_read_range;
  error= common_index_read(m_rec0, MY_TEST(start_key));
  DBUG_RETURN(error);
}


/*
  Read next record in read of a range with start and end key

  SYNOPSIS
    read_range_next()

  RETURN VALUE
    >0                    Error code
    0                     Success
*/

int ha_partition::read_range_next()
{
  DBUG_ENTER("ha_partition::read_range_next");

  if (m_ordered_scan_ongoing)
  {
    DBUG_RETURN(handle_ordered_next(table->record[0], eq_range));
  }
  DBUG_RETURN(handle_unordered_next(table->record[0], eq_range));
}

/**
   Create a copy of all keys used by multi_range_read()

   @retval 0 ok
   @retval HA_ERR_END_OF_FILE no keys in range
   @retval other value: error

   TODO to save memory:
   - If (mrr_mode & HA_MRR_MATERIALIZED_KEYS) is set then the keys data is
     stable and we don't have to copy the keys, only store a pointer to the
     key.
   - When allocating key data, store things in a MEM_ROOT buffer instead of
     a malloc() per key. This will simplify and speed up the current code
     and use less memory.
*/

int ha_partition::multi_range_key_create_key(RANGE_SEQ_IF *seq,
                                             range_seq_t seq_it)
{
  uint i, length;
  key_range *start_key, *end_key;
  KEY_MULTI_RANGE *range;
  DBUG_ENTER("ha_partition::multi_range_key_create_key");

  bitmap_clear_all(&m_mrr_used_partitions);
  m_mrr_range_length= 0;
  bzero(m_part_mrr_range_length,
        sizeof(*m_part_mrr_range_length) * m_tot_parts);
  if (!m_mrr_range_first)
  {
    if (!(m_mrr_range_first= (PARTITION_KEY_MULTI_RANGE *)
          my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME),
                          &m_mrr_range_current, sizeof(PARTITION_KEY_MULTI_RANGE),
                          NullS)))
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);

    m_mrr_range_first->id= 1;
    m_mrr_range_first->key[0]= NULL;
    m_mrr_range_first->key[1]= NULL;
    m_mrr_range_first->next= NULL;
  }
  else
    m_mrr_range_current= m_mrr_range_first;

  for (i= 0; i < m_tot_parts; i++)
  {
    if (!m_part_mrr_range_first[i])
    {
      if (!(m_part_mrr_range_first[i]= (PARTITION_PART_KEY_MULTI_RANGE *)
            my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME | MY_ZEROFILL),
                            &m_part_mrr_range_current[i], sizeof(PARTITION_PART_KEY_MULTI_RANGE),
                            NullS)))
        DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }
    else
    {
      m_part_mrr_range_current[i]= m_part_mrr_range_first[i];
      m_part_mrr_range_current[i]->partition_key_multi_range= NULL;
    }
  }
  m_mrr_range_current->key_multi_range.start_key.key= NULL;
  m_mrr_range_current->key_multi_range.end_key.key= NULL;

  while (!seq->next(seq_it, &m_mrr_range_current->key_multi_range))
  {
    m_mrr_range_length++;
    range= &m_mrr_range_current->key_multi_range;

    /* Copy start key */
    start_key= &range->start_key;
    DBUG_PRINT("info",("partition range->range_flag: %u", range->range_flag));
    DBUG_PRINT("info",("partition start_key->key: %p", start_key->key));
    DBUG_PRINT("info",("partition start_key->length: %u", start_key->length));
    DBUG_PRINT("info",("partition start_key->keypart_map: %lu",
                       start_key->keypart_map));
    DBUG_PRINT("info",("partition start_key->flag: %u", start_key->flag));

    if (start_key->key)
    {
      length= start_key->length;
      if (!m_mrr_range_current->key[0] ||
          m_mrr_range_current->length[0] < length)
      {
        if (m_mrr_range_current->key[0])
          my_free(m_mrr_range_current->key[0]);
        if (!(m_mrr_range_current->key[0]=
              (uchar *) my_malloc(PSI_INSTRUMENT_ME, length, MYF(MY_WME))))
          DBUG_RETURN(HA_ERR_OUT_OF_MEM);
        m_mrr_range_current->length[0]= length;
      }
      memcpy(m_mrr_range_current->key[0], start_key->key, length);
      start_key->key= m_mrr_range_current->key[0];
    }

    /* Copy end key */
    end_key= &range->end_key;
    DBUG_PRINT("info",("partition end_key->key: %p", end_key->key));
    DBUG_PRINT("info",("partition end_key->length: %u", end_key->length));
    DBUG_PRINT("info",("partition end_key->keypart_map: %lu",
                       end_key->keypart_map));
    DBUG_PRINT("info",("partition end_key->flag: %u", end_key->flag));
    if (end_key->key)
    {
      length= end_key->length;
      if (!m_mrr_range_current->key[1] ||
          m_mrr_range_current->length[1] < length)
      {
        if (m_mrr_range_current->key[1])
          my_free(m_mrr_range_current->key[1]);
        if (!(m_mrr_range_current->key[1]=
              (uchar *) my_malloc(PSI_INSTRUMENT_ME, length, MYF(MY_WME))))
          DBUG_RETURN(HA_ERR_OUT_OF_MEM);
        m_mrr_range_current->length[1]= length;
      }
      memcpy(m_mrr_range_current->key[1], end_key->key, length);
      end_key->key= m_mrr_range_current->key[1];
    }

    m_mrr_range_current->ptr= m_mrr_range_current->key_multi_range.ptr;
    m_mrr_range_current->key_multi_range.ptr= m_mrr_range_current;

    if (start_key->key && (start_key->flag & HA_READ_KEY_EXACT))
      get_partition_set(table, table->record[0], active_index,
                        start_key, &m_part_spec);
    else
    {
      m_part_spec.start_part= 0;
      m_part_spec.end_part= m_tot_parts - 1;
    }

    /* Copy key to those partitions that needs it */
    for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
    {
      if (bitmap_is_set(&(m_part_info->read_partitions), i))
      {
        bitmap_set_bit(&m_mrr_used_partitions, i);
        m_part_mrr_range_length[i]++;
        m_part_mrr_range_current[i]->partition_key_multi_range=
          m_mrr_range_current;

        if (!m_part_mrr_range_current[i]->next)
        {
          PARTITION_PART_KEY_MULTI_RANGE *tmp_part_mrr_range;
          if (!(tmp_part_mrr_range= (PARTITION_PART_KEY_MULTI_RANGE *)
                my_malloc(PSI_INSTRUMENT_ME, sizeof(PARTITION_PART_KEY_MULTI_RANGE),
                          MYF(MY_WME | MY_ZEROFILL))))
            DBUG_RETURN(HA_ERR_OUT_OF_MEM);

          m_part_mrr_range_current[i]->next= tmp_part_mrr_range;
          m_part_mrr_range_current[i]= tmp_part_mrr_range;
        }
        else
        {
          m_part_mrr_range_current[i]= m_part_mrr_range_current[i]->next;
          m_part_mrr_range_current[i]->partition_key_multi_range= NULL;
        }
      }
    }

    if (!m_mrr_range_current->next)
    {
      /* Add end of range sentinel */
      PARTITION_KEY_MULTI_RANGE *tmp_mrr_range;
      if (!(tmp_mrr_range= (PARTITION_KEY_MULTI_RANGE *)
            my_malloc(PSI_INSTRUMENT_ME, sizeof(PARTITION_KEY_MULTI_RANGE), MYF(MY_WME))))
        DBUG_RETURN(HA_ERR_OUT_OF_MEM);

      tmp_mrr_range->id= m_mrr_range_current->id + 1;
      tmp_mrr_range->key[0]= NULL;
      tmp_mrr_range->key[1]= NULL;
      tmp_mrr_range->next= NULL;
      m_mrr_range_current->next= tmp_mrr_range;
    }
    m_mrr_range_current= m_mrr_range_current->next;
  }

  if (!m_mrr_range_length)
  {
    DBUG_PRINT("Warning",("No keys to use for mrr"));
    DBUG_RETURN(HA_ERR_END_OF_FILE);
  }

  /* set start and end part */
  m_part_spec.start_part= bitmap_get_first_set(&m_mrr_used_partitions);

  for (i= m_tot_parts; i-- > 0;)
  {
    if (bitmap_is_set(&m_mrr_used_partitions, i))
    {
      m_part_spec.end_part= i;
      break;
    }
  }
  for (i= 0; i < m_tot_parts; i++)
  {
    m_partition_part_key_multi_range_hld[i].partition= this;
    m_partition_part_key_multi_range_hld[i].part_id= i;
    m_partition_part_key_multi_range_hld[i].partition_part_key_multi_range=
      m_part_mrr_range_first[i];
  }
  DBUG_PRINT("return",("OK"));
  DBUG_RETURN(0);
}


static void partition_multi_range_key_get_key_info(void *init_params,
                                                   uint *length,
                                                   key_part_map *map)
{
  PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
    (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params;
  ha_partition *partition= hld->partition;
  key_range *start_key= (&partition->m_mrr_range_first->
                         key_multi_range.start_key);
  DBUG_ENTER("partition_multi_range_key_get_key_info");
  *length= start_key->length;
  *map= start_key->keypart_map;
  DBUG_VOID_RETURN;
}


static range_seq_t partition_multi_range_key_init(void *init_params,
                                                  uint n_ranges,
                                                  uint flags)
{
  PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
    (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params;
  ha_partition *partition= hld->partition;
  uint i= hld->part_id;
  DBUG_ENTER("partition_multi_range_key_init");
  // not used: partition->m_mrr_range_init_flags= flags;
  hld->partition_part_key_multi_range= partition->m_part_mrr_range_first[i];
  DBUG_RETURN(init_params);
}


static bool partition_multi_range_key_next(range_seq_t seq,
                                           KEY_MULTI_RANGE *range)
{
  PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
    (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
  PARTITION_KEY_MULTI_RANGE *partition_key_multi_range=
    hld->partition_part_key_multi_range->partition_key_multi_range;
  DBUG_ENTER("partition_multi_range_key_next");
  if (!partition_key_multi_range)
    DBUG_RETURN(TRUE);
  *range= partition_key_multi_range->key_multi_range;
  hld->partition_part_key_multi_range=
    hld->partition_part_key_multi_range->next;
  DBUG_RETURN(FALSE);
}


static bool partition_multi_range_key_skip_record(range_seq_t seq,
                                                  range_id_t range_info,
                                                  uchar *rowid)
{
  PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
    (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
  PARTITION_KEY_MULTI_RANGE *pkmr= (PARTITION_KEY_MULTI_RANGE *)range_info;
  DBUG_ENTER("partition_multi_range_key_skip_record");
  DBUG_RETURN(hld->partition->m_seq_if->skip_record(hld->partition->m_seq,
                                                    pkmr->ptr, rowid));
}


static bool partition_multi_range_key_skip_index_tuple(range_seq_t seq,
                                                       range_id_t range_info)
{
  PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
    (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
  PARTITION_KEY_MULTI_RANGE *pkmr= (PARTITION_KEY_MULTI_RANGE *)range_info;
  DBUG_ENTER("partition_multi_range_key_skip_index_tuple");
  DBUG_RETURN(hld->partition->m_seq_if->skip_index_tuple(hld->partition->m_seq,
                                                         pkmr->ptr));
}

ha_rows ha_partition::multi_range_read_info_const(uint keyno,
                                                  RANGE_SEQ_IF *seq,
                                                  void *seq_init_param,
                                                  uint n_ranges, uint *bufsz,
                                                  uint *mrr_mode, ha_rows limit,
                                                  Cost_estimate *cost)
{
  int error;
  uint i;
  handler **file;
  ha_rows rows= 0;
  uint ret_mrr_mode= 0;
  range_seq_t seq_it;
  part_id_range save_part_spec;
  Cost_estimate part_cost;
  DBUG_ENTER("ha_partition::multi_range_read_info_const");
  DBUG_PRINT("enter", ("partition this: %p", this));

  m_mrr_new_full_buffer_size= 0;
  save_part_spec= m_part_spec;

  cost->reset();

  seq_it= seq->init(seq_init_param, n_ranges, *mrr_mode);
  if (unlikely((error= multi_range_key_create_key(seq, seq_it))))
  {
    if (likely(error == HA_ERR_END_OF_FILE))    // No keys in range
    {
      rows= 0;
      goto end;
    }
    /*
      This error means that we can't do multi_range_read for the moment
      (probably running out of memory) and we need to fallback to
      normal reads
    */
    m_part_spec= save_part_spec;
    DBUG_RETURN(HA_POS_ERROR);
  }
  m_part_seq_if.get_key_info=
    seq->get_key_info ? partition_multi_range_key_get_key_info : NULL;
  m_part_seq_if.init= partition_multi_range_key_init;
  m_part_seq_if.next= partition_multi_range_key_next;
  m_part_seq_if.skip_record= (seq->skip_record ?
                              partition_multi_range_key_skip_record : NULL);
  m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ?
                                   partition_multi_range_key_skip_index_tuple :
                                   NULL);
  file= m_file;
  do
  {
    i= (uint)(file - m_file);
    DBUG_PRINT("info",("partition part_id: %u", i));
    if (bitmap_is_set(&m_mrr_used_partitions, i))
    {
      ha_rows tmp_rows;
      uint tmp_mrr_mode;
      m_mrr_buffer_size[i]= 0;
      part_cost.reset(*file);
      tmp_mrr_mode= *mrr_mode;
      tmp_rows= (*file)->
        multi_range_read_info_const(keyno, &m_part_seq_if,
                                    &m_partition_part_key_multi_range_hld[i],
                                    m_part_mrr_range_length[i],
                                    &m_mrr_buffer_size[i],
                                    &tmp_mrr_mode, limit, &part_cost);
      if (tmp_rows == HA_POS_ERROR)
      {
        m_part_spec= save_part_spec;
        DBUG_RETURN(HA_POS_ERROR);
      }
      cost->add(&part_cost);
      rows+= tmp_rows;
      ret_mrr_mode|= tmp_mrr_mode;
      m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i];
    }
  } while (*(++file));
  *mrr_mode= ret_mrr_mode;

end:
  m_part_spec= save_part_spec;
  DBUG_RETURN(rows);
}


ha_rows ha_partition::multi_range_read_info(uint keyno, uint n_ranges,
                                            uint keys,
                                            uint key_parts, uint *bufsz,
                                            uint *mrr_mode,
                                            Cost_estimate *cost)
{
  uint i;
  handler **file;
  ha_rows rows= 0;
  Cost_estimate part_cost;
  DBUG_ENTER("ha_partition::multi_range_read_info");
  DBUG_PRINT("enter", ("partition this: %p", this));

  cost->reset();

  m_mrr_new_full_buffer_size= 0;
  file= m_file;
  do
  {
    i= (uint)(file - m_file);
    if (bitmap_is_set(&(m_part_info->read_partitions), (i)))
    {
      ha_rows tmp_rows;
      m_mrr_buffer_size[i]= 0;
      part_cost.reset(*file);
      if ((tmp_rows= (*file)->multi_range_read_info(keyno, n_ranges, keys,
                                                    key_parts,
                                                    &m_mrr_buffer_size[i],
                                                    mrr_mode, &part_cost)))
        DBUG_RETURN(rows);
      cost->add(&part_cost);
      rows+= tmp_rows;
      m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i];
    }
  } while (*(++file));

  DBUG_RETURN(0);
}


int ha_partition::multi_range_read_init(RANGE_SEQ_IF *seq,
                                        void *seq_init_param,
                                        uint n_ranges, uint mrr_mode,
                                        HANDLER_BUFFER *buf)
{
  int error;
  uint i;
  handler **file;
  uchar *tmp_buffer;
  DBUG_ENTER("ha_partition::multi_range_read_init");
  DBUG_PRINT("enter", ("partition this: %p", this));

  eq_range= 0;
  m_seq_if= seq;
  m_seq= seq->init(seq_init_param, n_ranges, mrr_mode);
  if (unlikely((error= multi_range_key_create_key(seq, m_seq))))
    DBUG_RETURN(0);

  m_part_seq_if.get_key_info= (seq->get_key_info ?
                               partition_multi_range_key_get_key_info :
                               NULL);
  m_part_seq_if.init= partition_multi_range_key_init;
  m_part_seq_if.next= partition_multi_range_key_next;
  m_part_seq_if.skip_record= (seq->skip_record ?
                              partition_multi_range_key_skip_record :
                              NULL);
  m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ?
                                   partition_multi_range_key_skip_index_tuple :
                                   NULL);

  /* m_mrr_new_full_buffer_size was calculated in multi_range_read_info */
  if (m_mrr_full_buffer_size < m_mrr_new_full_buffer_size)
  {
    if (m_mrr_full_buffer)
      my_free(m_mrr_full_buffer);
    if (!(m_mrr_full_buffer=
          (uchar *) my_malloc(PSI_INSTRUMENT_ME, m_mrr_new_full_buffer_size, MYF(MY_WME))))
    {
      m_mrr_full_buffer_size= 0;
      error= HA_ERR_OUT_OF_MEM;
      goto error;
    }
    m_mrr_full_buffer_size= m_mrr_new_full_buffer_size;
  }

  tmp_buffer= m_mrr_full_buffer;
  file= m_file;
  do
  {
    i= (uint)(file - m_file);
    DBUG_PRINT("info",("partition part_id: %u", i));
    if (bitmap_is_set(&m_mrr_used_partitions, i))
    {
      if (m_mrr_new_full_buffer_size)
      {
        if (m_mrr_buffer_size[i])
        {
          m_mrr_buffer[i].buffer= tmp_buffer;
          m_mrr_buffer[i].end_of_used_area= tmp_buffer;
          tmp_buffer+= m_mrr_buffer_size[i];
          m_mrr_buffer[i].buffer_end= tmp_buffer;
        }
      }
      else
        m_mrr_buffer[i]= *buf;

      if (unlikely((error= (*file)->
                    multi_range_read_init(&m_part_seq_if,
                                          &m_partition_part_key_multi_range_hld[i],
                                          m_part_mrr_range_length[i],
                                          mrr_mode,
                                          &m_mrr_buffer[i]))))
        goto error;
      m_stock_range_seq[i]= 0;
    }
  } while (*(++file));

  m_multi_range_read_first= TRUE;
  m_mrr_range_current= m_mrr_range_first;
  m_index_scan_type= partition_read_multi_range;
  m_mrr_mode= mrr_mode;
  m_mrr_n_ranges= n_ranges;
  DBUG_RETURN(0);

error:
  DBUG_RETURN(error);
}


int ha_partition::multi_range_read_next(range_id_t *range_info)
{
  int error;
  DBUG_ENTER("ha_partition::multi_range_read_next");
  DBUG_PRINT("enter", ("partition this: %p  partition m_mrr_mode: %u",
                       this, m_mrr_mode));

  if ((m_mrr_mode & HA_MRR_SORTED))
  {
    if (m_multi_range_read_first)
    {
      if (unlikely((error= handle_ordered_index_scan(table->record[0],
                                                     FALSE))))
        DBUG_RETURN(error);
      if (!m_pre_calling)
        m_multi_range_read_first= FALSE;
    }
    else if (unlikely((error= handle_ordered_next(table->record[0],
                                                  eq_range))))
      DBUG_RETURN(error);
    *range_info= m_mrr_range_current->ptr;
  }
  else
  {
    if (unlikely(m_multi_range_read_first))
    {
      if (unlikely((error=
                    handle_unordered_scan_next_partition(table->record[0]))))
        DBUG_RETURN(error);
      if (!m_pre_calling)
        m_multi_range_read_first= FALSE;
    }
    else if (unlikely((error= handle_unordered_next(table->record[0], FALSE))))
      DBUG_RETURN(error);

    if (!(m_mrr_mode & HA_MRR_NO_ASSOCIATION))
    {
      *range_info=
        ((PARTITION_KEY_MULTI_RANGE *) m_range_info[m_last_part])->ptr;
    }
  }
  DBUG_RETURN(0);
}


int ha_partition::multi_range_read_explain_info(uint mrr_mode, char *str,
                                                size_t size)
{
  DBUG_ENTER("ha_partition::multi_range_read_explain_info");
  DBUG_RETURN(get_open_file_sample()->
                multi_range_read_explain_info(mrr_mode, str, size));
}


/**
  Find and retrieve the Full Text Search relevance ranking for a search string
  in a full text index.

  @param  handler           Full Text Search handler
  @param  record            Search string
  @param  length            Length of the search string

  @retval                   Relevance value
*/

float partition_ft_find_relevance(FT_INFO *handler,
                                  uchar *record, uint length)
{
  st_partition_ft_info *info= (st_partition_ft_info *)handler;
  uint m_last_part= ((ha_partition*) info->file)->last_part();
  FT_INFO *m_handler= info->part_ft_info[m_last_part];
  DBUG_ENTER("partition_ft_find_relevance");
  if (!m_handler)
    DBUG_RETURN((float)-1.0);
  DBUG_RETURN(m_handler->please->find_relevance(m_handler, record, length));
}


/**
  Retrieve the Full Text Search relevance ranking for the current
  full text search.

  @param  handler           Full Text Search handler

  @retval                   Relevance value
*/

float partition_ft_get_relevance(FT_INFO *handler)
{
  st_partition_ft_info *info= (st_partition_ft_info *)handler;
  uint m_last_part= ((ha_partition*) info->file)->last_part();
  FT_INFO *m_handler= info->part_ft_info[m_last_part];
  DBUG_ENTER("partition_ft_get_relevance");
  if (!m_handler)
    DBUG_RETURN((float)-1.0);
  DBUG_RETURN(m_handler->please->get_relevance(m_handler));
}


/**
  Free the memory for a full text search handler.

  @param  handler           Full Text Search handler
*/

void partition_ft_close_search(FT_INFO *handler)
{
  st_partition_ft_info *info= (st_partition_ft_info *)handler;
  info->file->ft_close_search(handler);
}


/**
  Free the memory for a full text search handler.

  @param  handler           Full Text Search handler
*/

void ha_partition::ft_close_search(FT_INFO *handler)
{
  uint i;
  st_partition_ft_info *info= (st_partition_ft_info *)handler;
  DBUG_ENTER("ha_partition::ft_close_search");

  for (i= 0; i < m_tot_parts; i++)
  {
    FT_INFO *m_handler= info->part_ft_info[i];
    DBUG_ASSERT(!m_handler ||
                (m_handler->please && m_handler->please->close_search));
    if (m_handler &&
        m_handler->please &&
        m_handler->please->close_search)
      m_handler->please->close_search(m_handler);
  }
  DBUG_VOID_RETURN;
}


/* Partition Full Text search function table */
_ft_vft partition_ft_vft =
{
  NULL, // partition_ft_read_next
  partition_ft_find_relevance,
  partition_ft_close_search,
  partition_ft_get_relevance,
  NULL  // partition_ft_reinit_search
};


/**
  Initialize a full text search.
*/

int ha_partition::ft_init()
{
  int error;
  uint i= 0;
  uint32 part_id;
  DBUG_ENTER("ha_partition::ft_init");
  DBUG_PRINT("info", ("partition this: %p", this));

  /*
    For operations that may need to change data, we may need to extend
    read_set.
  */
  if (get_lock_type() == F_WRLCK)
  {
    /*
      If write_set contains any of the fields used in partition and
      subpartition expression, we need to set all bits in read_set because
      the row may need to be inserted in a different [sub]partition. In
      other words update_row() can be converted into write_row(), which
      requires a complete record.
    */
    if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
                              table->write_set))
      bitmap_set_all(table->read_set);
    else
    {
      /*
        Some handlers only read fields as specified by the bitmap for the
        read set. For partitioned handlers we always require that the
        fields of the partition functions are read such that we can
        calculate the partition id to place updated and deleted records.
      */
      bitmap_union(table->read_set, &m_part_info->full_part_field_set);
    }
  }

  /* Now we see what the index of our first important partition is */
  DBUG_PRINT("info", ("m_part_info->read_partitions: %p",
             (void *) m_part_info->read_partitions.bitmap));
  part_id= bitmap_get_first_set(&(m_part_info->read_partitions));
  DBUG_PRINT("info", ("m_part_spec.start_part %u", (uint) part_id));

  if (part_id == MY_BIT_NONE)
  {
    error= 0;
    goto err1;
  }

  DBUG_PRINT("info", ("ft_init on partition %u", (uint) part_id));
  /*
    ft_end() is needed for partitioning to reset internal data if scan
    is already in use
  */
  if (m_pre_calling)
  {
    if (unlikely((error= pre_ft_end())))
      goto err1;
  }
  else
    ft_end();
  m_index_scan_type= partition_ft_read;
  for (i= part_id; i < m_tot_parts; i++)
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), i))
    {
      error= m_pre_calling ? m_file[i]->pre_ft_init() : m_file[i]->ft_init();
      if (unlikely(error))
        goto err2;
    }
  }
  m_scan_value= 1;
  m_part_spec.start_part= part_id;
  m_part_spec.end_part= m_tot_parts - 1;
  m_ft_init_and_first= TRUE;
  DBUG_PRINT("info", ("m_scan_value: %u", m_scan_value));
  DBUG_RETURN(0);

err2:
  late_extra_no_cache(part_id);
  while ((int)--i >= (int)part_id)
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), i))
    {
      if (m_pre_calling)
        m_file[i]->pre_ft_end();
      else
        m_file[i]->ft_end();
    }
  }
err1:
  m_scan_value= 2;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  DBUG_RETURN(error);
}


/**
  Initialize a full text search during a bulk access request.
*/

int ha_partition::pre_ft_init()
{
  bool save_m_pre_calling;
  int error;
  DBUG_ENTER("ha_partition::pre_ft_init");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  error= ft_init();
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}


/**
  Terminate a full text search.
*/

void ha_partition::ft_end()
{
  handler **file;
  DBUG_ENTER("ha_partition::ft_end");
  DBUG_PRINT("info", ("partition this: %p", this));

  switch (m_scan_value) {
  case 2:                                       // Error
    break;
  case 1:                                       // Table scan
    if (NO_CURRENT_PART_ID != m_part_spec.start_part)
      late_extra_no_cache(m_part_spec.start_part);
    file= m_file;
    do
    {
      if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
      {
        if (m_pre_calling)
          (*file)->pre_ft_end();
        else
          (*file)->ft_end();
      }
    } while (*(++file));
    break;
  }
  m_scan_value= 2;
  m_part_spec.start_part= NO_CURRENT_PART_ID;
  ft_current= 0;
  DBUG_VOID_RETURN;
}


/**
  Terminate a full text search during a bulk access request.
*/

int ha_partition::pre_ft_end()
{
  bool save_m_pre_calling;
  DBUG_ENTER("ha_partition::pre_ft_end");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  ft_end();
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(0);
}


void ha_partition::swap_blobs(uchar * rec_buf, Ordered_blob_storage ** storage, bool restore)
{
  uint *ptr, *end;
  uint blob_n= 0;
  table->move_fields(table->field, rec_buf, table->record[0]);
  for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields;
       ptr != end; ++ptr, ++blob_n)
  {
    DBUG_ASSERT(*ptr < table->s->fields);
    Field_blob *blob= (Field_blob*) table->field[*ptr];
    DBUG_ASSERT(blob->flags & BLOB_FLAG);
    DBUG_ASSERT(blob->field_index == *ptr);
    if (!bitmap_is_set(table->read_set, *ptr) || blob->is_null())
      continue;

    Ordered_blob_storage &s= *storage[blob_n];

    if (restore)
    {
      /*
        We protect only blob cache (value or read_value). If the cache was
        empty that doesn't mean the blob was empty. Blobs allocated by a
        storage engine should work just fine.
      */
      if (!s.blob.is_empty())
        blob->swap(s.blob, s.set_read_value);
    }
    else
    {
      bool set_read_value;
      String *cached= blob->cached(&set_read_value);
      if (cached)
      {
        cached->swap(s.blob);
        s.set_read_value= set_read_value;
      }
    }
  }
  table->move_fields(table->field, table->record[0], rec_buf);
}


/**
  Initialize a full text search using the extended API.

  @param  flags             Search flags
  @param  inx               Key number
  @param  key               Key value

  @return FT_INFO structure if successful
          NULL              otherwise
*/

FT_INFO *ha_partition::ft_init_ext(uint flags, uint inx, String *key)
{
  FT_INFO *ft_handler;
  handler **file;
  st_partition_ft_info *ft_target, **parent;
  DBUG_ENTER("ha_partition::ft_init_ext");

  if (ft_current)
    parent= &ft_current->next;
  else
    parent= &ft_first;

  if (!(ft_target= *parent))
  {
    FT_INFO **tmp_ft_info;
    if (!(ft_target= (st_partition_ft_info *)
          my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME | MY_ZEROFILL),
                          &ft_target, sizeof(st_partition_ft_info),
                          &tmp_ft_info, sizeof(FT_INFO *) * m_tot_parts,
                          NullS)))
    {
      my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATAL));
      DBUG_RETURN(NULL);
    }
    ft_target->part_ft_info= tmp_ft_info;
    (*parent)= ft_target;
  }

  ft_current= ft_target;
  file= m_file;
  do
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
    {
      if ((ft_handler= (*file)->ft_init_ext(flags, inx, key)))
        (*file)->ft_handler= ft_handler;
      else
        (*file)->ft_handler= NULL;
      ft_target->part_ft_info[file - m_file]= ft_handler;
    }
    else
    {
      (*file)->ft_handler= NULL;
      ft_target->part_ft_info[file - m_file]= NULL;
    }
  } while (*(++file));

  ft_target->please= &partition_ft_vft;
  ft_target->file= this;
  DBUG_RETURN((FT_INFO*)ft_target);
}


/**
  Return the next record from the FT result set during an ordered index
  pre-scan

  @param  use_parallel      Is it a parallel search

  @return >0                Error code
          0                 Success
*/

int ha_partition::pre_ft_read(bool use_parallel)
{
  bool save_m_pre_calling;
  int error;
  DBUG_ENTER("ha_partition::pre_ft_read");
  DBUG_PRINT("info", ("partition this: %p", this));
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  m_pre_call_use_parallel= use_parallel;
  error= ft_read(table->record[0]);
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}


/**
  Return the first or next record in a full text search.

  @param  buf               Buffer where the record should be returned

  @return >0                Error code
          0                 Success
*/

int ha_partition::ft_read(uchar *buf)
{
  handler *file;
  int result= HA_ERR_END_OF_FILE, error;
  uint part_id= m_part_spec.start_part;
  DBUG_ENTER("ha_partition::ft_read");
  DBUG_PRINT("info", ("partition this: %p", this));
  DBUG_PRINT("info", ("part_id: %u", part_id));

  if (part_id == NO_CURRENT_PART_ID)
  {
    /*
      The original set of partitions to scan was empty and thus we report
      the result here.
    */
    DBUG_PRINT("info", ("NO_CURRENT_PART_ID"));
    goto end;
  }

  DBUG_ASSERT(m_scan_value == 1);

  if (m_ft_init_and_first)                      // First call to ft_read()
  {
    m_ft_init_and_first= FALSE;
    if (!bulk_access_executing)
    {
      error= handle_pre_scan(FALSE, check_parallel_search());
      if (m_pre_calling || error)
        DBUG_RETURN(error);
    }
    late_extra_cache(part_id);
  }

  file= m_file[part_id];

  while (TRUE)
  {
    if (!(result= file->ft_read(buf)))
    {
      /* Found row: remember position and return it. */
      m_part_spec.start_part= m_last_part= part_id;
      table->status= 0;
      DBUG_RETURN(0);
    }

    /*
      if we get here, then the current partition ft_next returned failure
    */
    if (result != HA_ERR_END_OF_FILE)
      goto end_dont_reset_start_part;         // Return error

    /* End current partition */
    late_extra_no_cache(part_id);
    DBUG_PRINT("info", ("stopping using partition %u", (uint) part_id));

    /* Shift to next partition */
    while (++part_id < m_tot_parts &&
           !bitmap_is_set(&(m_part_info->read_partitions), part_id))
      ;
    if (part_id >= m_tot_parts)
    {
      result= HA_ERR_END_OF_FILE;
      break;
    }
    m_part_spec.start_part= m_last_part= part_id;
    file= m_file[part_id];
    DBUG_PRINT("info", ("now using partition %u", (uint) part_id));
    late_extra_cache(part_id);
  }

end:
  m_part_spec.start_part= NO_CURRENT_PART_ID;
end_dont_reset_start_part:
  table->status= STATUS_NOT_FOUND;
  DBUG_RETURN(result);
}


/*
  Common routine to set up index scans

  SYNOPSIS
    ha_partition::partition_scan_set_up()
      buf            Buffer to later return record in (this function
                     needs it to calculcate partitioning function
                     values)

      idx_read_flag  TRUE <=> m_start_key has range start endpoint which
                     probably can be used to determine the set of partitions
                     to scan.
                     FALSE <=> there is no start endpoint.

  DESCRIPTION
    Find out which partitions we'll need to read when scanning the specified
    range.

    If we need to scan only one partition, set m_ordered_scan_ongoing=FALSE
    as we will not need to do merge ordering.

  RETURN VALUE
    >0                    Error code
    0                     Success
*/

int ha_partition::partition_scan_set_up(uchar * buf, bool idx_read_flag)
{
  DBUG_ENTER("ha_partition::partition_scan_set_up");

  if (idx_read_flag)
    get_partition_set(table, buf, active_index, &m_start_key, &m_part_spec);
  else
  {
    m_part_spec.start_part= 0;
    m_part_spec.end_part= m_tot_parts - 1;
  }
  if (m_part_spec.start_part > m_part_spec.end_part)
  {
    /*
      We discovered a partition set but the set was empty so we report
      key not found.
    */
    DBUG_PRINT("info", ("scan with no partition to scan"));
    DBUG_RETURN(HA_ERR_END_OF_FILE);
  }
  if (m_part_spec.start_part == m_part_spec.end_part)
  {
    /*
      We discovered a single partition to scan, this never needs to be
      performed using the ordered index scan.
    */
    DBUG_PRINT("info", ("index scan using the single partition %u",
			(uint) m_part_spec.start_part));
    m_ordered_scan_ongoing= FALSE;
  }
  else
  {
    /*
      Set m_ordered_scan_ongoing according how the scan should be done
      Only exact partitions are discovered atm by get_partition_set.
      Verify this, also bitmap must have at least one bit set otherwise
      the result from this table is the empty set.
    */
    uint start_part= bitmap_get_first_set(&(m_part_info->read_partitions));
    if (start_part == MY_BIT_NONE)
    {
      DBUG_PRINT("info", ("scan with no partition to scan"));
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    if (start_part > m_part_spec.start_part)
      m_part_spec.start_part= start_part;
    DBUG_ASSERT(m_part_spec.start_part < m_tot_parts);
    m_ordered_scan_ongoing= m_ordered;
  }
  DBUG_ASSERT(m_part_spec.start_part < m_tot_parts);
  DBUG_ASSERT(m_part_spec.end_part < m_tot_parts);
  DBUG_RETURN(0);
}

/**
  Check if we can search partitions in parallel

  @retval TRUE  yes
  @retval FALSE no
*/

bool ha_partition::check_parallel_search()
{
  TABLE_LIST *table_list= table->pos_in_table_list;
  st_select_lex *select_lex;
  JOIN *join;
  DBUG_ENTER("ha_partition::check_parallel_search");
  if (!table_list)
    goto not_parallel;

  while (table_list->parent_l)
    table_list= table_list->parent_l;

  select_lex= table_list->select_lex;
  DBUG_PRINT("info",("partition select_lex: %p", select_lex));
  if (!select_lex)
    goto not_parallel;
  if (!select_lex->limit_params.explicit_limit)
  {
    DBUG_PRINT("info",("partition not using explicit_limit"));
    goto parallel;
  }

  join= select_lex->join;
  DBUG_PRINT("info",("partition join: %p", join));
  if (join && join->skip_sort_order)
  {
    DBUG_PRINT("info",("partition order_list.elements: %u",
                       select_lex->order_list.elements));
    if (select_lex->order_list.elements)
    {
      Item *item= *select_lex->order_list.first->item;
      DBUG_PRINT("info",("partition item: %p", item));
      DBUG_PRINT("info",("partition item->type(): %u", item->type()));
      DBUG_PRINT("info",("partition m_part_info->part_type: %u",
                         m_part_info->part_type));
      DBUG_PRINT("info",("partition m_is_sub_partitioned: %s",
                         m_is_sub_partitioned ? "TRUE" : "FALSE"));
      DBUG_PRINT("info",("partition m_part_info->part_expr: %p",
                         m_part_info->part_expr));
      if (item->type() == Item::FIELD_ITEM &&
          m_part_info->part_type == RANGE_PARTITION &&
          !m_is_sub_partitioned &&
          (!m_part_info->part_expr ||
           m_part_info->part_expr->type() == Item::FIELD_ITEM))
      {
        Field *order_field= ((Item_field *)item)->field;
        DBUG_PRINT("info",("partition order_field: %p", order_field));
        if (order_field && order_field->table == table_list->table)
        {
          Field *part_field= m_part_info->full_part_field_array[0];
          DBUG_PRINT("info",("partition order_field: %p", order_field));
          DBUG_PRINT("info",("partition part_field: %p", part_field));
          if (part_field == order_field)
          {
            /*
              We are using ORDER BY partition_field LIMIT #
              In this case, let's not do things in parallel as it's
              likely that the query can be satisfied from the first
              partition
            */
            DBUG_PRINT("info",("partition with ORDER on partition field"));
            goto not_parallel;
          }
        }
      }
      DBUG_PRINT("info",("partition have order"));
      goto parallel;
    }

    DBUG_PRINT("info",("partition group_list.elements: %u",
                       select_lex->group_list.elements));
    if (select_lex->group_list.elements)
    {
      Item *item= *select_lex->group_list.first->item;
      DBUG_PRINT("info",("partition item: %p", item));
      DBUG_PRINT("info",("partition item->type(): %u", item->type()));
      DBUG_PRINT("info",("partition m_part_info->part_type: %u",
                         m_part_info->part_type));
      DBUG_PRINT("info",("partition m_is_sub_partitioned: %s",
                         m_is_sub_partitioned ? "TRUE" : "FALSE"));
      DBUG_PRINT("info",("partition m_part_info->part_expr: %p",
                         m_part_info->part_expr));
      if (item->type() == Item::FIELD_ITEM &&
          m_part_info->part_type == RANGE_PARTITION &&
          !m_is_sub_partitioned &&
          (!m_part_info->part_expr ||
           m_part_info->part_expr->type() == Item::FIELD_ITEM))
      {
        Field *group_field= ((Item_field *)item)->field;
        DBUG_PRINT("info",("partition group_field: %p", group_field));
        if (group_field && group_field->table == table_list->table)
        {
          Field *part_field= m_part_info->full_part_field_array[0];
          DBUG_PRINT("info",("partition group_field: %p", group_field));
          DBUG_PRINT("info",("partition part_field: %p", part_field));
          if (part_field == group_field)
          {
            DBUG_PRINT("info",("partition with GROUP BY on partition field"));
            goto not_parallel;
          }
        }
      }
      DBUG_PRINT("info",("partition with GROUP BY"));
      goto parallel;
    }
  }
  else if (select_lex->order_list.elements ||
           select_lex->group_list.elements)
  {
    DBUG_PRINT("info",("partition is not skip_order"));
    DBUG_PRINT("info",("partition order_list.elements: %u",
                       select_lex->order_list.elements));
    DBUG_PRINT("info",("partition group_list.elements: %u",
                       select_lex->group_list.elements));
    goto parallel;
  }
  DBUG_PRINT("info",("partition is not skip_order"));

not_parallel:
  DBUG_PRINT("return",("partition FALSE"));
  DBUG_RETURN(FALSE);

parallel:
  DBUG_PRINT("return",("partition TRUE"));
  DBUG_RETURN(TRUE);
}


int ha_partition::handle_pre_scan(bool reverse_order, bool use_parallel)
{
  uint i;
  DBUG_ENTER("ha_partition::handle_pre_scan");
  DBUG_PRINT("enter",
             ("m_part_spec.start_part: %u  m_part_spec.end_part: %u",
              (uint) m_part_spec.start_part, (uint) m_part_spec.end_part));

  for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
  {
    if (!(bitmap_is_set(&(m_part_info->read_partitions), i)))
      continue;
    int error;
    handler *file= m_file[i];

    switch (m_index_scan_type) {
    case partition_index_read:
      error= file->pre_index_read_map(m_start_key.key,
                                  m_start_key.keypart_map,
                                  m_start_key.flag,
                                  use_parallel);
      break;
    case partition_index_first:
      error= file->pre_index_first(use_parallel);
      break;
    case partition_index_last:
      error= file->pre_index_last(use_parallel);
      break;
    case partition_index_read_last:
      error= file->pre_index_read_last_map(m_start_key.key,
                                       m_start_key.keypart_map,
                                       use_parallel);
      break;
    case partition_read_range:
      error= file->pre_read_range_first(m_start_key.key? &m_start_key: NULL,
                                    end_range, eq_range, TRUE, use_parallel);
      break;
    case partition_read_multi_range:
      if (!bitmap_is_set(&m_mrr_used_partitions, i))
        continue;
      error= file->pre_multi_range_read_next(use_parallel);
      break;
    case partition_ft_read:
      error= file->pre_ft_read(use_parallel);
      break;
    case partition_no_index_scan:
      error= file->pre_rnd_next(use_parallel);
      break;
    default:
      DBUG_ASSERT(FALSE);
      DBUG_RETURN(0);
    }
    if (error == HA_ERR_END_OF_FILE)
      error= 0;
    if (unlikely(error))
      DBUG_RETURN(error);
  }
  table->status= 0;
  DBUG_RETURN(0);
}


/****************************************************************************
  Unordered Index Scan Routines
****************************************************************************/
/*
  Common routine to handle index_next with unordered results

  SYNOPSIS
    handle_unordered_next()
    out:buf                       Read row in MySQL Row Format
    next_same                     Called from index_next_same

  RETURN VALUE
    HA_ERR_END_OF_FILE            End of scan
    0                             Success
    other                         Error code

  DESCRIPTION
    These routines are used to scan partitions without considering order.
    This is performed in two situations.
    1) In read_multi_range this is the normal case
    2) When performing any type of index_read, index_first, index_last where
    all fields in the partition function is bound. In this case the index
    scan is performed on only one partition and thus it isn't necessary to
    perform any sort.
*/

int ha_partition::handle_unordered_next(uchar *buf, bool is_next_same)
{
  handler *file;
  int error;
  DBUG_ENTER("ha_partition::handle_unordered_next");

  if (m_part_spec.start_part >= m_tot_parts)
  {
    /* Should never happen! */
    DBUG_ASSERT(0);
    DBUG_RETURN(HA_ERR_END_OF_FILE);
  }
  file= m_file[m_part_spec.start_part];

  /*
    We should consider if this should be split into three functions as
    partition_read_range is_next_same are always local constants
  */

  if (m_index_scan_type == partition_read_multi_range)
  {
    if (likely(!(error= file->
                 multi_range_read_next(&m_range_info[m_part_spec.start_part]))))
    {
      m_last_part= m_part_spec.start_part;
      DBUG_RETURN(0);
    }
  }
  else if (m_index_scan_type == partition_read_range)
  {
    if (likely(!(error= file->read_range_next())))
    {
      m_last_part= m_part_spec.start_part;
      DBUG_RETURN(0);
    }
  }
  else if (is_next_same)
  {
    if (likely(!(error= file->ha_index_next_same(buf, m_start_key.key,
                                                 m_start_key.length))))
    {
      m_last_part= m_part_spec.start_part;
      DBUG_RETURN(0);
    }
  }
  else
  {
    if (likely(!(error= file->ha_index_next(buf))))
    {
      m_last_part= m_part_spec.start_part;
      DBUG_RETURN(0);                           // Row was in range
    }
  }

    if (unlikely(error == HA_ERR_END_OF_FILE))
  {
    m_part_spec.start_part++;                    // Start using next part
    error= handle_unordered_scan_next_partition(buf);
  }
  DBUG_RETURN(error);
}


/*
  Handle index_next when changing to new partition

  SYNOPSIS
    handle_unordered_scan_next_partition()
    buf                       Read row in MariaDB Row Format

  RETURN VALUE
    HA_ERR_END_OF_FILE            End of scan
    0                             Success
    other                         Error code

  DESCRIPTION
    This routine is used to start the index scan on the next partition.
    Both initial start and after completing scan on one partition.
*/

int ha_partition::handle_unordered_scan_next_partition(uchar * buf)
{
  uint i= m_part_spec.start_part;
  int saved_error= HA_ERR_END_OF_FILE;
  DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition");

  /* Read next partition that includes start_part */
  if (i)
    i= bitmap_get_next_set(&m_part_info->read_partitions, i - 1);
  else
    i= bitmap_get_first_set(&m_part_info->read_partitions);

  for (;
       i <= m_part_spec.end_part;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    int error;
    handler *file= m_file[i];
    m_part_spec.start_part= i;

    switch (m_index_scan_type) {
    case partition_read_multi_range:
      if (!bitmap_is_set(&m_mrr_used_partitions, i))
        continue;
      DBUG_PRINT("info", ("read_multi_range on partition %u", i));
      error= file->multi_range_read_next(&m_range_info[i]);
      break;
    case partition_read_range:
      DBUG_PRINT("info", ("read_range_first on partition %u", i));
      error= file->read_range_first(m_start_key.key? &m_start_key: NULL,
                                    end_range, eq_range, FALSE);
      break;
    case partition_index_read:
      DBUG_PRINT("info", ("index_read on partition %u", i));
      error= file->ha_index_read_map(buf, m_start_key.key,
                                     m_start_key.keypart_map,
                                     m_start_key.flag);
      break;
    case partition_index_first:
      DBUG_PRINT("info", ("index_first on partition %u", i));
      error= file->ha_index_first(buf);
      break;
    default:
      DBUG_ASSERT(FALSE);
      DBUG_RETURN(1);
    }
    if (likely(!error))
    {
      m_last_part= i;
      DBUG_RETURN(0);
    }
    if (likely((error != HA_ERR_END_OF_FILE) &&
               (error != HA_ERR_KEY_NOT_FOUND)))
      DBUG_RETURN(error);

    /*
      If HA_ERR_KEY_NOT_FOUND, we must return that error instead of
      HA_ERR_END_OF_FILE, to be able to continue search.
    */
    if (saved_error != HA_ERR_KEY_NOT_FOUND)
      saved_error= error;
    DBUG_PRINT("info", ("END_OF_FILE/KEY_NOT_FOUND on partition %u", i));
  }
  if (saved_error == HA_ERR_END_OF_FILE)
    m_part_spec.start_part= NO_CURRENT_PART_ID;
  DBUG_RETURN(saved_error);
}


/**
  Common routine to start index scan with ordered results.

  @param[out] buf  Read row in MariaDB Row Format

  @return Operation status
    @retval HA_ERR_END_OF_FILE  End of scan
    @retval HA_ERR_KEY_NOT_FOUNE  End of scan
    @retval 0                   Success
    @retval other               Error code

  @details
    This part contains the logic to handle index scans that require ordered
    output. This includes all except those started by read_range_first with
    the flag ordered set to FALSE. Thus most direct index_read and all
    index_first and index_last.

    We implement ordering by keeping one record plus a key buffer for each
    partition. Every time a new entry is requested we will fetch a new
    entry from the partition that is currently not filled with an entry.
    Then the entry is put into its proper sort position.

    Returning a record is done by getting the top record, copying the
    record to the request buffer and setting the partition as empty on
    entries.
*/

int ha_partition::handle_ordered_index_scan(uchar *buf, bool reverse_order)
{
  int error;
  uint i;
  uint j= queue_first_element(&m_queue);
  uint smallest_range_seq= 0;
  bool found= FALSE;
  uchar *part_rec_buf_ptr= m_ordered_rec_buffer;
  int saved_error= HA_ERR_END_OF_FILE;
  DBUG_ENTER("ha_partition::handle_ordered_index_scan");
  DBUG_PRINT("enter", ("partition this: %p", this));

   if (m_pre_calling)
     error= handle_pre_scan(reverse_order, m_pre_call_use_parallel);
   else
     error= handle_pre_scan(reverse_order, check_parallel_search());
   if (unlikely(error))
    DBUG_RETURN(error);

  if (m_key_not_found)
  {
    /* m_key_not_found was set in the previous call to this function */
    m_key_not_found= false;
    bitmap_clear_all(&m_key_not_found_partitions);
  }
  m_top_entry= NO_CURRENT_PART_ID;
  DBUG_PRINT("info", ("partition queue_remove_all(1)"));
  queue_remove_all(&m_queue);
  DBUG_ASSERT(bitmap_is_set(&m_part_info->read_partitions,
                            m_part_spec.start_part));

  /*
    Position part_rec_buf_ptr to point to the first used partition >=
    start_part. There may be partitions marked by used_partitions,
    but is before start_part. These partitions has allocated record buffers
    but is dynamically pruned, so those buffers must be skipped.
  */
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_part_spec.start_part;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    part_rec_buf_ptr+= m_priority_queue_rec_len;
  }
  DBUG_PRINT("info", ("m_part_spec.start_part %u first_used_part %u",
                      m_part_spec.start_part, i));
  for (/* continue from above */ ;
       i <= m_part_spec.end_part ;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i),
       part_rec_buf_ptr+= m_priority_queue_rec_len)
  {
    DBUG_PRINT("info", ("reading from part %u (scan_type: %u)",
                        i, m_index_scan_type));
    DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr + ORDERED_PART_NUM_OFFSET));
    uchar *rec_buf_ptr= part_rec_buf_ptr + ORDERED_REC_OFFSET;
    handler *file= m_file[i];

    switch (m_index_scan_type) {
    case partition_index_read:
      error= file->ha_index_read_map(rec_buf_ptr,
                                     m_start_key.key,
                                     m_start_key.keypart_map,
                                     m_start_key.flag);
      /* Caller has specified reverse_order */
      break;
    case partition_index_first:
      error= file->ha_index_first(rec_buf_ptr);
      reverse_order= FALSE;
      break;
    case partition_index_last:
      error= file->ha_index_last(rec_buf_ptr);
      reverse_order= TRUE;
      break;
    case partition_read_range:
    {
      /*
        This can only read record to table->record[0], as it was set when
        the table was being opened. We have to memcpy data ourselves.
      */
      error= file->read_range_first(m_start_key.key? &m_start_key: NULL,
                                    end_range, eq_range, TRUE);
      if (likely(!error))
        memcpy(rec_buf_ptr, table->record[0], m_rec_length);
      reverse_order= FALSE;
      break;
    }
    case partition_read_multi_range:
    {
      if (!bitmap_is_set(&m_mrr_used_partitions, i))
        continue;
      DBUG_PRINT("info", ("partition %u", i));
      error= file->multi_range_read_next(&m_range_info[i]);
      DBUG_PRINT("info", ("error: %d", error));
      if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
      {
        bitmap_clear_bit(&m_mrr_used_partitions, i);
        continue;
      }
      if (likely(!error))
      {
        memcpy(rec_buf_ptr, table->record[0], m_rec_length);
        reverse_order= FALSE;
        m_stock_range_seq[i]= (((PARTITION_KEY_MULTI_RANGE *)
                                m_range_info[i])->id);
        /* Test if the key is in the first key range */
        if (m_stock_range_seq[i] != m_mrr_range_current->id)
        {
          /*
            smallest_range_seq contains the smallest key range we have seen
            so far
          */
          if (!smallest_range_seq || smallest_range_seq > m_stock_range_seq[i])
            smallest_range_seq= m_stock_range_seq[i];
          continue;
        }
      }
      break;
    }
    default:
      DBUG_ASSERT(FALSE);
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    if (likely(!error))
    {
      found= TRUE;
      if (!m_using_extended_keys)
      {
        file->position(rec_buf_ptr);
        memcpy(rec_buf_ptr + m_rec_length, file->ref, file->ref_length);
      }
      /*
        Initialize queue without order first, simply insert
      */
      queue_element(&m_queue, j++)= part_rec_buf_ptr;
      if (table->s->blob_fields)
      {
        Ordered_blob_storage **storage=
          *((Ordered_blob_storage ***) part_rec_buf_ptr);
        swap_blobs(rec_buf_ptr, storage, false);
      }
    }
    else if (error == HA_ERR_KEY_NOT_FOUND)
    {
      DBUG_PRINT("info", ("HA_ERR_KEY_NOT_FOUND from partition %u", i));
      bitmap_set_bit(&m_key_not_found_partitions, i);
      m_key_not_found= true;
      saved_error= error;
    }
    else if (error != HA_ERR_END_OF_FILE)
    {
      DBUG_RETURN(error);
    }
  }

  if (!found && smallest_range_seq)
  {
    /* We know that there is an existing row based on code above */
    found= TRUE;
    part_rec_buf_ptr= m_ordered_rec_buffer;

    /*
      No key found in the first key range
      Collect all partitions that has a key in smallest_range_seq
     */
    DBUG_PRINT("info", ("partition !found && smallest_range_seq"));
    for (i= bitmap_get_first_set(&m_part_info->read_partitions);
         i <= m_part_spec.end_part;
         i= bitmap_get_next_set(&m_part_info->read_partitions, i))
    {
      DBUG_PRINT("info", ("partition current_part: %u", i));
      if (i < m_part_spec.start_part)
      {
        part_rec_buf_ptr+= m_priority_queue_rec_len;
        DBUG_PRINT("info", ("partition i < m_part_spec.start_part"));
        continue;
      }
      if (!bitmap_is_set(&m_mrr_used_partitions, i))
      {
        part_rec_buf_ptr+= m_priority_queue_rec_len;
        DBUG_PRINT("info", ("partition !bitmap_is_set(&m_mrr_used_partitions, i)"));
        continue;
      }
      DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr + ORDERED_PART_NUM_OFFSET));
      if (smallest_range_seq == m_stock_range_seq[i])
      {
        m_stock_range_seq[i]= 0;
        queue_element(&m_queue, j++)= (uchar *) part_rec_buf_ptr;
        DBUG_PRINT("info", ("partition smallest_range_seq == m_stock_range_seq[i]"));
      }
      part_rec_buf_ptr+= m_priority_queue_rec_len;
    }

    /* Update global m_mrr_range_current to the current range */
    while (m_mrr_range_current->id < smallest_range_seq)
      m_mrr_range_current= m_mrr_range_current->next;
  }
  if (found)
  {
    /*
      We found at least one partition with data, now sort all entries and
      after that read the first entry and copy it to the buffer to return in.
    */
    queue_set_max_at_top(&m_queue, reverse_order);
    queue_set_cmp_arg(&m_queue, (void*) this);
    m_queue.elements= j - queue_first_element(&m_queue);
    queue_fix(&m_queue);
    return_top_record(buf);
    DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
    DBUG_RETURN(0);
  }
  DBUG_RETURN(saved_error);
}


/*
  Return the top record in sort order

  SYNOPSIS
    return_top_record()
    out:buf                  Row returned in MySQL Row Format

  RETURN VALUE
    NONE
*/

void ha_partition::return_top_record(uchar *buf)
{
  uint part_id;
  uchar *key_buffer= queue_top(&m_queue);
  uchar *rec_buffer= key_buffer + ORDERED_REC_OFFSET;
  DBUG_ENTER("ha_partition::return_top_record");
  DBUG_PRINT("enter", ("partition this: %p", this));

  part_id= uint2korr(key_buffer + ORDERED_PART_NUM_OFFSET);
  memcpy(buf, rec_buffer, m_rec_length);
  if (table->s->blob_fields)
  {
    Ordered_blob_storage **storage= *((Ordered_blob_storage ***) key_buffer);
    swap_blobs(buf, storage, true);
  }
  m_last_part= part_id;
  DBUG_PRINT("info", ("partition m_last_part: %u", m_last_part));
  m_top_entry= part_id;
  table->status= 0;                             // Found an existing row
  m_file[part_id]->return_record_by_parent();
  DBUG_VOID_RETURN;
}

/*
  This function is only used if the partitioned table has own partitions.
  This can happen if the partitioned VP engine is used (part of spider).
*/

void ha_partition::return_record_by_parent()
{
  m_file[m_last_part]->return_record_by_parent();
  DBUG_ASSERT(0);
}


/**
  Add index_next/prev from partitions without exact match.

  If there where any partitions that returned HA_ERR_KEY_NOT_FOUND when
  ha_index_read_map was done, those partitions must be included in the
  following index_next/prev call.
*/

int ha_partition::handle_ordered_index_scan_key_not_found()
{
  int error;
  uint i, old_elements= m_queue.elements;
  uchar *part_buf= m_ordered_rec_buffer;
  uchar *curr_rec_buf= NULL;
  DBUG_ENTER("ha_partition::handle_ordered_index_scan_key_not_found");
  DBUG_PRINT("enter", ("partition this: %p", this));
  DBUG_ASSERT(m_key_not_found);
  /*
    Loop over all used partitions to get the correct offset
    into m_ordered_rec_buffer.
  */
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    if (bitmap_is_set(&m_key_not_found_partitions, i))
    {
      /*
        This partition is used and did return HA_ERR_KEY_NOT_FOUND
        in index_read_map.
      */
      curr_rec_buf= part_buf + ORDERED_REC_OFFSET;
      error= m_file[i]->ha_index_next(curr_rec_buf);
      /* HA_ERR_KEY_NOT_FOUND is not allowed from index_next! */
      DBUG_ASSERT(error != HA_ERR_KEY_NOT_FOUND);
      if (likely(!error))
      {
        DBUG_PRINT("info", ("partition queue_insert(1)"));
        queue_insert(&m_queue, part_buf);
      }
      else if (error != HA_ERR_END_OF_FILE && error != HA_ERR_KEY_NOT_FOUND)
        DBUG_RETURN(error);
    }
    part_buf += m_priority_queue_rec_len;
  }
  DBUG_ASSERT(curr_rec_buf);
  bitmap_clear_all(&m_key_not_found_partitions);
  m_key_not_found= false;

  if (m_queue.elements > old_elements)
  {
    /* Update m_top_entry, which may have changed. */
    uchar *key_buffer= queue_top(&m_queue);
    m_top_entry= uint2korr(key_buffer);
  }
  DBUG_RETURN(0);
}


/*
  Common routine to handle index_next with ordered results

  SYNOPSIS
    handle_ordered_next()
    out:buf                       Read row in MySQL Row Format
    next_same                     Called from index_next_same

  RETURN VALUE
    HA_ERR_END_OF_FILE            End of scan
    0                             Success
    other                         Error code
*/

int ha_partition::handle_ordered_next(uchar *buf, bool is_next_same)
{
  int error;
  DBUG_ENTER("ha_partition::handle_ordered_next");

  if (m_top_entry == NO_CURRENT_PART_ID)
    DBUG_RETURN(HA_ERR_END_OF_FILE);

  uint part_id= m_top_entry;
  uchar *part_rec_buf_ptr= queue_top(&m_queue);
  uchar *rec_buf= part_rec_buf_ptr + ORDERED_REC_OFFSET;
  handler *file;

  if (m_key_not_found)
  {
    if (is_next_same)
    {
      /* Only rows which match the key. */
      m_key_not_found= false;
      bitmap_clear_all(&m_key_not_found_partitions);
    }
    else
    {
      /* There are partitions not included in the index record queue. */
      uint old_elements= m_queue.elements;
      if (unlikely((error= handle_ordered_index_scan_key_not_found())))
        DBUG_RETURN(error);
      /*
        If the queue top changed, i.e. one of the partitions that gave
        HA_ERR_KEY_NOT_FOUND in index_read_map found the next record,
        return it.
        Otherwise replace the old with a call to index_next (fall through).
      */
      if (old_elements != m_queue.elements && part_id != m_top_entry)
      {
        return_top_record(buf);
        DBUG_RETURN(0);
      }
    }
  }
  if (part_id >= m_tot_parts)
  {
    /* This should never happen! */
    DBUG_ASSERT(0);
    DBUG_RETURN(HA_ERR_END_OF_FILE);
  }

  file= m_file[part_id];

  if (m_index_scan_type == partition_read_range)
  {
    error= file->read_range_next();
    if (likely(!error))
    {
      memcpy(rec_buf, table->record[0], m_rec_length);
      if (table->s->blob_fields)
      {
        Ordered_blob_storage **storage=
          *((Ordered_blob_storage ***) part_rec_buf_ptr);
        swap_blobs(rec_buf, storage, false);
      }
    }
  }
  else if (m_index_scan_type == partition_read_multi_range)
  {
    DBUG_PRINT("info", ("partition_read_multi_range route"));
    DBUG_PRINT("info", ("part_id: %u", part_id));
    bool get_next= FALSE;
    error= file->multi_range_read_next(&m_range_info[part_id]);
    DBUG_PRINT("info", ("error: %d", error));
    if (unlikely(error == HA_ERR_KEY_NOT_FOUND))
      error= HA_ERR_END_OF_FILE;
    if (unlikely(error == HA_ERR_END_OF_FILE))
    {
      bitmap_clear_bit(&m_mrr_used_partitions, part_id);
      DBUG_PRINT("info", ("partition m_queue.elements: %u", m_queue.elements));
      if (m_queue.elements)
      {
        DBUG_PRINT("info", ("partition queue_remove_top(1)"));
        queue_remove_top(&m_queue);
        if (m_queue.elements)
        {
          return_top_record(buf);
          DBUG_PRINT("info", ("Record returned from partition %u (3)",
                              m_top_entry));
          DBUG_RETURN(0);
        }
      }
      get_next= TRUE;
    }
    else if (likely(!error))
    {
      DBUG_PRINT("info", ("m_range_info[%u])->id: %u", part_id,
                          ((PARTITION_KEY_MULTI_RANGE *)
                           m_range_info[part_id])->id));
      DBUG_PRINT("info", ("m_mrr_range_current->id: %u",
                          m_mrr_range_current->id));
      memcpy(rec_buf, table->record[0], m_rec_length);
      if (table->s->blob_fields)
      {
        Ordered_blob_storage **storage= *((Ordered_blob_storage ***) part_rec_buf_ptr);
        swap_blobs(rec_buf, storage, false);
      }
      if (((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id !=
          m_mrr_range_current->id)
      {
        m_stock_range_seq[part_id]=
          ((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id;
        DBUG_PRINT("info", ("partition queue_remove_top(2)"));
        queue_remove_top(&m_queue);
        if (!m_queue.elements)
          get_next= TRUE;
      }
    }
    if (get_next)
    {
      DBUG_PRINT("info", ("get_next route"));
      uint i, j= 0, smallest_range_seq= UINT_MAX32;
      for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
      {
        if (!(bitmap_is_set(&(m_part_info->read_partitions), i)))
          continue;
        if (!bitmap_is_set(&m_mrr_used_partitions, i))
          continue;
        if (smallest_range_seq > m_stock_range_seq[i])
          smallest_range_seq= m_stock_range_seq[i];
      }

      DBUG_PRINT("info", ("smallest_range_seq: %u", smallest_range_seq));
      if (smallest_range_seq != UINT_MAX32)
      {
        uchar *part_rec_buf_ptr= m_ordered_rec_buffer;
        DBUG_PRINT("info", ("partition queue_remove_all(2)"));
        queue_remove_all(&m_queue);
        DBUG_PRINT("info", ("m_part_spec.start_part: %u",
          m_part_spec.start_part));

        for (i= bitmap_get_first_set(&m_part_info->read_partitions);
             i <= m_part_spec.end_part;
             i= bitmap_get_next_set(&m_part_info->read_partitions, i),
               part_rec_buf_ptr+= m_priority_queue_rec_len)
        {
          DBUG_PRINT("info",("partition part_id: %u", i));
          if (i < m_part_spec.start_part)
          {
            DBUG_PRINT("info",("partition i < m_part_spec.start_part"));
            continue;
          }
          if (!bitmap_is_set(&m_mrr_used_partitions, i))
          {
            DBUG_PRINT("info",("partition !bitmap_is_set(&m_mrr_used_partitions, i)"));
            continue;
          }
          DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr +
                                     ORDERED_PART_NUM_OFFSET));
          DBUG_PRINT("info", ("partition m_stock_range_seq[%u]: %u",
                              i, m_stock_range_seq[i]));
          if (smallest_range_seq == m_stock_range_seq[i])
          {
            m_stock_range_seq[i]= 0;
            DBUG_PRINT("info", ("partition queue_insert(2)"));
            queue_insert(&m_queue, part_rec_buf_ptr);
            j++;
          }
        }
        while (m_mrr_range_current->id < smallest_range_seq)
          m_mrr_range_current= m_mrr_range_current->next;

        DBUG_PRINT("info",("partition m_mrr_range_current: %p",
                           m_mrr_range_current));
        DBUG_PRINT("info",("partition m_mrr_range_current->id: %u",
                           m_mrr_range_current ? m_mrr_range_current->id : 0));
        queue_set_max_at_top(&m_queue, FALSE);
        queue_set_cmp_arg(&m_queue, (void*) this);
        m_queue.elements= j;
        queue_fix(&m_queue);
        return_top_record(buf);
        DBUG_PRINT("info", ("Record returned from partition %u (4)",
                            m_top_entry));
        DBUG_RETURN(0);
      }
    }
  }
  else if (!is_next_same)
    error= file->ha_index_next(rec_buf);
  else
    error= file->ha_index_next_same(rec_buf, m_start_key.key,
                                    m_start_key.length);

  if (unlikely(error))
  {
    if (error == HA_ERR_END_OF_FILE && m_queue.elements)
    {
      /* Return next buffered row */
      DBUG_PRINT("info", ("partition queue_remove_top(3)"));
      queue_remove_top(&m_queue);
      if (m_queue.elements)
      {
         return_top_record(buf);
         DBUG_PRINT("info", ("Record returned from partition %u (2)",
                     m_top_entry));
         error= 0;
      }
    }
    DBUG_RETURN(error);
  }

  if (!m_using_extended_keys)
  {
    file->position(rec_buf);
    memcpy(rec_buf + m_rec_length, file->ref, file->ref_length);
  }

  queue_replace_top(&m_queue);
  return_top_record(buf);
  DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
  DBUG_RETURN(0);
}


/*
  Common routine to handle index_prev with ordered results

  SYNOPSIS
    handle_ordered_prev()
    out:buf                       Read row in MySQL Row Format

  RETURN VALUE
    HA_ERR_END_OF_FILE            End of scan
    0                             Success
    other                         Error code
*/

int ha_partition::handle_ordered_prev(uchar *buf)
{
  int error;
  DBUG_ENTER("ha_partition::handle_ordered_prev");
  DBUG_PRINT("enter", ("partition: %p", this));

  if (m_top_entry == NO_CURRENT_PART_ID)
    DBUG_RETURN(HA_ERR_END_OF_FILE);

  uint part_id= m_top_entry;
  uchar *rec_buf= queue_top(&m_queue) + ORDERED_REC_OFFSET;
  handler *file= m_file[part_id];

  if (unlikely((error= file->ha_index_prev(rec_buf))))
  {
    if (error == HA_ERR_END_OF_FILE && m_queue.elements)
    {
      DBUG_PRINT("info", ("partition queue_remove_top(4)"));
      queue_remove_top(&m_queue);
      if (m_queue.elements)
      {
	return_top_record(buf);
	DBUG_PRINT("info", ("Record returned from partition %u (2)",
			    m_top_entry));
        error= 0;
      }
    }
    DBUG_RETURN(error);
  }
  queue_replace_top(&m_queue);
  return_top_record(buf);
  DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
  DBUG_RETURN(0);
}


/****************************************************************************
                MODULE information calls
****************************************************************************/

/*
  These are all first approximations of the extra, info, scan_time
  and read_time calls
*/

/**
  Helper function for sorting according to number of rows in descending order.
*/

int ha_partition::compare_number_of_records(ha_partition *me,
                                            const uint32 *a,
                                            const uint32 *b)
{
  handler **file= me->m_file;
  /* Note: sorting in descending order! */
  if (file[*a]->stats.records > file[*b]->stats.records)
    return -1;
  if (file[*a]->stats.records < file[*b]->stats.records)
    return 1;
  return 0;
}


/*
  General method to gather info from handler

  SYNOPSIS
    info()
    flag              Specifies what info is requested

  RETURN VALUE
    NONE

  DESCRIPTION
    ::info() is used to return information to the optimizer.
    Currently this table handler doesn't implement most of the fields
    really needed. SHOW also makes use of this data
    Another note, if your handler doesn't provide exact record count,
    you will probably want to have the following in your code:
    if (records < 2)
      records = 2;
    The reason is that the server will optimize for cases of only a single
    record. If in a table scan you don't know the number of records
    it will probably be better to set records to two so you can return
    as many records as you need.

    Along with records a few more variables you may wish to set are:
      records
      deleted
      data_file_length
      index_file_length
      delete_length
      check_time
    Take a look at the public variables in handler.h for more information.

    Called in:
      filesort.cc
      ha_heap.cc
      item_sum.cc
      opt_sum.cc
      sql_delete.cc
     sql_delete.cc
     sql_derived.cc
      sql_select.cc
      sql_select.cc
      sql_select.cc
      sql_select.cc
      sql_select.cc
      sql_show.cc
      sql_show.cc
      sql_show.cc
      sql_show.cc
      sql_table.cc
      sql_union.cc
      sql_update.cc

    Some flags that are not implemented
      HA_STATUS_POS:
        This parameter is never used from the MySQL Server. It is checked in a
        place in MyISAM so could potentially be used by MyISAM specific
        programs.
      HA_STATUS_NO_LOCK:
      This is declared and often used. It's only used by MyISAM.
      It means that MySQL doesn't need the absolute latest statistics
      information. This may save the handler from doing internal locks while
      retrieving statistics data.
*/

int ha_partition::info(uint flag)
{
  int error;
  uint no_lock_flag= flag & HA_STATUS_NO_LOCK;
  uint extra_var_flag= flag & HA_STATUS_VARIABLE_EXTRA;
  DBUG_ENTER("ha_partition::info");

#ifndef DBUG_OFF
  if (bitmap_is_set_all(&(m_part_info->read_partitions)))
    DBUG_PRINT("info", ("All partitions are used"));
#endif /* DBUG_OFF */
  if (flag & HA_STATUS_AUTO)
  {
    bool auto_inc_is_first_in_idx= (table_share->next_number_keypart == 0);
    bool all_parts_opened= true;
    DBUG_PRINT("info", ("HA_STATUS_AUTO"));
    if (!table->found_next_number_field)
      stats.auto_increment_value= 0;
    else if (part_share->auto_inc_initialized)
    {
      lock_auto_increment();
      stats.auto_increment_value= part_share->next_auto_inc_val;
      unlock_auto_increment();
    }
    else
    {
      lock_auto_increment();
      /* to avoid two concurrent initializations, check again when locked */
      if (part_share->auto_inc_initialized)
        stats.auto_increment_value= part_share->next_auto_inc_val;
      else
      {
        /*
          The auto-inc mutex in the table_share is locked, so we do not need
          to have the handlers locked.
          HA_STATUS_NO_LOCK is not checked, since we cannot skip locking
          the mutex, because it is initialized.
        */
        handler *file, **file_array;
        ulonglong auto_increment_value= 0;
        file_array= m_file;
        DBUG_PRINT("info",
                   ("checking all partitions for auto_increment_value"));
        do
        {
          if (!bitmap_is_set(&m_opened_partitions, (uint)(file_array - m_file)))
          {
            /*
              Some partitions aren't opened.
              So we can't calculate the autoincrement.
            */
            all_parts_opened= false;
            break;
          }
          file= *file_array;
          if ((error= file->info(HA_STATUS_AUTO | no_lock_flag)))
          {
            unlock_auto_increment();
            DBUG_RETURN(error);
          }
          set_if_bigger(auto_increment_value,
                        file->stats.auto_increment_value);
        } while (*(++file_array));

        DBUG_ASSERT(auto_increment_value);
        stats.auto_increment_value= auto_increment_value;
        if (all_parts_opened && auto_inc_is_first_in_idx)
        {
          set_if_bigger(part_share->next_auto_inc_val,
                        auto_increment_value);
          if (can_use_for_auto_inc_init())
            part_share->auto_inc_initialized= true;
          DBUG_PRINT("info", ("initializing next_auto_inc_val to %lu",
                       (ulong) part_share->next_auto_inc_val));
        }
      }
      unlock_auto_increment();
    }
  }
  if (flag & HA_STATUS_VARIABLE)
  {
    uint i;
    DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
    /*
      Calculates statistical variables
      records:           Estimate of number records in table
      We report sum (always at least 2 if not empty)
      deleted:           Estimate of number holes in the table due to
      deletes
      We report sum
      data_file_length:  Length of data file, in principle bytes in table
      We report sum
      index_file_length: Length of index file, in principle bytes in
      indexes in the table
      We report sum
      delete_length: Length of free space easily used by new records in table
      We report sum
      mean_record_length:Mean record length in the table
      We calculate this
      check_time:        Time of last check (only applicable to MyISAM)
      We report last time of all underlying handlers
    */
    handler *file;
    stats.records= 0;
    stats.deleted= 0;
    stats.data_file_length= 0;
    stats.index_file_length= 0;
    stats.delete_length= 0;
    stats.check_time= 0;
    stats.checksum= 0;
    stats.checksum_null= TRUE;
    for (i= bitmap_get_first_set(&m_part_info->read_partitions);
         i < m_tot_parts;
         i= bitmap_get_next_set(&m_part_info->read_partitions, i))
    {
      file= m_file[i];
      if ((error= file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag)))
        DBUG_RETURN(error);
      stats.records+= file->stats.records;
      stats.deleted+= file->stats.deleted;
      stats.data_file_length+= file->stats.data_file_length;
      stats.index_file_length+= file->stats.index_file_length;
      stats.delete_length+= file->stats.delete_length;
      if (file->stats.check_time > stats.check_time)
        stats.check_time= file->stats.check_time;
      if (!file->stats.checksum_null)
      {
        stats.checksum+= file->stats.checksum;
        stats.checksum_null= FALSE;
      }
    }
    if (stats.records && stats.records < 2 &&
        !(m_file[0]->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT))
      stats.records= 2;
    if (stats.records > 0)
      stats.mean_rec_length= (ulong) (stats.data_file_length / stats.records);
    else
      stats.mean_rec_length= 0;
  }
  if (flag & HA_STATUS_CONST)
  {
    DBUG_PRINT("info", ("HA_STATUS_CONST"));
    /*
      Recalculate loads of constant variables. MyISAM also sets things
      directly on the table share object.

      Check whether this should be fixed since handlers should not
      change things directly on the table object.

      Monty comment: This should NOT be changed!  It's the handlers
      responsibility to correct table->s->keys_xxxx information if keys
      have been disabled.

      The most important parameters set here is records per key on
      all indexes. block_size and primar key ref_length.

      For each index there is an array of rec_per_key.
      As an example if we have an index with three attributes a,b and c
      we will have an array of 3 rec_per_key.
      rec_per_key[0] is an estimate of number of records divided by
      number of unique values of the field a.
      rec_per_key[1] is an estimate of the number of records divided
      by the number of unique combinations of the fields a and b.
      rec_per_key[2] is an estimate of the number of records divided
      by the number of unique combinations of the fields a,b and c.

      Many handlers only set the value of rec_per_key when all fields
      are bound (rec_per_key[2] in the example above).

      If the handler doesn't support statistics, it should set all of the
      above to 0.

      We first scans through all partitions to get the one holding most rows.
      We will then allow the handler with the most rows to set
      the rec_per_key and use this as an estimate on the total table.

      max_data_file_length:     Maximum data file length
      We ignore it, is only used in
      SHOW TABLE STATUS
      max_index_file_length:    Maximum index file length
      We ignore it since it is never used
      block_size:               Block size used
      We set it to the value of the first handler
      ref_length:               We set this to the value calculated
      and stored in local object
      create_time:              Creation time of table

      So we calculate these constants by using the variables from the
      handler with most rows.
    */
    handler *file, **file_array;
    ulonglong max_records= 0;
    uint32 i= 0;
    uint32 handler_instance= 0;
    bool handler_instance_set= 0;

    file_array= m_file;
    do
    {
      file= *file_array;
      if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
      {
        /* Get variables if not already done */
        if (!(flag & HA_STATUS_VARIABLE) ||
            !bitmap_is_set(&(m_part_info->read_partitions),
                           (uint) (file_array - m_file)))
          if ((error= file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag)))
            DBUG_RETURN(error);
        if (file->stats.records > max_records || !handler_instance_set)
        {
          handler_instance_set= 1;
          max_records= file->stats.records;
          handler_instance= i;
        }
      }
      i++;
    } while (*(++file_array));
    /*
      Sort the array of part_ids by number of records in
      in descending order.
    */
    my_qsort2((void*) m_part_ids_sorted_by_num_of_records,
              m_tot_parts,
              sizeof(uint32),
              (qsort2_cmp) compare_number_of_records,
              this);

    file= m_file[handler_instance];
    if ((error= file->info(HA_STATUS_CONST | no_lock_flag)))
      DBUG_RETURN(error);
    stats.block_size= file->stats.block_size;
    stats.create_time= file->stats.create_time;
    ref_length= m_ref_length;
  }
  if (flag & HA_STATUS_ERRKEY)
  {
    handler *file= m_file[m_last_part];
    DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY"));
    /*
      This flag is used to get index number of the unique index that
      reported duplicate key
      We will report the errkey on the last handler used and ignore the rest
      Note: all engines does not support HA_STATUS_ERRKEY, so set errkey.
    */
    file->errkey= errkey;
    if ((error= file->info(HA_STATUS_ERRKEY | no_lock_flag)))
      DBUG_RETURN(error);
    errkey= file->errkey;
  }
  if (flag & HA_STATUS_TIME)
  {
    handler *file, **file_array;
    DBUG_PRINT("info", ("info: HA_STATUS_TIME"));
    /*
      This flag is used to set the latest update time of the table.
      Used by SHOW commands
      We will report the maximum of these times
    */
    stats.update_time= 0;
    file_array= m_file;
    do
    {
      file= *file_array;
      if ((error= file->info(HA_STATUS_TIME | no_lock_flag)))
        DBUG_RETURN(error);
      if (file->stats.update_time > stats.update_time)
	stats.update_time= file->stats.update_time;
    } while (*(++file_array));
  }
  DBUG_RETURN(0);
}


void ha_partition::get_dynamic_partition_info(PARTITION_STATS *stat_info,
                                              uint part_id)
{
  handler *file= m_file[part_id];
  DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id));
  file->info(HA_STATUS_TIME | HA_STATUS_VARIABLE |
             HA_STATUS_VARIABLE_EXTRA | HA_STATUS_NO_LOCK);

  stat_info->records=              file->stats.records;
  stat_info->mean_rec_length=      file->stats.mean_rec_length;
  stat_info->data_file_length=     file->stats.data_file_length;
  stat_info->max_data_file_length= file->stats.max_data_file_length;
  stat_info->index_file_length=    file->stats.index_file_length;
  stat_info->max_index_file_length= file->stats.max_index_file_length;
  stat_info->delete_length=        file->stats.delete_length;
  stat_info->create_time=          file->stats.create_time;
  stat_info->update_time=          file->stats.update_time;
  stat_info->check_time=           file->stats.check_time;
  stat_info->check_sum=            file->stats.checksum;
  stat_info->check_sum_null=       file->stats.checksum_null;
}


void ha_partition::set_partitions_to_open(List<String> *partition_names)
{
  m_partitions_to_open= partition_names;
}


int ha_partition::open_read_partitions(char *name_buff, size_t name_buff_size)
{
  handler **file;
  char *name_buffer_ptr;
  int error= 0;

  name_buffer_ptr= m_name_buffer_ptr;
  file= m_file;
  m_file_sample= NULL;
  do
  {
    int n_file= (int)(file-m_file);
    int is_open= bitmap_is_set(&m_opened_partitions, n_file);
    int should_be_open= bitmap_is_set(&m_part_info->read_partitions, n_file);

    /*
      TODO: we can close some opened partitions if they're not
      used in the query. It probably should be syncronized with the
      table_open_cache value.

      if (is_open && !should_be_open)
      {
        if (unlikely((error= (*file)->ha_close())))
          goto err_handler;
        bitmap_clear_bit(&m_opened_partitions, n_file);
      }
      else
    */
    if (!is_open && should_be_open)
    {
      LEX_CSTRING save_connect_string= table->s->connect_string;
      if (unlikely((error=
                    create_partition_name(name_buff, name_buff_size,
                                          table->s->normalized_path.str,
                                          name_buffer_ptr, NORMAL_PART_NAME,
                                          FALSE))))
        goto err_handler;
      if (!((*file)->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
        table->s->connect_string= m_connect_string[(uint)(file-m_file)];
      error= (*file)->ha_open(table, name_buff, m_mode,
                              m_open_test_lock | HA_OPEN_NO_PSI_CALL);
      table->s->connect_string= save_connect_string;
      if (error)
        goto err_handler;
      bitmap_set_bit(&m_opened_partitions, n_file);
      m_last_part= n_file;
    }
    if (!m_file_sample && should_be_open)
      m_file_sample= *file;
    name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
  } while (*(++file));
  
err_handler:
  return error;
}


int ha_partition::change_partitions_to_open(List<String> *partition_names)
{
  char name_buff[FN_REFLEN+1];
  int error= 0;

  if (m_is_clone_of)
    return 0;

  m_partitions_to_open= partition_names;
  if (unlikely((error= m_part_info->set_partition_bitmaps(partition_names))))
    goto err_handler;

  if (m_lock_type != F_UNLCK)
  {
    /*
      That happens after the LOCK TABLE statement.
      Do nothing in this case.
    */
    return 0;
  }

  check_insert_or_replace_autoincrement();
  if (bitmap_cmp(&m_opened_partitions, &m_part_info->read_partitions) != 0)
    return 0;

  if (unlikely((error= read_par_file(table->s->normalized_path.str)) ||
               (error= open_read_partitions(name_buff, sizeof(name_buff)))))
    goto err_handler;

  clear_handler_file();

err_handler:
  return error;
}


static int extra_cb(handler *h, void *operation)
{
  return h->extra(*(enum ha_extra_function*)operation);
}


static int start_keyread_cb(handler* h, void *p)
{
  return h->ha_start_keyread(*(uint*)p);
}


static int end_keyread_cb(handler* h, void *unused)
{
  return h->ha_end_keyread();
}


/**
  General function to prepare handler for certain behavior.

  @param[in]    operation       operation to execute

  @return       status
    @retval     0               success
    @retval     >0              error code

  @detail

  extra() is called whenever the server wishes to send a hint to
  the storage engine. The MyISAM engine implements the most hints.

  We divide the parameters into the following categories:
  1) Operations used by most handlers
  2) Operations used by some non-MyISAM handlers
  3) Operations used only by MyISAM
  4) Operations only used by temporary tables for query processing
  5) Operations only used by MyISAM internally
  6) Operations not used at all
  7) Operations only used by federated tables for query processing
  8) Operations only used by NDB
  9) Operations only used by MERGE

  The partition handler need to handle category 1), 2) and 3).

  1) Operations used by most handlers
  -----------------------------------
  HA_EXTRA_RESET:
    This option is used by most handlers and it resets the handler state
    to the same state as after an open call. This includes releasing
    any READ CACHE or WRITE CACHE or other internal buffer used.

    It is called from the reset method in the handler interface. There are
    three instances where this is called.
    1) After completing a INSERT ... SELECT ... query the handler for the
       table inserted into is reset
    2) It is called from close_thread_table which in turn is called from
       close_thread_tables except in the case where the tables are locked
       in which case ha_commit_stmt is called instead.
       It is only called from here if refresh_version hasn't changed and the
       table is not an old table when calling close_thread_table.
       close_thread_tables is called from many places as a general clean up
       function after completing a query.
    3) It is called when deleting the QUICK_RANGE_SELECT object if the
       QUICK_RANGE_SELECT object had its own handler object. It is called
       immediately before close of this local handler object.
  HA_EXTRA_KEYREAD:
  HA_EXTRA_NO_KEYREAD:
    These parameters are used to provide an optimisation hint to the handler.
    If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for
    many handlers this means that the index-only scans can be used and it
    is not necessary to use the real records to satisfy this part of the
    query. Index-only scans is a very important optimisation for disk-based
    indexes. For main-memory indexes most indexes contain a reference to the
    record and thus KEYREAD only says that it is enough to read key fields.
    HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET
    will disable this option.
    The handler will set HA_KEYREAD_ONLY in its table flags to indicate this
    feature is supported.
  HA_EXTRA_FLUSH:
    Indication to flush tables to disk, is supposed to be used to
    ensure disk based tables are flushed at end of query execution.
    Currently is never used.

  HA_EXTRA_FORCE_REOPEN:
    Only used by MyISAM and Archive, called when altering table,
    closing tables to enforce a reopen of the table files.

  2) Operations used by some non-MyISAM handlers
  ----------------------------------------------
  HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
    This is a strictly InnoDB feature that is more or less undocumented.
    When it is activated InnoDB copies field by field from its fetch
    cache instead of all fields in one memcpy. Have no idea what the
    purpose of this is.
    Cut from include/my_base.h:
    When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep
    other fields intact. When this is off (by default) InnoDB will use memcpy
    to overwrite entire row.
  HA_EXTRA_IGNORE_DUP_KEY:
  HA_EXTRA_NO_IGNORE_DUP_KEY:
    Informs the handler to we will not stop the transaction if we get an
    duplicate key errors during insert/update.
    Always called in pair, triggered by INSERT IGNORE and other similar
    SQL constructs.
    Not used by MyISAM.

  3) Operations used only by MyISAM
  ---------------------------------
  HA_EXTRA_NORMAL:
    Only used in MyISAM to reset quick mode, not implemented by any other
    handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET.

    It is called after completing a successful DELETE query if the QUICK
    option is set.

  HA_EXTRA_QUICK:
    When the user does DELETE QUICK FROM table where-clause; this extra
    option is called before the delete query is performed and
    HA_EXTRA_NORMAL is called after the delete query is completed.
    Temporary tables used internally in MySQL always set this option

    The meaning of quick mode is that when deleting in a B-tree no merging
    of leafs is performed. This is a common method and many large DBMS's
    actually only support this quick mode since it is very difficult to
    merge leaves in a tree used by many threads concurrently.

  HA_EXTRA_CACHE:
    This flag is usually set with extra_opt along with a cache size.
    The size of this buffer is set by the user variable
    record_buffer_size. The value of this cache size is the amount of
    data read from disk in each fetch when performing a table scan.
    This means that before scanning a table it is normal to call
    extra with HA_EXTRA_CACHE and when the scan is completed to call
    HA_EXTRA_NO_CACHE to release the cache memory.

    Some special care is taken when using this extra parameter since there
    could be a write ongoing on the table in the same statement. In this
    one has to take special care since there might be a WRITE CACHE as
    well. HA_EXTRA_CACHE specifies using a READ CACHE and using
    READ CACHE and WRITE CACHE at the same time is not possible.

    Only MyISAM currently use this option.

    It is set when doing full table scans using rr_sequential and
    reset when completing such a scan with end_read_record
    (resetting means calling extra with HA_EXTRA_NO_CACHE).

    It is set in filesort.cc for MyISAM internal tables and it is set in
    a multi-update where HA_EXTRA_CACHE is called on a temporary result
    table and after that ha_rnd_init(0) on table to be updated
    and immediately after that HA_EXTRA_NO_CACHE on table to be updated.

    Apart from that it is always used from init_read_record but not when
    used from UPDATE statements. It is not used from DELETE statements
    with ORDER BY and LIMIT but it is used in normal scan loop in DELETE
    statements. The reason here is that DELETE's in MyISAM doesn't move
    existings data rows.

    It is also set in copy_data_between_tables when scanning the old table
    to copy over to the new table.
    And it is set in join_init_read_record where quick objects are used
    to perform a scan on the table. In this case the full table scan can
    even be performed multiple times as part of the nested loop join.

    For purposes of the partition handler it is obviously necessary to have
    special treatment of this extra call. If we would simply pass this
    extra call down to each handler we would allocate
    cache size * no of partitions amount of memory and this is not
    necessary since we will only scan one partition at a time when doing
    full table scans.

    Thus we treat it by first checking whether we have MyISAM handlers in
    the table, if not we simply ignore the call and if we have we will
    record the call but will not call any underlying handler yet. Then
    when performing the sequential scan we will check this recorded value
    and call extra_opt whenever we start scanning a new partition.

  HA_EXTRA_NO_CACHE:
    When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the
    flush method in the select_union class.
    It is used to some extent when insert delayed inserts.
    See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows().

    It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers
    if they are MyISAM handlers. Other handlers we can ignore the call
    for. If no cache is in use they will quickly return after finding
    this out. And we also ensure that all caches are disabled and no one
    is left by mistake.
    In the future this call will probably be deleted and we will instead call
    ::reset();

  HA_EXTRA_WRITE_CACHE:
    See above, called from various places. It is mostly used when we
    do INSERT ... SELECT
    No special handling to save cache space is developed currently.

  HA_EXTRA_PREPARE_FOR_UPDATE:
    This is called as part of a multi-table update. When the table to be
    updated is also scanned then this informs MyISAM handler to drop any
    caches if dynamic records are used (fixed size records do not care
    about this call). We pass this along to the first partition to scan, and
    flag that it is to be called after HA_EXTRA_CACHE when moving to the next
    partition to scan.

  HA_EXTRA_PREPARE_FOR_DROP:
    Only used by MyISAM, called in preparation for a DROP TABLE.
    It's used mostly by Windows that cannot handle dropping an open file.
    On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN.

  HA_EXTRA_PREPARE_FOR_RENAME:
    Informs the handler we are about to attempt a rename of the table.
    For handlers that have share open files (MyISAM key-file and
    Archive writer) they must close the files before rename is possible
    on Windows.

  HA_EXTRA_READCHECK:
  HA_EXTRA_NO_READCHECK:
    Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that
    this is not needed in SQL. The reason for this call is that MyISAM sets
    the READ_CHECK_USED in the open call so the call is needed for MyISAM
    to reset this feature.
    The idea with this parameter was to inform of doing/not doing a read
    check before applying an update. Since SQL always performs a read before
    applying the update No Read Check is needed in MyISAM as well.

    This is a cut from Docs/myisam.txt
     Sometimes you might want to force an update without checking whether
     another user has changed the record since you last read it. This is
     somewhat dangerous, so it should ideally not be used. That can be
     accomplished by wrapping the mi_update() call in two calls to mi_extra(),
     using these functions:
     HA_EXTRA_NO_READCHECK=5                 No readcheck on update
     HA_EXTRA_READCHECK=6                    Use readcheck (def)

  HA_EXTRA_REMEMBER_POS:
  HA_EXTRA_RESTORE_POS:
    System versioning needs this for MyISAM and Aria tables.
    On DELETE using PRIMARY KEY:
    1) handler::ha_index_read_map() saves rowid used for row delete/update
    2) handler::ha_update_row() can rewrite saved rowid
    3) handler::ha_delete_row()/handler::ha_update_row() expects saved but got
       different rowid and operation fails
    Using those flags prevents harmful side effect of 2)

  4) Operations only used by temporary tables for query processing
  ----------------------------------------------------------------
  HA_EXTRA_RESET_STATE:
    Same as reset() except that buffers are not released. If there is
    a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading
    or to change type of cache between READ CACHE and WRITE CACHE.

    This extra function is always called immediately before calling
    delete_all_rows on the handler for temporary tables.
    There are cases however when HA_EXTRA_RESET_STATE isn't called in
    a similar case for a temporary table in sql_union.cc and in two other
    cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE
    called afterwards.
    The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means
    disable caching, delete all rows and enable WRITE CACHE. This is
    used for temporary tables containing distinct sums and a
    functional group.

    The only case that delete_all_rows is called on non-temporary tables
    is in sql_delete.cc when DELETE FROM table; is called by a user.
    In this case no special extra calls are performed before or after this
    call.

    The partition handler should not need to bother about this one. It
    should never be called.

  HA_EXTRA_NO_ROWS:
    Don't insert rows indication to HEAP and MyISAM, only used by temporary
    tables used in query processing.
    Not handled by partition handler.

  5) Operations only used by MyISAM internally
  --------------------------------------------
  HA_EXTRA_REINIT_CACHE:
    This call reinitializes the READ CACHE described above if there is one
    and otherwise the call is ignored.

    We can thus safely call it on all underlying handlers if they are
    MyISAM handlers. It is however never called so we don't handle it at all.
  HA_EXTRA_FLUSH_CACHE:
    Flush WRITE CACHE in MyISAM. It is only from one place in the code.
    This is in sql_insert.cc where it is called if the table_flags doesn't
    contain HA_DUPLICATE_POS. The only handler having the HA_DUPLICATE_POS
    set is the MyISAM handler and so the only handler not receiving this
    call is MyISAM.
    Thus in effect this call is called but never used. Could be removed
    from sql_insert.cc
  HA_EXTRA_NO_USER_CHANGE:
    Only used by MyISAM, never called.
    Simulates lock_type as locked.
  HA_EXTRA_WAIT_LOCK:
  HA_EXTRA_WAIT_NOLOCK:
    Only used by MyISAM, called from MyISAM handler but never from server
    code on top of the handler.
    Sets lock_wait on/off
  HA_EXTRA_NO_KEYS:
    Only used MyISAM, only used internally in MyISAM handler, never called
    from server level.
  HA_EXTRA_KEYREAD_CHANGE_POS:
  HA_EXTRA_PRELOAD_BUFFER_SIZE:
  HA_EXTRA_CHANGE_KEY_TO_DUP:
  HA_EXTRA_CHANGE_KEY_TO_UNIQUE:
    Only used by MyISAM, never called.

  6) Operations not used at all
  -----------------------------
  HA_EXTRA_KEY_CACHE:
  HA_EXTRA_NO_KEY_CACHE:
    This parameters are no longer used and could be removed.

  7) Operations only used by federated tables for query processing
  ----------------------------------------------------------------
  HA_EXTRA_INSERT_WITH_UPDATE:
    Inform handler that an "INSERT...ON DUPLICATE KEY UPDATE" will be
    executed. This condition is unset by HA_EXTRA_NO_IGNORE_DUP_KEY.

  8) Operations only used by NDB
  ------------------------------
  HA_EXTRA_DELETE_CANNOT_BATCH:
  HA_EXTRA_UPDATE_CANNOT_BATCH:
    Inform handler that delete_row()/update_row() cannot batch deletes/updates
    and should perform them immediately. This may be needed when table has
    AFTER DELETE/UPDATE triggers which access to subject table.
    These flags are reset by the handler::extra(HA_EXTRA_RESET) call.

  9) Operations only used by MERGE
  ------------------------------
  HA_EXTRA_ADD_CHILDREN_LIST:
  HA_EXTRA_ATTACH_CHILDREN:
  HA_EXTRA_IS_ATTACHED_CHILDREN:
  HA_EXTRA_DETACH_CHILDREN:
    Special actions for MERGE tables. Ignore.
*/

int ha_partition::extra(enum ha_extra_function operation)
{
  DBUG_ENTER("ha_partition:extra");
  DBUG_PRINT("enter", ("operation: %d", (int) operation));

  switch (operation) {
    /* Category 1), used by most handlers */
  case HA_EXTRA_NO_KEYREAD:
    DBUG_RETURN(loop_partitions(end_keyread_cb, NULL));
  case HA_EXTRA_KEYREAD:
  case HA_EXTRA_FLUSH:
  case HA_EXTRA_PREPARE_FOR_FORCED_CLOSE:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  case HA_EXTRA_PREPARE_FOR_RENAME:
  case HA_EXTRA_FORCE_REOPEN:
    DBUG_RETURN(loop_extra_alter(operation));
    break;

    /* Category 2), used by non-MyISAM handlers */
  case HA_EXTRA_IGNORE_DUP_KEY:
  case HA_EXTRA_NO_IGNORE_DUP_KEY:
  case HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
  {
    if (!m_myisam)
      DBUG_RETURN(loop_partitions(extra_cb, &operation));
  }
  break;

  /* Category 3), used by MyISAM handlers */
  case HA_EXTRA_PREPARE_FOR_UPDATE:
    /*
      Needs to be run on the first partition in the range now, and
      later in late_extra_cache, when switching to a new partition to scan.
    */
    m_extra_prepare_for_update= TRUE;
    if (m_part_spec.start_part != NO_CURRENT_PART_ID)
    {
      if (!m_extra_cache)
        m_extra_cache_part_id= m_part_spec.start_part;
      DBUG_ASSERT(m_extra_cache_part_id == m_part_spec.start_part);
      (void) m_file[m_part_spec.start_part]->extra(HA_EXTRA_PREPARE_FOR_UPDATE);
    }
    break;
  case HA_EXTRA_NORMAL:
  case HA_EXTRA_QUICK:
  case HA_EXTRA_PREPARE_FOR_DROP:
  case HA_EXTRA_FLUSH_CACHE:
  case HA_EXTRA_PREPARE_FOR_ALTER_TABLE:
  case HA_EXTRA_REMEMBER_POS:
  case HA_EXTRA_RESTORE_POS:
  {
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  }
  case HA_EXTRA_NO_READCHECK:
  {
    /*
      This is only done as a part of ha_open, which is also used in
      ha_partition::open, so no need to do anything.
    */
    break;
  }
  case HA_EXTRA_CACHE:
  {
    prepare_extra_cache(0);
    break;
  }
  case HA_EXTRA_NO_CACHE:
  {
    int ret= 0;
    if (m_extra_cache_part_id != NO_CURRENT_PART_ID)
      ret= m_file[m_extra_cache_part_id]->extra(HA_EXTRA_NO_CACHE);
    m_extra_cache= FALSE;
    m_extra_cache_size= 0;
    m_extra_prepare_for_update= FALSE;
    m_extra_cache_part_id= NO_CURRENT_PART_ID;
    DBUG_RETURN(ret);
  }
  case HA_EXTRA_WRITE_CACHE:
  {
    m_extra_cache= FALSE;
    m_extra_cache_size= 0;
    m_extra_prepare_for_update= FALSE;
    m_extra_cache_part_id= NO_CURRENT_PART_ID;
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  }
  case HA_EXTRA_IGNORE_NO_KEY:
  case HA_EXTRA_NO_IGNORE_NO_KEY:
  {
    /*
      Ignore as these are specific to NDB for handling
      idempotency
     */
    break;
  }
  case HA_EXTRA_WRITE_CAN_REPLACE:
  case HA_EXTRA_WRITE_CANNOT_REPLACE:
  {
    /*
      Informs handler that write_row() can replace rows which conflict
      with row being inserted by PK/unique key without reporting error
      to the SQL-layer.

      At this time, this is safe by limitation of ha_partition
    */
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  }
    /* Category 7), used by federated handlers */
  case HA_EXTRA_INSERT_WITH_UPDATE:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
    /* Category 8) Operations only used by NDB */
  case HA_EXTRA_DELETE_CANNOT_BATCH:
  case HA_EXTRA_UPDATE_CANNOT_BATCH:
  {
    /* Currently only NDB use the *_CANNOT_BATCH */
    break;
  }
    /* Category 9) Operations only used by MERGE */
  case HA_EXTRA_ADD_CHILDREN_LIST:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  case HA_EXTRA_ATTACH_CHILDREN:
  {
    int result;
    uint num_locks;
    handler **file;
    if ((result= loop_partitions(extra_cb, &operation)))
      DBUG_RETURN(result);

    /* Recalculate lock count as each child may have different set of locks */
    num_locks= 0;
    file= m_file;
    do
    {
      num_locks+= (*file)->lock_count();
    } while (*(++file));

    m_num_locks= num_locks;
    break;
  }
  case HA_EXTRA_IS_ATTACHED_CHILDREN:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  case HA_EXTRA_DETACH_CHILDREN:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  case HA_EXTRA_MARK_AS_LOG_TABLE:
  /*
    http://dev.mysql.com/doc/refman/5.1/en/partitioning-limitations.html
    says we no longer support logging to partitioned tables, so we fail
    here.
  */
    DBUG_RETURN(ER_UNSUPORTED_LOG_ENGINE);
  case HA_EXTRA_STARTING_ORDERED_INDEX_SCAN:
  case HA_EXTRA_BEGIN_ALTER_COPY:
  case HA_EXTRA_END_ALTER_COPY:
  case HA_EXTRA_IGNORE_INSERT:
    DBUG_RETURN(loop_partitions(extra_cb, &operation));
  default:
  {
    /* Temporary crash to discover what is wrong */
    DBUG_ASSERT(0);
    break;
  }
  }
  DBUG_RETURN(1);
}


/**
  Special extra call to reset extra parameters

  @return Operation status.
    @retval >0 Error code
    @retval 0  Success

  @note Called at end of each statement to reset buffers.
  To avoid excessive calls, the m_partitions_to_reset bitmap keep records
  of which partitions that have been used in extra(), external_lock() or
  start_stmt() and is needed to be called.
*/

int ha_partition::reset(void)
{
  int result= 0;
  int tmp;
  uint i;
  DBUG_ENTER("ha_partition::reset");

  for (i= bitmap_get_first_set(&m_partitions_to_reset);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_partitions_to_reset, i))
  {
    if (bitmap_is_set(&m_opened_partitions, i) &&
        (tmp= m_file[i]->ha_reset()))
      result= tmp;
  }
  bitmap_clear_all(&m_partitions_to_reset);
  m_extra_prepare_for_update= FALSE;
  DBUG_RETURN(result);
}

/**
  Special extra method with additional parameter
  See @ref ha_partition::extra

  @param[in]    operation       operation to execute
  @param[in]    arg             extra argument

  @return       status
    @retval     0               success
    @retval     >0              error code

  @detail
    Operations supported by extra_opt:
    HA_EXTRA_KEYREAD:
      arg is interpreted as key index
    HA_EXTRA_CACHE:
      arg is interpreted as size of cache in full table scan

    For detailed description refer to @ref ha_partition::extra
*/

int ha_partition::extra_opt(enum ha_extra_function operation, ulong arg)
{
  DBUG_ENTER("ha_partition::extra_opt");

  switch (operation)
  {
    case HA_EXTRA_KEYREAD:
      DBUG_RETURN(loop_partitions(start_keyread_cb, &arg));
    case HA_EXTRA_CACHE:
      prepare_extra_cache(arg);
      DBUG_RETURN(0);
    default:
      DBUG_ASSERT(0);
  }
  DBUG_RETURN(1);
}


/*
  Call extra on handler with HA_EXTRA_CACHE and cachesize

  SYNOPSIS
    prepare_extra_cache()
    cachesize                Size of cache for full table scan

  RETURN VALUE
    NONE
*/

void ha_partition::prepare_extra_cache(uint cachesize)
{
  DBUG_ENTER("ha_partition::prepare_extra_cache");
  DBUG_PRINT("enter", ("cachesize %u", cachesize));

  m_extra_cache= TRUE;
  m_extra_cache_size= cachesize;
  if (m_part_spec.start_part != NO_CURRENT_PART_ID)
  {
    DBUG_ASSERT(bitmap_is_set(&m_partitions_to_reset,
                              m_part_spec.start_part));
    bitmap_set_bit(&m_partitions_to_reset, m_part_spec.start_part);
    late_extra_cache(m_part_spec.start_part);
  }
  DBUG_VOID_RETURN;
}


/**
  Prepares our new and reorged handlers for rename or delete.

  @param operation Operation to forward

  @return Operation status
    @retval 0  Success
    @retval !0 Error
*/

int ha_partition::loop_extra_alter(enum ha_extra_function operation)
{
  int result= 0, tmp;
  handler **file;
  DBUG_ENTER("ha_partition::loop_extra_alter");
  DBUG_ASSERT(operation == HA_EXTRA_PREPARE_FOR_RENAME ||
              operation == HA_EXTRA_FORCE_REOPEN);

  if (m_new_file != NULL)
  {
    for (file= m_new_file; *file; file++)
      if ((tmp= (*file)->extra(operation)))
        result= tmp;
  }
  if (m_reorged_file != NULL)
  {
    for (file= m_reorged_file; *file; file++)
      if ((tmp= (*file)->extra(operation)))
        result= tmp;
  }
  if ((tmp= loop_partitions(extra_cb, &operation)))
    result= tmp;
  DBUG_RETURN(result);
}


/**
  Call callback(part, param) on all partitions

    @param callback                 a callback to call for each partition
    @param param                    a void*-parameter passed to callback

    @return Operation status
      @retval >0                    Error code
      @retval 0                     Success
*/

int ha_partition::loop_partitions(handler_callback callback, void *param)
{
  int result= 0, tmp;
  uint i;
  DBUG_ENTER("ha_partition::loop_partitions");

  for (i= bitmap_get_first_set(&m_part_info->lock_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
  {
    /*
      This can be called after an error in ha_open.
      In this case calling 'extra' can crash.
    */
    if (bitmap_is_set(&m_opened_partitions, i) &&
        (tmp= callback(m_file[i], param)))
      result= tmp;
  }
  /* Add all used partitions to be called in reset(). */
  bitmap_union(&m_partitions_to_reset, &m_part_info->lock_partitions);
  DBUG_RETURN(result);
}


/*
  Call extra(HA_EXTRA_CACHE) on next partition_id

  SYNOPSIS
    late_extra_cache()
    partition_id               Partition id to call extra on

  RETURN VALUE
    NONE
*/

void ha_partition::late_extra_cache(uint partition_id)
{
  handler *file;
  DBUG_ENTER("ha_partition::late_extra_cache");
  DBUG_PRINT("enter", ("extra_cache %u prepare %u partid %u size %u",
                       m_extra_cache, m_extra_prepare_for_update,
                       partition_id, m_extra_cache_size));

  if (!m_extra_cache && !m_extra_prepare_for_update)
    DBUG_VOID_RETURN;
  file= m_file[partition_id];
  if (m_extra_cache)
  {
    if (m_extra_cache_size == 0)
      (void) file->extra(HA_EXTRA_CACHE);
    else
      (void) file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size);
  }
  if (m_extra_prepare_for_update)
  {
    (void) file->extra(HA_EXTRA_PREPARE_FOR_UPDATE);
  }
  m_extra_cache_part_id= partition_id;
  DBUG_VOID_RETURN;
}


/*
  Call extra(HA_EXTRA_NO_CACHE) on next partition_id

  SYNOPSIS
    late_extra_no_cache()
    partition_id               Partition id to call extra on

  RETURN VALUE
    NONE
*/

void ha_partition::late_extra_no_cache(uint partition_id)
{
  handler *file;
  DBUG_ENTER("ha_partition::late_extra_no_cache");

  if (!m_extra_cache && !m_extra_prepare_for_update)
    DBUG_VOID_RETURN;
  file= m_file[partition_id];
  (void) file->extra(HA_EXTRA_NO_CACHE);
  DBUG_ASSERT(partition_id == m_extra_cache_part_id);
  m_extra_cache_part_id= NO_CURRENT_PART_ID;
  DBUG_VOID_RETURN;
}


/****************************************************************************
                MODULE optimiser support
****************************************************************************/

/**
  Get keys to use for scanning.

  @return key_map of keys usable for scanning

  @note No need to use read_partitions here, since it does not depend on
  which partitions is used, only which storage engine used.
*/

const key_map *ha_partition::keys_to_use_for_scanning()
{
  DBUG_ENTER("ha_partition::keys_to_use_for_scanning");
  DBUG_RETURN(get_open_file_sample()->keys_to_use_for_scanning());
}


/**
  Minimum number of rows to base optimizer estimate on.
*/

ha_rows ha_partition::min_rows_for_estimate()
{
  uint i, max_used_partitions, tot_used_partitions;
  DBUG_ENTER("ha_partition::min_rows_for_estimate");

  tot_used_partitions= bitmap_bits_set(&m_part_info->read_partitions);

  /*
    All partitions might have been left as unused during partition pruning
    due to, for example, an impossible WHERE condition. Nonetheless, the
    optimizer might still attempt to perform (e.g. range) analysis where an
    estimate of the the number of rows is calculated using records_in_range.
    Hence, to handle this and other possible cases, use zero as the minimum
    number of rows to base the estimate on if no partition is being used.
  */
  if (!tot_used_partitions)
    DBUG_RETURN(0);

  /*
    Allow O(log2(tot_partitions)) increase in number of used partitions.
    This gives O(tot_rows/log2(tot_partitions)) rows to base the estimate on.
    I.e when the total number of partitions doubles, allow one more
    partition to be checked.
  */
  i= 2;
  max_used_partitions= 1;
  while (i < m_tot_parts)
  {
    max_used_partitions++;
    i= i << 1;
  }
  if (max_used_partitions > tot_used_partitions)
    max_used_partitions= tot_used_partitions;

  /* stats.records is already updated by the info(HA_STATUS_VARIABLE) call. */
  DBUG_PRINT("info", ("max_used_partitions: %u tot_rows: %lu",
                      max_used_partitions,
                      (ulong) stats.records));
  DBUG_PRINT("info", ("tot_used_partitions: %u min_rows_to_check: %lu",
                      tot_used_partitions,
                      (ulong) stats.records * max_used_partitions
                              / tot_used_partitions));
  DBUG_RETURN(stats.records * max_used_partitions / tot_used_partitions);
}


/**
  Get the biggest used partition.

  Starting at the N:th biggest partition and skips all non used
  partitions, returning the biggest used partition found

  @param[in,out] part_index  Skip the *part_index biggest partitions

  @return The biggest used partition with index not lower than *part_index.
    @retval NO_CURRENT_PART_ID     No more partition used.
    @retval != NO_CURRENT_PART_ID  partition id of biggest used partition with
                                   index >= *part_index supplied. Note that
                                   *part_index will be updated to the next
                                   partition index to use.
*/

uint ha_partition::get_biggest_used_partition(uint *part_index)
{
  uint part_id;
  while ((*part_index) < m_tot_parts)
  {
    part_id= m_part_ids_sorted_by_num_of_records[(*part_index)++];
    if (bitmap_is_set(&m_part_info->read_partitions, part_id))
      return part_id;
  }
  return NO_CURRENT_PART_ID;
}


/*
  Return time for a scan of the table

  SYNOPSIS
    scan_time()

  RETURN VALUE
    time for scan
*/

IO_AND_CPU_COST ha_partition::scan_time()
{
  IO_AND_CPU_COST scan_time= {0,0};
  uint i;
  DBUG_ENTER("ha_partition::scan_time");

  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    IO_AND_CPU_COST cost= m_file[i]->scan_time();
    scan_time.io+=  cost.io;
    scan_time.cpu+= cost.cpu;
  }
  if (m_tot_parts)
  {
    /*
      Add TABLE_SCAN_SETUP_COST for partitions to make cost similar to
      in ha_scan_time()
    */
    scan_time.cpu+= TABLE_SCAN_SETUP_COST * (m_tot_parts - 1);
  }
  DBUG_RETURN(scan_time);
}


/**
  @brief
  Caculate time to scan the given index (index only scan)

  @param inx      Index number to scan

  @return time for scanning index inx
*/

IO_AND_CPU_COST ha_partition::key_scan_time(uint inx, ha_rows rows)
{
  IO_AND_CPU_COST scan_time= {0,0};
  uint i;
  uint partitions= bitmap_bits_set(&m_part_info->read_partitions);
  ha_rows rows_per_part;
  DBUG_ENTER("ha_partition::key_scan_time");

  if (partitions == 0)
    DBUG_RETURN(scan_time);
  set_if_bigger(rows, 1);
  rows_per_part= (rows + partitions - 1)/partitions;

  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    IO_AND_CPU_COST cost= m_file[i]->key_scan_time(inx, rows_per_part);
    scan_time.io+=  cost.io;
    scan_time.cpu+= cost.cpu;
  }
  DBUG_RETURN(scan_time);
}


IO_AND_CPU_COST ha_partition::keyread_time(uint inx, ulong ranges, ha_rows rows,
                                           ulonglong blocks)
{
  IO_AND_CPU_COST read_time= {0,0};
  uint i;
  uint partitions= bitmap_bits_set(&m_part_info->read_partitions);
  DBUG_ENTER("ha_partition::keyread_time");
  if (partitions == 0)
    DBUG_RETURN(read_time);

  ha_rows rows_per_part= (rows + partitions - 1)/partitions;
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    IO_AND_CPU_COST cost= m_file[i]->keyread_time(inx, ranges, rows_per_part,
                                                  blocks);
    read_time.io+= cost.io;
    read_time.cpu+= cost.cpu;
  }
  /* Add that we have to do a key lookup for all ranges in all partitions */
  read_time.cpu= (partitions-1) * ranges * KEY_LOOKUP_COST;
  DBUG_RETURN(read_time);
}


IO_AND_CPU_COST ha_partition::rnd_pos_time(ha_rows rows)
{
  IO_AND_CPU_COST read_time= {0,0};
  uint i;
  uint partitions= bitmap_bits_set(&m_part_info->read_partitions);
  if (partitions == 0)
    return read_time;

  ha_rows rows_per_part= (rows + partitions - 1)/partitions;
  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    IO_AND_CPU_COST cost= m_file[i]->rnd_pos_time(rows_per_part);
    read_time.io+=  cost.io;
    read_time.cpu+= cost.cpu;
  }
  return read_time;
}


/**
  Find number of records in a range.
  @param inx      Index number
  @param min_key  Start of range
  @param max_key  End of range

  @return Number of rows in range.

  Given a starting key, and an ending key estimate the number of rows that
  will exist between the two. max_key may be empty which in case determine
  if start_key matches any rows.
*/

ha_rows ha_partition::records_in_range(uint inx, const key_range *min_key,
				       const key_range *max_key,
                                       page_range *pages)
{
  ha_rows min_rows_to_check, rows, estimated_rows=0, checked_rows= 0;
  uint partition_index= 0, part_id;
  page_range ignore_pages;
  DBUG_ENTER("ha_partition::records_in_range");

  /* Don't calculate pages of more than one active partition */
  if (bitmap_bits_set(&m_part_info->read_partitions) != 1)
    pages= &ignore_pages;

  min_rows_to_check= min_rows_for_estimate();

  while ((part_id= get_biggest_used_partition(&partition_index))
         != NO_CURRENT_PART_ID)
  {
    rows= m_file[part_id]->records_in_range(inx, min_key, max_key, pages);

    DBUG_PRINT("info", ("part %u match %lu rows of %lu", part_id, (ulong) rows,
                        (ulong) m_file[part_id]->stats.records));

    if (rows == HA_POS_ERROR)
      DBUG_RETURN(HA_POS_ERROR);
    estimated_rows+= rows;
    checked_rows+= m_file[part_id]->stats.records;
    /*
      Returning 0 means no rows can be found, so we must continue
      this loop as long as we have estimated_rows == 0.
      Also many engines return 1 to indicate that there may exist
      a matching row, we do not normalize this by dividing by number of
      used partitions, but leave it to be returned as a sum, which will
      reflect that we will need to scan each partition's index.

      Note that this statistics may not always be correct, so we must
      continue even if the current partition has 0 rows, since we might have
      deleted rows from the current partition, or inserted to the next
      partition.
    */
    if (estimated_rows && checked_rows &&
        checked_rows >= min_rows_to_check)
    {
      /* We cannot use page ranges when there is more than one partion */
      *pages= unused_page_range;
      DBUG_PRINT("info",
                 ("records_in_range(inx %u): %lu (%lu * %lu / %lu)",
                  inx,
                  (ulong) (estimated_rows * stats.records / checked_rows),
                  (ulong) estimated_rows,
                  (ulong) stats.records,
                  (ulong) checked_rows));
      DBUG_RETURN(estimated_rows * stats.records / checked_rows);
    }
  }
  DBUG_PRINT("info", ("records_in_range(inx %u): %lu",
                      inx,
                      (ulong) estimated_rows));
  /* We cannot use page ranges when there is more than one partion */
  *pages= unused_page_range;
  DBUG_RETURN(estimated_rows);
}


/**
  Estimate upper bound of number of rows.

  @return Number of rows.
*/

ha_rows ha_partition::estimate_rows_upper_bound()
{
  ha_rows rows, tot_rows= 0;
  handler **file= m_file;
  DBUG_ENTER("ha_partition::estimate_rows_upper_bound");

  do
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
    {
      rows= (*file)->estimate_rows_upper_bound();
      if (rows == HA_POS_ERROR)
        DBUG_RETURN(HA_POS_ERROR);
      tot_rows+= rows;
    }
  } while (*(++file));
  DBUG_RETURN(tot_rows);
}


/**
  Number of rows in table. see handler.h

  @return Number of records in the table (after pruning!)
*/

ha_rows ha_partition::records()
{
  ha_rows tot_rows= 0;
  uint i;
  DBUG_ENTER("ha_partition::records");

  for (i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
  {
    if (unlikely(m_file[i]->pre_records()))
      DBUG_RETURN(HA_POS_ERROR);
    const ha_rows rows= m_file[i]->records();
    if (unlikely(rows == HA_POS_ERROR))
      DBUG_RETURN(HA_POS_ERROR);
    tot_rows+= rows;
  }
  DBUG_PRINT("exit", ("records: %lld", (longlong) tot_rows));
  DBUG_RETURN(tot_rows);
}


/*
  Is it ok to switch to a new engine for this table

  SYNOPSIS
    can_switch_engine()

  RETURN VALUE
    TRUE                  Ok
    FALSE                 Not ok

  DESCRIPTION
    Used to ensure that tables with foreign key constraints are not moved
    to engines without foreign key support.
*/

bool ha_partition::can_switch_engines()
{
  handler **file;
  DBUG_ENTER("ha_partition::can_switch_engines");

  file= m_file;
  do
  {
    if (!(*file)->can_switch_engines())
      DBUG_RETURN(FALSE);
  } while (*(++file));
  DBUG_RETURN(TRUE);
}


/*
  Is table cache supported

  SYNOPSIS
    table_cache_type()

*/

uint8 ha_partition::table_cache_type()
{
  DBUG_ENTER("ha_partition::table_cache_type");

  DBUG_RETURN(get_open_file_sample()->table_cache_type());
}


/**
  Calculate hash value for KEY partitioning using an array of fields.

  @param field_array   An array of the fields in KEY partitioning

  @return hash_value calculated

  @note Uses the hash function on the character set of the field.
  Integer and floating point fields use the binary character set by default.
*/

uint32 ha_partition::calculate_key_hash_value(Field **field_array)
{
  Hasher hasher;
  bool use_51_hash;
  use_51_hash= MY_TEST((*field_array)->table->part_info->key_algorithm ==
                       partition_info::KEY_ALGORITHM_51);

  do
  {
    Field *field= *field_array;
    if (use_51_hash)
    {
      switch (field->real_type()) {
      case MYSQL_TYPE_TINY:
      case MYSQL_TYPE_SHORT:
      case MYSQL_TYPE_LONG:
      case MYSQL_TYPE_FLOAT:
      case MYSQL_TYPE_DOUBLE:
      case MYSQL_TYPE_NEWDECIMAL:
      case MYSQL_TYPE_TIMESTAMP:
      case MYSQL_TYPE_LONGLONG:
      case MYSQL_TYPE_INT24:
      case MYSQL_TYPE_TIME:
      case MYSQL_TYPE_DATETIME:
      case MYSQL_TYPE_YEAR:
      case MYSQL_TYPE_NEWDATE:
        {
          if (field->is_null())
          {
            hasher.add_null();
            continue;
          }
          /* Force this to my_hash_sort_bin, which was used in 5.1! */
          uint len= field->pack_length();
          hasher.add(&my_charset_bin, field->ptr, len);
          /* Done with this field, continue with next one. */
          continue;
        }
      case MYSQL_TYPE_STRING:
      case MYSQL_TYPE_VARCHAR:
      case MYSQL_TYPE_BIT:
        /* Not affected, same in 5.1 and 5.5 */
        break;
      /*
        ENUM/SET uses my_hash_sort_simple in 5.1 (i.e. my_charset_latin1)
        and my_hash_sort_bin in 5.5!
      */
      case MYSQL_TYPE_ENUM:
      case MYSQL_TYPE_SET:
        {
          if (field->is_null())
          {
            hasher.add_null();
            continue;
          }
          /* Force this to my_hash_sort_bin, which was used in 5.1! */
          uint len= field->pack_length();
          hasher.add(&my_charset_latin1, field->ptr, len);
          continue;
        }
      /* New types in mysql-5.6. */
      case MYSQL_TYPE_DATETIME2:
      case MYSQL_TYPE_TIME2:
      case MYSQL_TYPE_TIMESTAMP2:
        /* Not affected, 5.6+ only! */
        break;

      /* These types should not be allowed for partitioning! */
      case MYSQL_TYPE_NULL:
      case MYSQL_TYPE_DECIMAL:
      case MYSQL_TYPE_DATE:
      case MYSQL_TYPE_TINY_BLOB:
      case MYSQL_TYPE_MEDIUM_BLOB:
      case MYSQL_TYPE_LONG_BLOB:
      case MYSQL_TYPE_BLOB:
      case MYSQL_TYPE_VAR_STRING:
      case MYSQL_TYPE_GEOMETRY:
        /* fall through */
      default:
        DBUG_ASSERT(0);                    // New type?
        /* Fall through for default hashing (5.5). */
      }
      /* fall through, use collation based hashing. */
    }
    field->hash(&hasher);
  } while (*(++field_array));
  return (uint32) hasher.finalize();
}


/****************************************************************************
                MODULE print messages
****************************************************************************/

const char *ha_partition::index_type(uint inx)
{
  uint first_used_partition;
  DBUG_ENTER("ha_partition::index_type");

  first_used_partition= bitmap_get_first_set(&(m_part_info->read_partitions));

  if (first_used_partition == MY_BIT_NONE)
  {
    DBUG_ASSERT(0);                             // How can this happen?
    DBUG_RETURN(handler::index_type(inx));
  }

  DBUG_RETURN(m_file[first_used_partition]->index_type(inx));
}


enum row_type ha_partition::get_row_type() const
{
  uint i;
  enum row_type type;
  DBUG_ENTER("ha_partition::get_row_type");

  i= bitmap_get_first_set(&m_part_info->read_partitions);
  DBUG_ASSERT(i < m_tot_parts);
  if (i >= m_tot_parts)
    DBUG_RETURN(ROW_TYPE_NOT_USED);

  type= m_file[i]->get_row_type();
  DBUG_PRINT("info", ("partition %u, row_type: %d", i, type));

  for (i= bitmap_get_next_set(&m_part_info->lock_partitions, i);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
  {
    enum row_type part_type= m_file[i]->get_row_type();
    DBUG_PRINT("info", ("partition %u, row_type: %d", i, type));
    if (part_type != type)
      DBUG_RETURN(ROW_TYPE_NOT_USED);
  }

  DBUG_RETURN(type);
}


void ha_partition::append_row_to_str(String &str)
{
  const uchar *rec;
  bool is_rec0= !m_err_rec || m_err_rec == table->record[0];
  if (is_rec0)
    rec= table->record[0];
  else
    rec= m_err_rec;
  // If PK, use full PK instead of full part field array!
  if (table->s->primary_key != MAX_KEY)
  {
    KEY *key= table->key_info + table->s->primary_key;
    KEY_PART_INFO *key_part=     key->key_part;
    KEY_PART_INFO *key_part_end= key_part + key->user_defined_key_parts;
    if (!is_rec0)
      set_key_field_ptr(key, rec, table->record[0]);
    for (; key_part != key_part_end; key_part++)
    {
      Field *field= key_part->field;
      str.append(' ');
      str.append(&field->field_name);
      str.append(':');
      field_unpack(&str, field, rec, 0, false);
    }
    if (!is_rec0)
      set_key_field_ptr(key, table->record[0], rec);
  }
  else
  {
    Field **field_ptr;
    if (!is_rec0)
      table->move_fields(m_part_info->full_part_field_array, rec,
                    table->record[0]);
    /* No primary key, use full partition field array. */
    for (field_ptr= m_part_info->full_part_field_array;
         *field_ptr;
         field_ptr++)
    {
      Field *field= *field_ptr;
      str.append(' ');
      str.append(&field->field_name);
      str.append(':');
      field_unpack(&str, field, rec, 0, false);
    }
    if (!is_rec0)
      table->move_fields(m_part_info->full_part_field_array, table->record[0],
                    rec);
  }
}


void ha_partition::print_error(int error, myf errflag)
{
  THD *thd= ha_thd();
  DBUG_ENTER("ha_partition::print_error");
  DBUG_PRINT("enter", ("error: %d", error));

  /* Should probably look for my own errors first */
  if ((error == HA_ERR_NO_PARTITION_FOUND) &&
      ! (thd->lex->alter_info.partition_flags & ALTER_PARTITION_TRUNCATE))
  {
    m_part_info->print_no_partition_found(table, errflag);
    DBUG_VOID_RETURN;
  }
  else if (error == HA_ERR_ROW_IN_WRONG_PARTITION)
  {
    /* Should only happen on DELETE or UPDATE! */
    DBUG_ASSERT(thd_sql_command(thd) == SQLCOM_DELETE ||
                thd_sql_command(thd) == SQLCOM_DELETE_MULTI ||
                thd_sql_command(thd) == SQLCOM_UPDATE ||
                thd_sql_command(thd) == SQLCOM_UPDATE_MULTI);
    DBUG_ASSERT(m_err_rec);
    if (m_err_rec)
    {
      uint max_length;
      char buf[MAX_KEY_LENGTH];
      String str(buf,sizeof(buf),system_charset_info);
      uint32 part_id;
      str.length(0);
      str.append('(');
      str.append_ulonglong(m_last_part);
      str.append(STRING_WITH_LEN(" != "));
      if (get_part_for_buf(m_err_rec, m_rec0, m_part_info, &part_id))
        str.append('?');
      else
        str.append_ulonglong(part_id);
      str.append(')');
      append_row_to_str(str);

      /* Log this error, so the DBA can notice it and fix it! */
      sql_print_error("Table '%-192s' corrupted: row in wrong partition: %s"
                      "Please REPAIR the table!",
                      table->s->table_name.str,
                      str.c_ptr_safe());

      max_length= (MYSQL_ERRMSG_SIZE -
                   (uint) strlen(ER_THD(thd, ER_ROW_IN_WRONG_PARTITION)));
      if (str.length() >= max_length)
      {
        str.length(max_length-4);
        str.append(STRING_WITH_LEN("..."));
      }
      my_error(ER_ROW_IN_WRONG_PARTITION, MYF(0), str.c_ptr_safe());
      m_err_rec= NULL;
      DBUG_VOID_RETURN;
    }
    /* fall through to generic error handling. */
  }

  /*
    We choose a main handler's print_error if:
    * m_file has not been initialized, like in bug#42438
    * lookup_errkey is set, which means that an error has occurred in the
      main handler, not in individual partitions
  */
  if (m_file && lookup_errkey == (uint)-1)
  {
    if (m_last_part >= m_tot_parts)
    {
      DBUG_ASSERT(0);
      m_last_part= 0;
    }
    m_file[m_last_part]->print_error(error, errflag);
  }
  else
    handler::print_error(error, errflag);
  DBUG_VOID_RETURN;
}


bool ha_partition::get_error_message(int error, String *buf)
{
  DBUG_ENTER("ha_partition::get_error_message");

  /* Should probably look for my own errors first */

  /* In case m_file has not been initialized, like in bug#42438 */
  if (m_file)
    DBUG_RETURN(m_file[m_last_part]->get_error_message(error, buf));
  DBUG_RETURN(handler::get_error_message(error, buf));

}


/****************************************************************************
                MODULE in-place ALTER
****************************************************************************/
/**
  Get table flags.
*/

handler::Table_flags ha_partition::table_flags() const
{
  uint first_used_partition= 0;
  DBUG_ENTER("ha_partition::table_flags");
  if (m_handler_status < handler_initialized ||
      m_handler_status >= handler_closed)
    DBUG_RETURN(PARTITION_ENABLED_TABLE_FLAGS);

  if (get_lock_type() != F_UNLCK)
  {
    /*
      The flags are cached after external_lock, and may depend on isolation
      level. So we should use a locked partition to get the correct flags.
    */
    first_used_partition= bitmap_get_first_set(&m_part_info->lock_partitions);
    if (first_used_partition == MY_BIT_NONE)
      first_used_partition= 0;
  }
  DBUG_RETURN((m_file[first_used_partition]->ha_table_flags() &
                 ~(PARTITION_DISABLED_TABLE_FLAGS)) |
                 (PARTITION_ENABLED_TABLE_FLAGS));
}


/**
  alter_table_flags must be on handler/table level, not on hton level
  due to the ha_partition hton does not know what the underlying hton is.
*/

alter_table_operations ha_partition::alter_table_flags(alter_table_operations flags)
{
  alter_table_operations flags_to_return;
  DBUG_ENTER("ha_partition::alter_table_flags");

  flags_to_return= ht->alter_table_flags(flags);
  flags_to_return|= m_file[0]->alter_table_flags(flags);

  DBUG_RETURN(flags_to_return);
}


/**
  check if copy of data is needed in alter table.
*/
bool ha_partition::check_if_incompatible_data(HA_CREATE_INFO *create_info,
                                              uint table_changes)
{
  /*
    The check for any partitioning related changes have already been done
    in mysql_alter_table (by fix_partition_func), so it is only up to
    the underlying handlers.
  */
  List_iterator<partition_element> part_it(m_part_info->partitions);
  HA_CREATE_INFO dummy_info= *create_info;
  uint i=0;
  while (partition_element *part_elem= part_it++)
  {
    if (m_is_sub_partitioned)
    {
      List_iterator<partition_element> subpart_it(part_elem->subpartitions);
      while (partition_element *sub_elem= subpart_it++)
      {
        dummy_info.data_file_name= sub_elem->data_file_name;
        dummy_info.index_file_name= sub_elem->index_file_name;
        if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes))
          return COMPATIBLE_DATA_NO;
      }
    }
    else
    {
      dummy_info.data_file_name= part_elem->data_file_name;
      dummy_info.index_file_name= part_elem->index_file_name;
      if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes))
        return COMPATIBLE_DATA_NO;
    }
  }
  return COMPATIBLE_DATA_YES;
}


/**
  Support of in-place alter table.
*/

/**
  Helper class for in-place alter, see handler.h
*/

class ha_partition_inplace_ctx : public inplace_alter_handler_ctx
{
public:
  inplace_alter_handler_ctx **handler_ctx_array;
private:
  uint m_tot_parts;

public:
  ha_partition_inplace_ctx(THD *thd, uint tot_parts)
    : inplace_alter_handler_ctx(),
      handler_ctx_array(NULL),
      m_tot_parts(tot_parts)
  {}

  ~ha_partition_inplace_ctx()
  {
    if (handler_ctx_array)
    {
      for (uint index= 0; index < m_tot_parts; index++)
        delete handler_ctx_array[index];
    }
  }
};


enum_alter_inplace_result
ha_partition::check_if_supported_inplace_alter(TABLE *altered_table,
                                               Alter_inplace_info *ha_alter_info)
{
  uint index= 0;
  enum_alter_inplace_result result;
  alter_table_operations orig_ops;
  ha_partition_inplace_ctx *part_inplace_ctx;
  bool first_is_set= false;
  THD *thd= ha_thd();

  DBUG_ENTER("ha_partition::check_if_supported_inplace_alter");
  /*
    Support inplace change of KEY () -> KEY ALGORITHM = N ().
    Any other change would set partition_changed in
    prep_alter_part_table() in mysql_alter_table().
  */
  if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
  {
    DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
    DBUG_RETURN(HA_ALTER_INPLACE_NO_LOCK);
  }

  part_inplace_ctx=
    new (thd->mem_root) ha_partition_inplace_ctx(thd, m_tot_parts);
  if (!part_inplace_ctx)
    DBUG_RETURN(HA_ALTER_ERROR);

  part_inplace_ctx->handler_ctx_array= (inplace_alter_handler_ctx **)
    thd->alloc(sizeof(inplace_alter_handler_ctx *) * (m_tot_parts + 1));
  if (!part_inplace_ctx->handler_ctx_array)
    DBUG_RETURN(HA_ALTER_ERROR);

  do {
    result= HA_ALTER_INPLACE_NO_LOCK;
    /* Set all to NULL, including the terminating one. */
    for (index= 0; index <= m_tot_parts; index++)
       part_inplace_ctx->handler_ctx_array[index]= NULL;

    ha_alter_info->handler_flags |= ALTER_PARTITIONED;
    orig_ops= ha_alter_info->handler_flags;
    for (index= 0; index < m_tot_parts; index++)
    {
      enum_alter_inplace_result p_result=
        m_file[index]->check_if_supported_inplace_alter(altered_table,
                                                        ha_alter_info);
      part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;

      if (index == 0)
        first_is_set= (ha_alter_info->handler_ctx != NULL);
      else if (first_is_set != (ha_alter_info->handler_ctx != NULL))
      {
        /* Either none or all partitions must set handler_ctx! */
        DBUG_ASSERT(0);
        DBUG_RETURN(HA_ALTER_ERROR);
      }
      if (p_result < result)
        result= p_result;
      if (result == HA_ALTER_ERROR)
        break;
    }
  } while (orig_ops != ha_alter_info->handler_flags);

  ha_alter_info->handler_ctx= part_inplace_ctx;
  /*
    To indicate for future inplace calls that there are several
    partitions/handlers that need to be committed together,
    we set group_commit_ctx to the NULL terminated array of
    the partitions handlers.
  */
  ha_alter_info->group_commit_ctx= part_inplace_ctx->handler_ctx_array;

  DBUG_RETURN(result);
}


bool ha_partition::prepare_inplace_alter_table(TABLE *altered_table,
                                               Alter_inplace_info *ha_alter_info)
{
  uint index= 0;
  bool error= false;
  ha_partition_inplace_ctx *part_inplace_ctx;

  DBUG_ENTER("ha_partition::prepare_inplace_alter_table");

  /*
    Changing to similar partitioning, only update metadata.
    Non allowed changes would be caought in prep_alter_part_table().
  */
  if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
  {
    DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
    DBUG_RETURN(false);
  }

  part_inplace_ctx=
    static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);

  for (index= 0; index < m_tot_parts && !error; index++)
  {
    ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index];
    if (m_file[index]->ha_prepare_inplace_alter_table(altered_table,
                                                      ha_alter_info))
      error= true;
    part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;
  }
  ha_alter_info->handler_ctx= part_inplace_ctx;

  DBUG_RETURN(error);
}


bool ha_partition::inplace_alter_table(TABLE *altered_table,
                                       Alter_inplace_info *ha_alter_info)
{
  uint index= 0;
  bool error= false;
  ha_partition_inplace_ctx *part_inplace_ctx;

  DBUG_ENTER("ha_partition::inplace_alter_table");

  /*
    Changing to similar partitioning, only update metadata.
    Non allowed changes would be caught in prep_alter_part_table().
  */
  if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
  {
    DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
    DBUG_RETURN(false);
  }

  part_inplace_ctx=
    static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);

  for (index= 0; index < m_tot_parts && !error; index++)
  {
    if ((ha_alter_info->handler_ctx=
	 part_inplace_ctx->handler_ctx_array[index]) != NULL
	&& index != 0)
      ha_alter_info->handler_ctx->set_shared_data
	(*part_inplace_ctx->handler_ctx_array[index - 1]);

    if (m_file[index]->ha_inplace_alter_table(altered_table,
                                              ha_alter_info))
      error= true;
    part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;
  }
  ha_alter_info->handler_ctx= part_inplace_ctx;

  DBUG_RETURN(error);
}


/*
  Note that this function will try rollback failed ADD INDEX by
  executing DROP INDEX for the indexes that were committed (if any)
  before the error occurred. This means that the underlying storage
  engine must be able to drop index in-place with X-lock held.
  (As X-lock will be held here if new indexes are to be committed)
*/
bool ha_partition::commit_inplace_alter_table(TABLE *altered_table,
                                              Alter_inplace_info *ha_alter_info,
                                              bool commit)
{
  ha_partition_inplace_ctx *part_inplace_ctx;
  bool error= false;

  DBUG_ENTER("ha_partition::commit_inplace_alter_table");

  /*
    Changing to similar partitioning, only update metadata.
    Non allowed changes would be caught in prep_alter_part_table().
  */
  if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
  {
    DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
    DBUG_RETURN(false);
  }

  part_inplace_ctx=
    static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);

  if (commit)
  {
    DBUG_ASSERT(ha_alter_info->group_commit_ctx ==
                part_inplace_ctx->handler_ctx_array);
    ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[0];
    error= m_file[0]->ha_commit_inplace_alter_table(altered_table,
                                                    ha_alter_info, commit);
    if (unlikely(error))
      goto end;
    if (ha_alter_info->group_commit_ctx)
    {
      /*
        If ha_alter_info->group_commit_ctx is not set to NULL,
        then the engine did only commit the first partition!
        The engine is probably new, since both innodb and the default
        implementation of handler::commit_inplace_alter_table sets it to NULL
        and simply return false, since it allows metadata changes only.
        Loop over all other partitions as to follow the protocol!
      */
      uint i;
      /*
        InnoDB does not set ha_alter_info->group_commit_ctx to NULL in the
        case if autoincrement attribute is necessary to reset for all
        partitions for INNOBASE_INPLACE_IGNORE handler flags. It does not
        affect durability, because it is solely about updating the InnoDB data
        dictionary caches (one InnoDB dict_table_t per partition or
        sub-partition).
      */
      DBUG_ASSERT(table->found_next_number_field
          && !altered_table->found_next_number_field);
      for (i= 1; i < m_tot_parts; i++)
      {
        ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i];
        error|= m_file[i]->ha_commit_inplace_alter_table(altered_table,
                                                         ha_alter_info,
                                                         true);
      }
  }
    }
  else
  {
    uint i;
    for (i= 0; i < m_tot_parts; i++)
    {
      /* Rollback, commit == false,  is done for each partition! */
      ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i];
      if (m_file[i]->ha_commit_inplace_alter_table(altered_table,
                                                   ha_alter_info, false))
        error= true;
      }
    }
end:
  ha_alter_info->handler_ctx= part_inplace_ctx;

  DBUG_RETURN(error);
}


uint ha_partition::min_of_the_max_uint(
                       uint (handler::*operator_func)(void) const) const
{
  handler **file;
  uint min_of_the_max= ((*m_file)->*operator_func)();

  for (file= m_file+1; *file; file++)
  {
    uint tmp= ((*file)->*operator_func)();
    set_if_smaller(min_of_the_max, tmp);
  }
  return min_of_the_max;
}


uint ha_partition::max_supported_key_parts() const
{
  return min_of_the_max_uint(&handler::max_supported_key_parts);
}


uint ha_partition::max_supported_key_length() const
{
  return min_of_the_max_uint(&handler::max_supported_key_length);
}


uint ha_partition::max_supported_key_part_length() const
{
  return min_of_the_max_uint(&handler::max_supported_key_part_length);
}


uint ha_partition::max_supported_record_length() const
{
  return min_of_the_max_uint(&handler::max_supported_record_length);
}


uint ha_partition::max_supported_keys() const
{
  return min_of_the_max_uint(&handler::max_supported_keys);
}


uint ha_partition::min_record_length(uint options) const
{
  handler **file;
  uint max= (*m_file)->min_record_length(options);

  for (file= m_file, file++; *file; file++)
    if (max < (*file)->min_record_length(options))
      max= (*file)->min_record_length(options);
  return max;
}

/****************************************************************************
                MODULE compare records
****************************************************************************/
/*
  Compare two positions

  SYNOPSIS
    cmp_ref()
    ref1                   First position
    ref2                   Second position

  RETURN VALUE
    <0                     ref1 < ref2
    0                      Equal
    >0                     ref1 > ref2

  DESCRIPTION
    We get two references and need to check if those records are the same.
    If they belong to different partitions we decide that they are not
    the same record. Otherwise we use the particular handler to decide if
    they are the same. Sort in partition id order if not equal.

  MariaDB note:
    Please don't merge the code from MySQL that does this:

    We get two references and need to check if those records are the same.
    If they belong to different partitions we decide that they are not
    the same record. Otherwise we use the particular handler to decide if
    they are the same. Sort in partition id order if not equal.

    It is incorrect, MariaDB has an alternative fix.
*/

int ha_partition::cmp_ref(const uchar *ref1, const uchar *ref2)
{
  int cmp;
  uint32 diff1, diff2;
  DBUG_ENTER("ha_partition::cmp_ref");

  cmp= get_open_file_sample()->cmp_ref((ref1 + PARTITION_BYTES_IN_POS),
                                       (ref2 + PARTITION_BYTES_IN_POS));
  if (cmp)
    DBUG_RETURN(cmp);

  diff2= uint2korr(ref2);
  diff1= uint2korr(ref1);

  if (diff1 == diff2)
  {
   /* This means that the references are same and are in same partition.*/
    DBUG_RETURN(0);
  }

  DBUG_RETURN(diff2 > diff1 ? -1 : 1);
}


/****************************************************************************
                MODULE auto increment
****************************************************************************/


/**
   Retreive new values for part_share->next_auto_inc_val if needed

   This is needed if the value has not been initialized or if one of
   the underlying partitions require that the value should be re-calculated
*/

int ha_partition::update_next_auto_inc_val()
{
  if (!part_share->auto_inc_initialized || need_info_for_auto_inc())
    return info(HA_STATUS_AUTO);
  return 0;
}


/**
  Determine whether a partition needs auto-increment initialization.

  @return
    TRUE                    A  partition needs auto-increment initialization
    FALSE                   No partition needs auto-increment initialization

  Resets part_share->auto_inc_initialized if next auto_increment needs to be
  recalculated.
*/

bool ha_partition::need_info_for_auto_inc()
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::need_info_for_auto_inc");

  do
  {
    if ((*file)->need_info_for_auto_inc())
    {
      /* We have to get new auto_increment values from handler */
      part_share->auto_inc_initialized= FALSE;
      DBUG_RETURN(TRUE);
    }
  } while (*(++file));
  DBUG_RETURN(FALSE);
}


/**
  Determine if all partitions can use the current auto-increment value for
  auto-increment initialization.

  @return
    TRUE                    All partitions can use the current auto-increment
                            value for auto-increment initialization
    FALSE                   All partitions cannot use the current
                            auto-increment value for auto-increment
                            initialization

  Notes
    This function is only called for ::info(HA_STATUS_AUTO) and is
    mainly used by the Spider engine, which returns false
    except in the case of DROP TABLE or ALTER TABLE when it returns TRUE.
    Other engines always returns TRUE for this call.
*/

bool ha_partition::can_use_for_auto_inc_init()
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::can_use_for_auto_inc_init");

  do
  {
    if (!(*file)->can_use_for_auto_inc_init())
      DBUG_RETURN(FALSE);
  } while (*(++file));
  DBUG_RETURN(TRUE);
}


int ha_partition::reset_auto_increment(ulonglong value)
{
  handler **file= m_file;
  int res;
  DBUG_ENTER("ha_partition::reset_auto_increment");
  lock_auto_increment();
  part_share->auto_inc_initialized= false;
  part_share->next_auto_inc_val= 0;
  do
  {
    if ((res= (*file)->ha_reset_auto_increment(value)) != 0)
      break;
  } while (*(++file));
  unlock_auto_increment();
  DBUG_RETURN(res);
}


/**
  This method is called by update_auto_increment which in turn is called
  by the individual handlers as part of write_row. We use the
  part_share->next_auto_inc_val, or search all
  partitions for the highest auto_increment_value if not initialized or
  if auto_increment field is a secondary part of a key, we must search
  every partition when holding a mutex to be sure of correctness.
*/

void ha_partition::get_auto_increment(ulonglong offset, ulonglong increment,
                                      ulonglong nb_desired_values,
                                      ulonglong *first_value,
                                      ulonglong *nb_reserved_values)
{
  DBUG_ENTER("ha_partition::get_auto_increment");
  DBUG_PRINT("enter", ("offset: %lu  inc: %lu  desired_values: %lu  "
                       "first_value: %lu", (ulong) offset, (ulong) increment,
                      (ulong) nb_desired_values, (ulong) *first_value));
  DBUG_ASSERT(increment);
  DBUG_ASSERT(nb_desired_values);
  *first_value= 0;
  if (table->s->next_number_keypart)
  {
    /*
      next_number_keypart is != 0 if the auto_increment column is a secondary
      column in the index (it is allowed in MyISAM)
    */
    DBUG_PRINT("info", ("next_number_keypart != 0"));
    ulonglong nb_reserved_values_part;
    ulonglong first_value_part, max_first_value;
    handler **file= m_file;
    first_value_part= max_first_value= *first_value;
    /* Must find highest value among all partitions. */
    do
    {
      /* Only nb_desired_values = 1 makes sense */
      (*file)->get_auto_increment(offset, increment, 1,
                                 &first_value_part, &nb_reserved_values_part);
      if (unlikely(first_value_part == ULONGLONG_MAX)) // error in one partition
      {
        *first_value= first_value_part;
        /* log that the error was between table/partition handler */
        sql_print_error("Partition failed to reserve auto_increment value");
        DBUG_VOID_RETURN;
      }
      DBUG_PRINT("info", ("first_value_part: %lu", (ulong) first_value_part));
      set_if_bigger(max_first_value, first_value_part);
    } while (*(++file));
    *first_value= max_first_value;
    *nb_reserved_values= 1;
  }
  else
  {
    THD *thd= ha_thd();
    /*
      This is initialized in the beginning of the first write_row call.
    */
    DBUG_ASSERT(part_share->auto_inc_initialized);
    /*
      Get a lock for handling the auto_increment in part_share
      for avoiding two concurrent statements getting the same number.
    */

    lock_auto_increment();

    /*
      In a multi-row insert statement like INSERT SELECT and LOAD DATA
      where the number of candidate rows to insert is not known in advance
      we must hold a lock/mutex for the whole statement if we have statement
      based replication. Because the statement-based binary log contains
      only the first generated value used by the statement, and slaves assumes
      all other generated values used by this statement were consecutive to
      this first one, we must exclusively lock the generator until the
      statement is done.
    */
    if (!auto_increment_safe_stmt_log_lock &&
        thd->lex->sql_command != SQLCOM_INSERT &&
        mysql_bin_log.is_open() &&
        !thd->is_current_stmt_binlog_format_row() &&
        (thd->variables.option_bits & OPTION_BIN_LOG))
    {
      DBUG_PRINT("info", ("locking auto_increment_safe_stmt_log_lock"));
      auto_increment_safe_stmt_log_lock= TRUE;
    }

    /* this gets corrected (for offset/increment) in update_auto_increment */
    *first_value= part_share->next_auto_inc_val;
    part_share->next_auto_inc_val+= nb_desired_values * increment;

    unlock_auto_increment();
    DBUG_PRINT("info", ("*first_value: %lu", (ulong) *first_value));
    *nb_reserved_values= nb_desired_values;
  }
  DBUG_VOID_RETURN;
}

void ha_partition::release_auto_increment()
{
  DBUG_ENTER("ha_partition::release_auto_increment");

  if (table->s->next_number_keypart)
  {
    uint i;
    for (i= bitmap_get_first_set(&m_part_info->lock_partitions);
         i < m_tot_parts;
         i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
    {
      m_file[i]->ha_release_auto_increment();
    }
  }
  else
  {
    lock_auto_increment();
    if (next_insert_id)
    {
      ulonglong next_auto_inc_val= part_share->next_auto_inc_val;
      /*
        If the current auto_increment values is lower than the reserved
        value, and the reserved value was reserved by this thread,
        we can lower the reserved value.
      */
      if (next_insert_id < next_auto_inc_val &&
          auto_inc_interval_for_cur_row.maximum() >= next_auto_inc_val)
      {
        THD *thd= ha_thd();
        /*
          Check that we do not lower the value because of a failed insert
          with SET INSERT_ID, i.e. forced/non generated values.
        */
        if (thd->auto_inc_intervals_forced.maximum() < next_insert_id)
          part_share->next_auto_inc_val= next_insert_id;
      }
      DBUG_PRINT("info", ("part_share->next_auto_inc_val: %lu",
                          (ulong) part_share->next_auto_inc_val));
    }
    /*
      Unlock the multi-row statement lock taken in get_auto_increment.
      These actions must be performed even if the next_insert_id field
      contains zero, otherwise if the update_auto_increment fails then
      an unnecessary lock will remain:
    */
    if (auto_increment_safe_stmt_log_lock)
    {
      auto_increment_safe_stmt_log_lock= FALSE;
      DBUG_PRINT("info", ("unlocking auto_increment_safe_stmt_log_lock"));
    }

    unlock_auto_increment();
  }
  DBUG_VOID_RETURN;
}

/****************************************************************************
                MODULE initialize handler for HANDLER call
****************************************************************************/

void ha_partition::init_table_handle_for_HANDLER()
{
  return;
}


/**
  Calculate the checksum of the table (all partitions)
*/

int ha_partition::pre_calculate_checksum()
{
  int error;
  DBUG_ENTER("ha_partition::pre_calculate_checksum");
  m_pre_calling= TRUE;
  if ((table_flags() & (HA_HAS_OLD_CHECKSUM | HA_HAS_NEW_CHECKSUM)))
  {
    handler **file= m_file;
    do
    {
      if ((error= (*file)->pre_calculate_checksum()))
      {
        DBUG_RETURN(error);
      }
    } while (*(++file));
  }
  DBUG_RETURN(0);
}


int ha_partition::calculate_checksum()
{
  int error;
  stats.checksum= 0;
  stats.checksum_null= TRUE;

  DBUG_ENTER("ha_partition::calculate_checksum");
  if (!m_pre_calling)
  {
    if ((error= pre_calculate_checksum()))
    {
      m_pre_calling= FALSE;
      DBUG_RETURN(error);
    }
  }
  m_pre_calling= FALSE;

  handler **file= m_file;
  do
  {
    if ((error= (*file)->calculate_checksum()))
    {
      DBUG_RETURN(error);
    }
    if (!(*file)->stats.checksum_null)
    {
      stats.checksum+= (*file)->stats.checksum;
      stats.checksum_null= FALSE;
    }
  } while (*(++file));
  DBUG_RETURN(0);
}


/****************************************************************************
                MODULE enable/disable indexes
****************************************************************************/

/*
  Disable indexes for a while
  SYNOPSIS
    disable_indexes()
    mode                      Mode
  RETURN VALUES
    0                         Success
    != 0                      Error
*/

int ha_partition::disable_indexes(uint mode)
{
  handler **file;
  int error= 0;

  DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
  for (file= m_file; *file; file++)
  {
    if (unlikely((error= (*file)->ha_disable_indexes(mode))))
      break;
  }
  return error;
}


/*
  Enable indexes again
  SYNOPSIS
    enable_indexes()
    mode                      Mode
  RETURN VALUES
    0                         Success
    != 0                      Error
*/

int ha_partition::enable_indexes(uint mode)
{
  handler **file;
  int error= 0;

  DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
  for (file= m_file; *file; file++)
  {
    if (unlikely((error= (*file)->ha_enable_indexes(mode))))
      break;
  }
  return error;
}


/*
  Check if indexes are disabled
  SYNOPSIS
    indexes_are_disabled()

  RETURN VALUES
    0                      Indexes are enabled
    != 0                   Indexes are disabled
*/

int ha_partition::indexes_are_disabled(void)
{
  handler **file;
  int error= 0;

  DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
  for (file= m_file; *file; file++)
  {
    if (unlikely((error= (*file)->indexes_are_disabled())))
      break;
  }
  return error;
}


/**
  Check/fix misplaced rows.

  @param read_part_id  Partition to check/fix.
  @param repair        If true, move misplaced rows to correct partition.

  @return Operation status.
    @retval HA_ADMIN_OK     Success
    @retval != HA_ADMIN_OK  Error
*/

int ha_partition::check_misplaced_rows(uint read_part_id, bool do_repair)
{
  int result= 0;
  uint32 correct_part_id;
  longlong func_value;
  longlong num_misplaced_rows= 0;

  DBUG_ENTER("ha_partition::check_misplaced_rows");

  DBUG_ASSERT(m_file);

  if (m_part_info->vers_info &&
      read_part_id != m_part_info->vers_info->now_part->id &&
      !m_part_info->vers_info->interval.is_set())
  {
    /* Skip this check as it is not supported for non-INTERVAL history partitions. */
    DBUG_RETURN(HA_ADMIN_OK);
  }

  if (do_repair)
  {
    /* We must read the full row, if we need to move it! */
    bitmap_set_all(table->read_set);
    bitmap_set_all(table->write_set);
  }
  else
  {
    /* Only need to read the partitioning fields. */
    bitmap_union(table->read_set, &m_part_info->full_part_field_set);
  }

  if ((result= m_file[read_part_id]->ha_rnd_init(1)))
    DBUG_RETURN(result);

  while (true)
  {
    if ((result= m_file[read_part_id]->ha_rnd_next(m_rec0)))
    {
      if (result != HA_ERR_END_OF_FILE)
        break;

      if (num_misplaced_rows > 0)
      {
	print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, &msg_warning,
                        table_share->db.str, table->alias,
                        &opt_op_name[REPAIR_PARTS],
                        "Moved %lld misplaced rows",
                        num_misplaced_rows);
      }
      /* End-of-file reached, all rows are now OK, reset result and break. */
      result= 0;
      break;
    }

    result= m_part_info->get_partition_id(m_part_info, &correct_part_id,
                                          &func_value);
    if (result)
      break;

    if (correct_part_id != read_part_id)
    {
      num_misplaced_rows++;
      if (!do_repair)
      {
        /* Check. */
	print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, &msg_error,
                        table_share->db.str, table->alias,
                        &opt_op_name[CHECK_PARTS],
                        "Found a misplaced row");
        /* Break on first misplaced row! */
        result= HA_ADMIN_NEEDS_UPGRADE;
        break;
      }
      else
      {
        DBUG_PRINT("info", ("Moving row from partition %u to %u",
                            (uint) read_part_id, (uint) correct_part_id));

        /*
          Insert row into correct partition. Notice that there are no commit
          for every N row, so the repair will be one large transaction!
        */
        if ((result= m_file[correct_part_id]->ha_write_row(m_rec0)))
        {
          /*
            We have failed to insert a row, it might have been a duplicate!
          */
          char buf[MAX_KEY_LENGTH];
          String str(buf,sizeof(buf),system_charset_info);
          str.length(0);
          if (result == HA_ERR_FOUND_DUPP_KEY)
          {
            str.append(STRING_WITH_LEN("Duplicate key found, "
                                       "please update or delete the "
                                       "record:\n"));
            result= HA_ADMIN_CORRUPT;
          }
          m_err_rec= NULL;
          append_row_to_str(str);

          /*
            If the engine supports transactions, the failure will be
            rolled back
          */
          if (!m_file[correct_part_id]->has_transactions_and_rollback())
          {
            /* Log this error, so the DBA can notice it and fix it! */
            sql_print_error("Table '%-192s' failed to move/insert a row"
                            " from part %u into part %u:\n%s",
                            table->s->table_name.str,
                            (uint) read_part_id,
                            (uint) correct_part_id,
                            str.c_ptr_safe());
          }
	  print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, &msg_error,
                          table_share->db.str, table->alias,
                          &opt_op_name[REPAIR_PARTS],
                          "Failed to move/insert a row"
                          " from part %u into part %u:\n%s",
                          (uint) read_part_id,
                          (uint) correct_part_id,
                          str.c_ptr_safe());
          break;
        }

        /* Delete row from wrong partition. */
        if ((result= m_file[read_part_id]->ha_delete_row(m_rec0)))
        {
          if (m_file[correct_part_id]->has_transactions_and_rollback())
            break;
          /*
            We have introduced a duplicate, since we failed to remove it
            from the wrong partition.
          */
          char buf[MAX_KEY_LENGTH];
          String str(buf,sizeof(buf),system_charset_info);
          str.length(0);
          m_err_rec= NULL;
          append_row_to_str(str);

          /* Log this error, so the DBA can notice it and fix it! */
          sql_print_error("Table '%-192s': Delete from part %u failed with"
                          " error %d. But it was already inserted into"
                          " part %u, when moving the misplaced row!"
                          "\nPlease manually fix the duplicate row:\n%s",
                          table->s->table_name.str,
                          (uint) read_part_id,
                          result,
                          (uint) correct_part_id,
                          str.c_ptr_safe());
          break;
        }
      }
    }
  }

  int tmp_result= m_file[read_part_id]->ha_rnd_end();
  DBUG_RETURN(result ? result : tmp_result);
}


#define KEY_PARTITIONING_CHANGED_STR \
  "KEY () partitioning changed, please run:\n" \
  "ALTER TABLE %s.%s ALGORITHM = INPLACE %s"

int ha_partition::check_for_upgrade(HA_CHECK_OPT *check_opt)
{
  int error= HA_ADMIN_NEEDS_CHECK;
  DBUG_ENTER("ha_partition::check_for_upgrade");

  /*
    This is called even without FOR UPGRADE,
    if the .frm version is lower than the current version.
    In that case return that it needs checking!
  */
  if (!(check_opt->sql_flags & TT_FOR_UPGRADE))
    DBUG_RETURN(error);

  /*
    Partitions will be checked for during their ha_check!

    Check if KEY (sub)partitioning was used and any field's hash calculation
    differs from 5.1, see bug#14521864.
  */
  if (table->s->mysql_version < 50503 &&              // 5.1 table (<5.5.3)
      ((m_part_info->part_type == HASH_PARTITION &&   // KEY partitioned
        m_part_info->list_of_part_fields) ||
       (m_is_sub_partitioned &&                       // KEY subpartitioned
        m_part_info->list_of_subpart_fields)))
  {
    Field **field;
    if (m_is_sub_partitioned)
    {
      field= m_part_info->subpart_field_array;
    }
    else
    {
      field= m_part_info->part_field_array;
    }
    for (; *field; field++)
    {
      switch ((*field)->real_type()) {
      case MYSQL_TYPE_TINY:
      case MYSQL_TYPE_SHORT:
      case MYSQL_TYPE_LONG:
      case MYSQL_TYPE_FLOAT:
      case MYSQL_TYPE_DOUBLE:
      case MYSQL_TYPE_NEWDECIMAL:
      case MYSQL_TYPE_TIMESTAMP:
      case MYSQL_TYPE_LONGLONG:
      case MYSQL_TYPE_INT24:
      case MYSQL_TYPE_TIME:
      case MYSQL_TYPE_DATETIME:
      case MYSQL_TYPE_YEAR:
      case MYSQL_TYPE_NEWDATE:
      case MYSQL_TYPE_ENUM:
      case MYSQL_TYPE_SET:
        {
          THD *thd= ha_thd();
          char *part_buf;
          String db_name, table_name;
          uint part_buf_len;
          bool skip_generation= false;
          partition_info::enum_key_algorithm old_algorithm;
          old_algorithm= m_part_info->key_algorithm;
          error= HA_ADMIN_FAILED;
          append_identifier(ha_thd(), &db_name, &table_share->db);
          append_identifier(ha_thd(), &table_name, &table_share->table_name);
          if (m_part_info->key_algorithm != partition_info::KEY_ALGORITHM_NONE)
          {
            /*
              Only possible when someone tampered with .frm files,
              like during tests :)
            */
            skip_generation= true;
          }
          m_part_info->key_algorithm= partition_info::KEY_ALGORITHM_51;
          if (skip_generation ||
              !(part_buf= generate_partition_syntax_for_frm(thd, m_part_info,
                                                            &part_buf_len,
                                                            NULL, NULL)) ||
	      print_admin_msg(thd, SQL_ADMIN_MSG_TEXT_SIZE + 1, &msg_error,
	                      table_share->db.str,
	                      table->alias,
                              &opt_op_name[CHECK_PARTS],
                              KEY_PARTITIONING_CHANGED_STR,
                              db_name.c_ptr_safe(),
                              table_name.c_ptr_safe(),
                              part_buf))
	  {
	    /* Error creating admin message (too long string?). */
	    print_admin_msg(thd, MYSQL_ERRMSG_SIZE, &msg_error,
                            table_share->db.str, table->alias,
                            &opt_op_name[CHECK_PARTS],
                            KEY_PARTITIONING_CHANGED_STR,
                            db_name.c_ptr_safe(), table_name.c_ptr_safe(),
                            "<old partition clause>, but add ALGORITHM = 1"
                            " between 'KEY' and '(' to change the metadata"
                            " without the need of a full table rebuild.");
          }
          m_part_info->key_algorithm= old_algorithm;
          DBUG_RETURN(error);
        }
      default:
        /* Not affected! */
        ;
      }
    }
  }

  DBUG_RETURN(error);
}


TABLE_LIST *ha_partition::get_next_global_for_child()
{
  handler **file;
  DBUG_ENTER("ha_partition::get_next_global_for_child");
  for (file= m_file; *file; file++)
  {
    TABLE_LIST *table_list;
    if ((table_list= (*file)->get_next_global_for_child()))
      DBUG_RETURN(table_list);
  }
  DBUG_RETURN(0);
}


/**
  Push an engine condition to the condition stack of the storage engine
  for each partition.

  @param  cond              Pointer to the engine condition to be pushed.

  @return NULL              Underlying engine will not return rows that
                            do not match the passed condition.
          <> NULL           'Remainder' condition that the caller must use
                            to filter out records.
*/

const COND *ha_partition::cond_push(const COND *cond)
{
  uint i;
  COND *res_cond= NULL;
  DBUG_ENTER("ha_partition::cond_push");

  for (i= bitmap_get_first_set(&m_partitions_to_reset);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_partitions_to_reset, i))
  {
    if (bitmap_is_set(&m_opened_partitions, i))
    {
      if (m_file[i]->pushed_cond != cond)
      {
        if (m_file[i]->cond_push(cond))
          res_cond= (COND *) cond;
        else
          m_file[i]->pushed_cond= cond;
      }
    }
  }
  DBUG_RETURN(res_cond);
}


/**
  Pop the top condition from the condition stack of the storage engine
  for each partition.
*/

void ha_partition::cond_pop()
{
  uint i;
  DBUG_ENTER("ha_partition::cond_pop");

  for (i= bitmap_get_first_set(&m_partitions_to_reset);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_partitions_to_reset, i))
  {
    if (bitmap_is_set(&m_opened_partitions, i))
    {
      m_file[i]->cond_pop();
    }
  }
  DBUG_VOID_RETURN;
}


/**
  Perform bulk update preparation on each partition.

  SYNOPSIS
    start_bulk_update()

  RETURN VALUE
    TRUE                      Error
    FALSE                     Success
*/

bool ha_partition::start_bulk_update()
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::start_bulk_update");

  if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
                            table->write_set))
    DBUG_RETURN(TRUE);

  do
  {
    bzero(&(*file)->copy_info, sizeof((*file)->copy_info));
    if ((*file)->start_bulk_update())
      DBUG_RETURN(TRUE);
  } while (*(++file));
  DBUG_RETURN(FALSE);
}


/**
  Perform bulk update execution on each partition.  A bulk update allows
  a handler to batch the updated rows instead of performing the updates
  one row at a time.

  SYNOPSIS
    exec_bulk_update()

  RETURN VALUE
    TRUE                      Error
    FALSE                     Success
*/

int ha_partition::exec_bulk_update(ha_rows *dup_key_found)
{
  int error;
  handler **file= m_file;
  DBUG_ENTER("ha_partition::exec_bulk_update");

  do
  {
    if (unlikely((error= (*file)->exec_bulk_update(dup_key_found))))
      DBUG_RETURN(error);
  } while (*(++file));
  DBUG_RETURN(0);
}


/**
  Perform bulk update cleanup on each partition.

  SYNOPSIS
    end_bulk_update()

  RETURN VALUE
    NONE
*/

int ha_partition::end_bulk_update()
{
  int error= 0;
  handler **file= m_file;
  DBUG_ENTER("ha_partition::end_bulk_update");

  do
  {
    int tmp;
    if ((tmp= (*file)->end_bulk_update()))
      error= tmp;
  } while (*(++file));
  sum_copy_infos();
  DBUG_RETURN(error);
}


/**
  Add the row to the bulk update on the partition on which the row is stored.
  A bulk update allows a handler to batch the updated rows instead of
  performing the updates one row at a time.

  SYNOPSIS
    bulk_update_row()
    old_data                  Old record
    new_data                  New record
    dup_key_found             Number of duplicate keys found

  RETURN VALUE
    >1                        Error
    1                         Bulk update not used, normal operation used
    0                         Bulk update used by handler
*/

int ha_partition::bulk_update_row(const uchar *old_data, const uchar *new_data,
                                  ha_rows *dup_key_found)
{
  int error= 0;
  uint32 part_id;
  longlong func_value;
  DBUG_ENTER("ha_partition::bulk_update_row");

  MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
  error= m_part_info->get_partition_id(m_part_info, &part_id,
                                       &func_value);
  dbug_tmp_restore_column_map(&table->read_set, old_map);
  if (unlikely(error))
  {
    m_part_info->err_value= func_value;
    goto end;
  }

  error= m_file[part_id]->ha_bulk_update_row(old_data, new_data,
                                             dup_key_found);

end:
  DBUG_RETURN(error);
}


/**
  Perform bulk delete preparation on each partition.

  SYNOPSIS
    start_bulk_delete()

  RETURN VALUE
    TRUE                      Error
    FALSE                     Success
*/

bool ha_partition::start_bulk_delete()
{
  handler **file= m_file;
  DBUG_ENTER("ha_partition::start_bulk_delete");

  do
  {
    if ((*file)->start_bulk_delete())
      DBUG_RETURN(TRUE);
  } while (*(++file));
  DBUG_RETURN(FALSE);
}


/**
  Perform bulk delete cleanup on each partition.

  SYNOPSIS
    end_bulk_delete()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::end_bulk_delete()
{
  int error= 0;
  handler **file= m_file;
  DBUG_ENTER("ha_partition::end_bulk_delete");

  do
  {
    int tmp;
    if ((tmp= (*file)->end_bulk_delete()))
      error= tmp;
  } while (*(++file));
  sum_copy_infos();
  DBUG_RETURN(error);
}


bool ha_partition::check_if_updates_are_ignored(const char *op) const
{
  return (handler::check_if_updates_are_ignored(op) ||
          ha_check_if_updates_are_ignored(table->in_use, partition_ht(), op));
}

/**
  Perform initialization for a direct update request.

  SYNOPSIS
    direct_update_rows_init()
    update fields             Pointer to the list of fields to update

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::direct_update_rows_init(List<Item> *update_fields)
{
  int error;
  uint i, found;
  handler *file;
  DBUG_ENTER("ha_partition::direct_update_rows_init");

  if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
                            table->write_set))
  {
    DBUG_PRINT("info", ("partition FALSE by updating part_key"));
    DBUG_RETURN(HA_ERR_WRONG_COMMAND);
  }

  m_part_spec.start_part= 0;
  m_part_spec.end_part= m_tot_parts - 1;
  m_direct_update_part_spec= m_part_spec;

  found= 0;
  for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
        bitmap_is_set(&(m_part_info->lock_partitions), i))
    {
      file= m_file[i];
      if (unlikely((error= (m_pre_calling ?
                            file->pre_direct_update_rows_init(update_fields) :
                            file->direct_update_rows_init(update_fields)))))
      {
        DBUG_PRINT("info", ("partition FALSE by storage engine"));
        DBUG_RETURN(error);
      }
      found++;
    }
  }

  TABLE_LIST *table_list= table->pos_in_table_list;
  if (found != 1 && table_list)
  {
    while (table_list->parent_l)
      table_list= table_list->parent_l;
    st_select_lex *select_lex= table_list->select_lex;
    DBUG_PRINT("info", ("partition select_lex: %p", select_lex));
    if (select_lex && select_lex->limit_params.explicit_limit)
    {
      DBUG_PRINT("info", ("partition explicit_limit=TRUE"));
      DBUG_PRINT("info", ("partition offset_limit: %p",
                          select_lex->limit_params.offset_limit));
      DBUG_PRINT("info", ("partition select_limit: %p",
                          select_lex->limit_params.select_limit));
      DBUG_PRINT("info", ("partition FALSE by select_lex"));
      DBUG_RETURN(HA_ERR_WRONG_COMMAND);
    }
  }
  DBUG_PRINT("info", ("partition OK"));
  DBUG_RETURN(0);
}


/**
  Do initialization for performing parallel direct update
  for a handlersocket update request.

  SYNOPSIS
    pre_direct_update_rows_init()
    update fields             Pointer to the list of fields to update

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::pre_direct_update_rows_init(List<Item> *update_fields)
{
  bool save_m_pre_calling;
  int error;
  DBUG_ENTER("ha_partition::pre_direct_update_rows_init");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  error= direct_update_rows_init(update_fields);
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}


/**
  Execute a direct update request.  A direct update request updates all
  qualified rows in a single operation, rather than one row at a time.
  The direct update operation is pushed down to each individual
  partition.

  SYNOPSIS
    direct_update_rows()
    update_rows               Number of updated rows

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::direct_update_rows(ha_rows *update_rows_result,
                                     ha_rows *found_rows_result)
{
  int error;
  bool rnd_seq= FALSE;
  ha_rows update_rows= 0;
  ha_rows found_rows= 0;
  uint32 i;
  DBUG_ENTER("ha_partition::direct_update_rows");

  /* If first call to direct_update_rows with RND scan */
  if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1)
  {
    rnd_seq= TRUE;
    m_scan_value= 2;
  }

  *update_rows_result= 0;
  *found_rows_result= 0;
  for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
  {
    handler *file= m_file[i];
    if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
        bitmap_is_set(&(m_part_info->lock_partitions), i))
    {
      if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE)
      {
        if (unlikely((error= (m_pre_calling ?
                              file->ha_pre_rnd_init(TRUE) :
                              file->ha_rnd_init(TRUE)))))
          DBUG_RETURN(error);
      }
      if (unlikely((error= (m_pre_calling ?
                            (file)->pre_direct_update_rows() :
                            (file)->ha_direct_update_rows(&update_rows,
                                                          &found_rows)))))
      {
        if (rnd_seq)
        {
          if (m_pre_calling)
            file->ha_pre_rnd_end();
          else
            file->ha_rnd_end();
        }
        DBUG_RETURN(error);
      }
      *update_rows_result+= update_rows;
      *found_rows_result+= found_rows;
    }
    if (rnd_seq)
    {
      if (unlikely((error= (m_pre_calling ?
                            file->ha_pre_index_or_rnd_end() :
                            file->ha_index_or_rnd_end()))))
        DBUG_RETURN(error);
    }
  }
  DBUG_RETURN(0);
}


/**
  Start parallel execution of a direct update for a handlersocket update
  request.  A direct update request updates all qualified rows in a single
  operation, rather than one row at a time.  The direct update operation
  is pushed down to each individual partition.

  SYNOPSIS
    pre_direct_update_rows()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::pre_direct_update_rows()
{
  bool save_m_pre_calling;
  int error;
  ha_rows not_used= 0;
  DBUG_ENTER("ha_partition::pre_direct_update_rows");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  error= direct_update_rows(&not_used, &not_used);
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}


/**
  Perform initialization for a direct delete request.

  SYNOPSIS
    direct_delete_rows_init()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::direct_delete_rows_init()
{
  int error;
  uint i, found;
  DBUG_ENTER("ha_partition::direct_delete_rows_init");

  m_part_spec.start_part= 0;
  m_part_spec.end_part= m_tot_parts - 1;
  m_direct_update_part_spec= m_part_spec;

  found= 0;
  for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
  {
    if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
        bitmap_is_set(&(m_part_info->lock_partitions), i))
    {
      handler *file= m_file[i];
      if (unlikely((error= (m_pre_calling ?
                            file->pre_direct_delete_rows_init() :
                            file->direct_delete_rows_init()))))
      {
        DBUG_PRINT("exit", ("error in direct_delete_rows_init"));
        DBUG_RETURN(error);
      }
      found++;
    }
  }

  TABLE_LIST *table_list= table->pos_in_table_list;
  if (found != 1 && table_list)
  {
    while (table_list->parent_l)
      table_list= table_list->parent_l;
    st_select_lex *select_lex= table_list->select_lex;
    DBUG_PRINT("info", ("partition select_lex: %p", select_lex));
    if (select_lex && select_lex->limit_params.explicit_limit)
    {
      DBUG_PRINT("info", ("partition explicit_limit: TRUE"));
      DBUG_PRINT("info", ("partition offset_limit: %p",
                          select_lex->limit_params.offset_limit));
      DBUG_PRINT("info", ("partition select_limit: %p",
                          select_lex->limit_params.select_limit));
      DBUG_PRINT("info", ("partition FALSE by select_lex"));
      DBUG_RETURN(HA_ERR_WRONG_COMMAND);
    }
  }
  DBUG_PRINT("exit", ("OK"));
  DBUG_RETURN(0);
}


/**
  Do initialization for performing parallel direct delete
  for a handlersocket delete request.

  SYNOPSIS
    pre_direct_delete_rows_init()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::pre_direct_delete_rows_init()
{
  bool save_m_pre_calling;
  int error;
  DBUG_ENTER("ha_partition::pre_direct_delete_rows_init");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  error= direct_delete_rows_init();
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}


/**
  Execute a direct delete request.  A direct delete request deletes all
  qualified rows in a single operation, rather than one row at a time.
  The direct delete operation is pushed down to each individual
  partition.

  SYNOPSIS
    direct_delete_rows()
    delete_rows               Number of deleted rows

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::direct_delete_rows(ha_rows *delete_rows_result)
{
  int error;
  bool rnd_seq= FALSE;
  ha_rows delete_rows= 0;
  uint32 i;
  handler *file;
  DBUG_ENTER("ha_partition::direct_delete_rows");

  if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1)
  {
    rnd_seq= TRUE;
    m_scan_value= 2;
  }

  *delete_rows_result= 0;
  m_part_spec= m_direct_update_part_spec;
  for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
  {
    file= m_file[i];
    if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
        bitmap_is_set(&(m_part_info->lock_partitions), i))
    {
      if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE)
      {
        if (unlikely((error= (m_pre_calling ?
                              file->ha_pre_rnd_init(TRUE) :
                              file->ha_rnd_init(TRUE)))))
          DBUG_RETURN(error);
      }
      if ((error= (m_pre_calling ?
                   file->pre_direct_delete_rows() :
                   file->ha_direct_delete_rows(&delete_rows))))
      {
        if (m_pre_calling)
          file->ha_pre_rnd_end();
        else
          file->ha_rnd_end();
        DBUG_RETURN(error);
      }
      delete_rows_result+= delete_rows;
    }
    if (rnd_seq)
    {
      if (unlikely((error= (m_pre_calling ?
                            file->ha_pre_index_or_rnd_end() :
                            file->ha_index_or_rnd_end()))))
        DBUG_RETURN(error);
    }
  }
  DBUG_RETURN(0);
}


/**
  Start parallel execution of a direct delete for a handlersocket delete
  request.  A direct delete request deletes all qualified rows in a single
  operation, rather than one row at a time.  The direct delete operation
  is pushed down to each individual partition.

  SYNOPSIS
    pre_direct_delete_rows()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::pre_direct_delete_rows()
{
  bool save_m_pre_calling;
  int error;
  ha_rows not_used;
  DBUG_ENTER("ha_partition::pre_direct_delete_rows");
  save_m_pre_calling= m_pre_calling;
  m_pre_calling= TRUE;
  error= direct_delete_rows(&not_used);
  m_pre_calling= save_m_pre_calling;
  DBUG_RETURN(error);
}

/**
  Push metadata for the current operation down to each partition.

  SYNOPSIS
    info_push()

  RETURN VALUE
    >0                        Error
    0                         Success
*/

int ha_partition::info_push(uint info_type, void *info)
{
  int error= 0, tmp;
  uint i;
  DBUG_ENTER("ha_partition::info_push");

  for (i= bitmap_get_first_set(&m_partitions_to_reset);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_partitions_to_reset, i))
  {
    if (bitmap_is_set(&m_opened_partitions, i))
    {
      if ((tmp= m_file[i]->info_push(info_type, info)))
      {
        error= tmp;
      }
    }
  }
  DBUG_RETURN(error);
}


bool
ha_partition::can_convert_nocopy(const Field &field,
                                 const Column_definition &new_type) const
{
  for (uint index= 0; index < m_tot_parts; index++)
  {
    if (!m_file[index]->can_convert_nocopy(field, new_type))
      return false;
  }
  return true;
}

/*
  Get table costs for the current statement that should be stored in
  handler->cost variables.

  When we want to support many different table handlers, we should set
  m_file[i]->costs to point to an unique cost structure per open
  instance and call something similar as
  TABLE_SHARE::update_optimizer_costs(handlerton *hton) and
  handler::update_optimizer_costs(&costs) on it.
*/


void ha_partition::set_optimizer_costs(THD *thd)
{
  handler::set_optimizer_costs(thd);
  for (uint i= bitmap_get_first_set(&m_part_info->read_partitions);
       i < m_tot_parts;
       i= bitmap_get_next_set(&m_part_info->read_partitions, i))
    m_file[i]->set_optimizer_costs(thd);
}

/*
  Get unique table costs for the first instance of the handler and store
  in table->share
*/

void ha_partition::update_optimizer_costs(OPTIMIZER_COSTS *costs)
{
  uint i= bitmap_get_first_set(&m_part_info->read_partitions);
  m_file[i]->update_optimizer_costs(costs);
}

struct st_mysql_storage_engine partition_storage_engine=
{ MYSQL_HANDLERTON_INTERFACE_VERSION };

maria_declare_plugin(partition)
{
  MYSQL_STORAGE_ENGINE_PLUGIN,
  &partition_storage_engine,
  "partition",
  "Mikael Ronstrom, MySQL AB",
  "Partition Storage Engine Helper",
  PLUGIN_LICENSE_GPL,
  partition_initialize, /* Plugin Init */
  NULL, /* Plugin Deinit */
  0x0100, /* 1.0 */
  NULL,                       /* status variables                */
  NULL,                       /* system variables                */
  "1.0",                      /* string version                  */
  MariaDB_PLUGIN_MATURITY_STABLE /* maturity                     */
}
maria_declare_plugin_end;

#endif