1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "FastScheduler.hpp"
#include "RefConvert.hpp"
#include "Emulator.hpp"
#include "VMSignal.hpp"
#include <SignalLoggerManager.hpp>
#include <BlockNumbers.h>
#include <GlobalSignalNumbers.h>
#include <signaldata/EventReport.hpp>
#include "LongSignal.hpp"
#include <NdbTick.h>
#define MIN_NUMBER_OF_SIG_PER_DO_JOB 64
#define MAX_NUMBER_OF_SIG_PER_DO_JOB 2048
#define EXTRA_SIGNALS_PER_DO_JOB 32
FastScheduler::FastScheduler()
{
// These constants work for sun only, but they should be initated from
// Emulator.C as soon as VMTime has been initiated.
theJobBuffers[0].newBuffer(JBASIZE);
theJobBuffers[1].newBuffer(JBBSIZE);
theJobBuffers[2].newBuffer(JBCSIZE);
theJobBuffers[3].newBuffer(JBDSIZE);
clear();
}
FastScheduler::~FastScheduler()
{
}
void
FastScheduler::clear()
{
int i;
// Make sure the restart signals are not sent too early
// the prio is set back in 'main' using the 'ready' method.
globalData.highestAvailablePrio = LEVEL_IDLE;
globalData.sendPackedActivated = 0;
globalData.activateSendPacked = 0;
for (i = 0; i < JB_LEVELS; i++){
theJobBuffers[i].clear();
}
globalData.JobCounter = 0;
globalData.JobLap = 0;
globalData.loopMax = 32;
globalData.VMSignals[0].header.theSignalId = 0;
theDoJobTotalCounter = 0;
theDoJobCallCounter = 0;
}
void
FastScheduler::activateSendPacked()
{
globalData.sendPackedActivated = 1;
globalData.activateSendPacked = 0;
globalData.loopMax = 2048;
}//FastScheduler::activateSendPacked()
//------------------------------------------------------------------------
// sendPacked is executed at the end of the loop.
// To ensure that we don't send any messages before executing all local
// packed signals we do another turn in the loop (unless we have already
// executed too many signals in the loop).
//------------------------------------------------------------------------
void
FastScheduler::doJob()
{
Uint32 loopCount = 0;
Uint32 TminLoops = getBOccupancy() + EXTRA_SIGNALS_PER_DO_JOB;
Uint32 TloopMax = (Uint32)globalData.loopMax;
if (TminLoops < TloopMax) {
TloopMax = TminLoops;
}//if
if (TloopMax < MIN_NUMBER_OF_SIG_PER_DO_JOB) {
TloopMax = MIN_NUMBER_OF_SIG_PER_DO_JOB;
}//if
register Signal* signal = getVMSignals();
register Uint32 tHighPrio= globalData.highestAvailablePrio;
do{
while ((tHighPrio < LEVEL_IDLE) && (loopCount < TloopMax)) {
// signal->garbage_register();
// To ensure we find bugs quickly
register Uint32 gsnbnr = theJobBuffers[tHighPrio].retrieve(signal);
register BlockNumber reg_bnr = gsnbnr & 0xFFF;
register GlobalSignalNumber reg_gsn = gsnbnr >> 16;
globalData.incrementWatchDogCounter(1);
if (reg_bnr > 0) {
Uint32 tJobCounter = globalData.JobCounter;
Uint32 tJobLap = globalData.JobLap;
SimulatedBlock* b = globalData.getBlock(reg_bnr);
theJobPriority[tJobCounter] = (Uint8)tHighPrio;
globalData.JobCounter = (tJobCounter + 1) & 4095;
globalData.JobLap = tJobLap + 1;
#ifdef VM_TRACE_TIME
Uint32 us1, us2;
Uint64 ms1, ms2;
NdbTick_CurrentMicrosecond(&ms1, &us1);
b->m_currentGsn = reg_gsn;
#endif
getSections(signal->header.m_noOfSections, signal->m_sectionPtr);
#ifdef VM_TRACE
{
if (globalData.testOn) {
signal->header.theVerId_signalNumber = reg_gsn;
signal->header.theReceiversBlockNumber = reg_bnr;
globalSignalLoggers.executeSignal(signal->header,
tHighPrio,
&signal->theData[0],
globalData.ownId,
signal->m_sectionPtr,
signal->header.m_noOfSections);
}//if
}
#endif
b->executeFunction(reg_gsn, signal);
releaseSections(signal->header.m_noOfSections, signal->m_sectionPtr);
signal->header.m_noOfSections = 0;
#ifdef VM_TRACE_TIME
NdbTick_CurrentMicrosecond(&ms2, &us2);
Uint64 diff = ms2;
diff -= ms1;
diff *= 1000000;
diff += us2;
diff -= us1;
b->addTime(reg_gsn, diff);
#endif
tHighPrio = globalData.highestAvailablePrio;
} else {
tHighPrio++;
globalData.highestAvailablePrio = tHighPrio;
}//if
loopCount++;
}//while
sendPacked();
tHighPrio = globalData.highestAvailablePrio;
if(getBOccupancy() > MAX_OCCUPANCY)
{
if(loopCount != TloopMax)
abort();
assert( loopCount == TloopMax );
TloopMax += 512;
}
} while ((getBOccupancy() > MAX_OCCUPANCY) ||
((loopCount < TloopMax) &&
(tHighPrio < LEVEL_IDLE)));
theDoJobCallCounter ++;
theDoJobTotalCounter += loopCount;
if (theDoJobCallCounter == 8192) {
reportDoJobStatistics(theDoJobTotalCounter >> 13);
theDoJobCallCounter = 0;
theDoJobTotalCounter = 0;
}//if
}//FastScheduler::doJob()
void FastScheduler::sendPacked()
{
if (globalData.sendPackedActivated == 1) {
SimulatedBlock* b_lqh = globalData.getBlock(DBLQH);
SimulatedBlock* b_tc = globalData.getBlock(DBTC);
SimulatedBlock* b_tup = globalData.getBlock(DBTUP);
Signal* signal = getVMSignals();
b_lqh->executeFunction(GSN_SEND_PACKED, signal);
b_tc->executeFunction(GSN_SEND_PACKED, signal);
b_tup->executeFunction(GSN_SEND_PACKED, signal);
return;
} else if (globalData.activateSendPacked == 0) {
return;
} else {
activateSendPacked();
}//if
return;
}//FastScheduler::sendPacked()
Uint32
APZJobBuffer::retrieve(Signal* signal)
{
Uint32 tOccupancy = theOccupancy;
Uint32 myRPtr = rPtr;
BufferEntry& buf = buffer[myRPtr];
Uint32 gsnbnr;
Uint32 cond = (++myRPtr == bufSize) - 1;
Uint32 tRecBlockNo = buf.header.theReceiversBlockNumber;
if (tOccupancy != 0) {
if (tRecBlockNo != 0) {
// Transform protocol to signal.
rPtr = myRPtr & cond;
theOccupancy = tOccupancy - 1;
gsnbnr = buf.header.theVerId_signalNumber << 16 | tRecBlockNo;
Uint32 tSignalId = globalData.theSignalId;
Uint32 tLength = buf.header.theLength;
Uint32 tFirstData = buf.theDataRegister[0];
signal->header = buf.header;
// Recall our signal Id for restart purposes
buf.header.theSignalId = tSignalId;
globalData.theSignalId = tSignalId + 1;
Uint32* tDataRegPtr = &buf.theDataRegister[0];
Uint32* tSigDataPtr = signal->getDataPtrSend();
*tSigDataPtr = tFirstData;
tDataRegPtr++;
tSigDataPtr++;
Uint32 tLengthCopied = 1;
while (tLengthCopied < tLength) {
Uint32 tData0 = tDataRegPtr[0];
Uint32 tData1 = tDataRegPtr[1];
Uint32 tData2 = tDataRegPtr[2];
Uint32 tData3 = tDataRegPtr[3];
tDataRegPtr += 4;
tLengthCopied += 4;
tSigDataPtr[0] = tData0;
tSigDataPtr[1] = tData1;
tSigDataPtr[2] = tData2;
tSigDataPtr[3] = tData3;
tSigDataPtr += 4;
}//while
/**
* Copy sections references (copy all without if-statements)
*/
tDataRegPtr = &buf.theDataRegister[tLength];
SegmentedSectionPtr * tSecPtr = &signal->m_sectionPtr[0];
Uint32 tData0 = tDataRegPtr[0];
Uint32 tData1 = tDataRegPtr[1];
Uint32 tData2 = tDataRegPtr[2];
tSecPtr[0].i = tData0;
tSecPtr[1].i = tData1;
tSecPtr[2].i = tData2;
//---------------------------------------------------------
// Prefetch of buffer[rPtr] is done here. We prefetch for
// read both the first cache line and the next 64 byte
// entry
//---------------------------------------------------------
PREFETCH((void*)&buffer[rPtr]);
PREFETCH((void*)(((char*)&buffer[rPtr]) + 64));
return gsnbnr;
} else {
bnr_error();
return 0; // Will never come here, simply to keep GCC happy.
}//if
} else {
//------------------------------------------------------------
// The Job Buffer was empty, signal this by return zero.
//------------------------------------------------------------
return 0;
}//if
}//APZJobBuffer::retrieve()
void
APZJobBuffer::signal2buffer(Signal* signal,
BlockNumber bnr, GlobalSignalNumber gsn,
BufferEntry& buf)
{
Uint32 tSignalId = globalData.theSignalId;
Uint32 tFirstData = signal->theData[0];
Uint32 tLength = signal->header.theLength;
Uint32 tSigId = buf.header.theSignalId;
buf.header = signal->header;
buf.header.theVerId_signalNumber = gsn;
buf.header.theReceiversBlockNumber = bnr;
buf.header.theSendersSignalId = tSignalId - 1;
buf.header.theSignalId = tSigId;
buf.theDataRegister[0] = tFirstData;
Uint32 tLengthCopied = 1;
Uint32* tSigDataPtr = &signal->theData[1];
Uint32* tDataRegPtr = &buf.theDataRegister[1];
while (tLengthCopied < tLength) {
Uint32 tData0 = tSigDataPtr[0];
Uint32 tData1 = tSigDataPtr[1];
Uint32 tData2 = tSigDataPtr[2];
Uint32 tData3 = tSigDataPtr[3];
tLengthCopied += 4;
tSigDataPtr += 4;
tDataRegPtr[0] = tData0;
tDataRegPtr[1] = tData1;
tDataRegPtr[2] = tData2;
tDataRegPtr[3] = tData3;
tDataRegPtr += 4;
}//while
/**
* Copy sections references (copy all without if-statements)
*/
tDataRegPtr = &buf.theDataRegister[tLength];
SegmentedSectionPtr * tSecPtr = &signal->m_sectionPtr[0];
Uint32 tData0 = tSecPtr[0].i;
Uint32 tData1 = tSecPtr[1].i;
Uint32 tData2 = tSecPtr[2].i;
tDataRegPtr[0] = tData0;
tDataRegPtr[1] = tData1;
tDataRegPtr[2] = tData2;
}//APZJobBuffer::signal2buffer()
void
APZJobBuffer::insert(const SignalHeader * const sh,
const Uint32 * const theData, const Uint32 secPtrI[3]){
Uint32 tOccupancy = theOccupancy + 1;
Uint32 myWPtr = wPtr;
register BufferEntry& buf = buffer[myWPtr];
if (tOccupancy < bufSize) {
Uint32 cond = (++myWPtr == bufSize) - 1;
wPtr = myWPtr & cond;
theOccupancy = tOccupancy;
buf.header = * sh;
const Uint32 len = buf.header.theLength;
memcpy(buf.theDataRegister, theData, 4 * len);
memcpy(&buf.theDataRegister[len], &secPtrI[0], 4 * 3);
//---------------------------------------------------------
// Prefetch of buffer[wPtr] is done here. We prefetch for
// write both the first cache line and the next 64 byte
// entry
//---------------------------------------------------------
WRITEHINT((void*)&buffer[wPtr]);
WRITEHINT((void*)(((char*)&buffer[wPtr]) + 64));
} else {
jbuf_error();
}//if
}
APZJobBuffer::APZJobBuffer()
: bufSize(0), buffer(NULL), memRef(NULL)
{
clear();
}
APZJobBuffer::~APZJobBuffer()
{
delete [] buffer;
}
void
APZJobBuffer::newBuffer(int size)
{
buffer = new BufferEntry[size + 1]; // +1 to support "overrrun"
if(buffer){
#ifndef NDB_PURIFY
::memset(buffer, 0, (size * sizeof(BufferEntry)));
#endif
bufSize = size;
} else
bufSize = 0;
}
void
APZJobBuffer::clear()
{
rPtr = 0;
wPtr = 0;
theOccupancy = 0;
}
/**
* Function prototype for print_restart
*
* Defined later in this file
*/
void print_restart(FILE * output, Signal* signal, Uint32 aLevel);
void FastScheduler::dumpSignalMemory(FILE * output)
{
SignalT<25> signalT;
Signal &signal= *(Signal*)&signalT;
Uint32 ReadPtr[5];
Uint32 tJob;
Uint32 tLastJob;
fprintf(output, "\n");
if (globalData.JobLap > 4095) {
if (globalData.JobCounter != 0)
tJob = globalData.JobCounter - 1;
else
tJob = 4095;
tLastJob = globalData.JobCounter;
} else {
if (globalData.JobCounter == 0)
return; // No signals sent
else {
tJob = globalData.JobCounter - 1;
tLastJob = 4095;
}
}
ReadPtr[0] = theJobBuffers[0].getReadPtr();
ReadPtr[1] = theJobBuffers[1].getReadPtr();
ReadPtr[2] = theJobBuffers[2].getReadPtr();
ReadPtr[3] = theJobBuffers[3].getReadPtr();
do {
unsigned char tLevel = theJobPriority[tJob];
globalData.incrementWatchDogCounter(4);
if (ReadPtr[tLevel] == 0)
ReadPtr[tLevel] = theJobBuffers[tLevel].getBufSize() - 1;
else
ReadPtr[tLevel]--;
theJobBuffers[tLevel].retrieveDump(&signal, ReadPtr[tLevel]);
print_restart(output, &signal, tLevel);
if (tJob == 0)
tJob = 4095;
else
tJob--;
} while (tJob != tLastJob);
fflush(output);
}
void
FastScheduler::prio_level_error()
{
ERROR_SET(ecError, NDBD_EXIT_WRONG_PRIO_LEVEL,
"Wrong Priority Level", "FastScheduler.C");
}
void
jbuf_error()
{
ERROR_SET(ecError, NDBD_EXIT_BLOCK_JBUFCONGESTION,
"Job Buffer Full", "APZJobBuffer.C");
}
void
bnr_error()
{
ERROR_SET(ecError, NDBD_EXIT_BLOCK_BNR_ZERO,
"Block Number Zero", "FastScheduler.C");
}
void
print_restart(FILE * output, Signal* signal, Uint32 aLevel)
{
fprintf(output, "--------------- Signal ----------------\n");
SignalLoggerManager::printSignalHeader(output,
signal->header,
aLevel,
globalData.ownId,
true);
SignalLoggerManager::printSignalData (output,
signal->header,
&signal->theData[0]);
}
/**
* This method used to be a Cmvmi member function
* but is now a "ordinary" function"
*
* See TransporterCallback.cpp for explanation
*/
void
FastScheduler::reportDoJobStatistics(Uint32 tMeanLoopCount) {
SignalT<2> signalT;
Signal &signal= *(Signal*)&signalT;
memset(&signal.header, 0, sizeof(signal.header));
signal.header.theLength = 2;
signal.header.theSendersSignalId = 0;
signal.header.theSendersBlockRef = numberToRef(0, 0);
signal.theData[0] = NDB_LE_JobStatistic;
signal.theData[1] = tMeanLoopCount;
execute(&signal, JBA, CMVMI, GSN_EVENT_REP);
}
|