summaryrefslogtreecommitdiff
path: root/ndb/src/kernel/blocks/dbtux/DbtuxTree.cpp
blob: 5107a8d8e31f098cf727e81188681affa73c6a5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/* Copyright (C) 2003 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

#define DBTUX_TREE_CPP
#include "Dbtux.hpp"

/*
 * Add entry.  Handle the case when there is room for one more.  This
 * is the common case given slack in nodes.
 */
void
Dbtux::treeAdd(Frag& frag, TreePos treePos, TreeEnt ent)
{
  TreeHead& tree = frag.m_tree;
  NodeHandle node(frag);
  if (treePos.m_loc != NullTupLoc) {
    // non-empty tree
    jam();
    selectNode(node, treePos.m_loc);
    unsigned pos = treePos.m_pos;
    if (node.getOccup() < tree.m_maxOccup) {
      // node has room
      jam();
      nodePushUp(node, pos, ent, RNIL);
      return;
    }
    treeAddFull(frag, node, pos, ent);
    return;
  }
  jam();
  insertNode(node);
  nodePushUp(node, 0, ent, RNIL);
  node.setSide(2);
  tree.m_root = node.m_loc;
}

/*
 * Add entry when node is full.  Handle the case when there is g.l.b
 * node in left subtree with room for one more.  It will receive the min
 * entry of this node.  The min entry could be the entry to add.
 */
void
Dbtux::treeAddFull(Frag& frag, NodeHandle lubNode, unsigned pos, TreeEnt ent)
{
  TreeHead& tree = frag.m_tree;
  TupLoc loc = lubNode.getLink(0);
  if (loc != NullTupLoc) {
    // find g.l.b node
    NodeHandle glbNode(frag);
    do {
      jam();
      selectNode(glbNode, loc);
      loc = glbNode.getLink(1);
    } while (loc != NullTupLoc);
    if (glbNode.getOccup() < tree.m_maxOccup) {
      // g.l.b node has room
      jam();
      Uint32 scanList = RNIL;
      if (pos != 0) {
        jam();
        // add the new entry and return min entry
        nodePushDown(lubNode, pos - 1, ent, scanList);
      }
      // g.l.b node receives min entry from l.u.b node
      nodePushUp(glbNode, glbNode.getOccup(), ent, scanList);
      return;
    }
    treeAddNode(frag, lubNode, pos, ent, glbNode, 1);
    return;
  }
  treeAddNode(frag, lubNode, pos, ent, lubNode, 0);
}

/*
 * Add entry when there is no g.l.b node in left subtree or the g.l.b
 * node is full.  We must add a new left or right child node which
 * becomes the new g.l.b node.
 */
void
Dbtux::treeAddNode(Frag& frag, NodeHandle lubNode, unsigned pos, TreeEnt ent, NodeHandle parentNode, unsigned i)
{
  NodeHandle glbNode(frag);
  insertNode(glbNode);
  // connect parent and child
  parentNode.setLink(i, glbNode.m_loc);
  glbNode.setLink(2, parentNode.m_loc);
  glbNode.setSide(i);
  Uint32 scanList = RNIL;
  if (pos != 0) {
    jam();
    // add the new entry and return min entry
    nodePushDown(lubNode, pos - 1, ent, scanList);
  }
  // g.l.b node receives min entry from l.u.b node
  nodePushUp(glbNode, 0, ent, scanList);
  // re-balance the tree
  treeAddRebalance(frag, parentNode, i);
}

/*
 * Re-balance tree after adding a node.  The process starts with the
 * parent of the added node.
 */
void
Dbtux::treeAddRebalance(Frag& frag, NodeHandle node, unsigned i)
{
  while (true) {
    // height of subtree i has increased by 1
    int j = (i == 0 ? -1 : +1);
    int b = node.getBalance();
    if (b == 0) {
      // perfectly balanced
      jam();
      node.setBalance(j);
      // height change propagates up
    } else if (b == -j) {
      // height of shorter subtree increased
      jam();
      node.setBalance(0);
      // height of tree did not change - done
      break;
    } else if (b == j) {
      // height of longer subtree increased
      jam();
      NodeHandle childNode(frag);
      selectNode(childNode, node.getLink(i));
      int b2 = childNode.getBalance();
      if (b2 == b) {
        jam();
        treeRotateSingle(frag, node, i);
      } else if (b2 == -b) {
        jam();
        treeRotateDouble(frag, node, i);
      } else {
        // height of subtree increased so it cannot be perfectly balanced
        ndbrequire(false);
      }
      // height of tree did not increase - done
      break;
    } else {
      ndbrequire(false);
    }
    TupLoc parentLoc = node.getLink(2);
    if (parentLoc == NullTupLoc) {
      jam();
      // root node - done
      break;
    }
    i = node.getSide();
    selectNode(node, parentLoc);
  }
}

/*
 * Remove entry.  Optimize for nodes with slack.  Handle the case when
 * there is no underflow i.e. occupancy remains at least minOccup.  For
 * interior nodes this is a requirement.  For others it means that we do
 * not need to consider merge of semi-leaf and leaf.
 */
void
Dbtux::treeRemove(Frag& frag, TreePos treePos)
{
  TreeHead& tree = frag.m_tree;
  unsigned pos = treePos.m_pos;
  NodeHandle node(frag);
  selectNode(node, treePos.m_loc);
  TreeEnt ent;
  if (node.getOccup() > tree.m_minOccup) {
    // no underflow in any node type
    jam();
    nodePopDown(node, pos, ent, 0);
    return;
  }
  if (node.getChilds() == 2) {
    // underflow in interior node
    jam();
    treeRemoveInner(frag, node, pos);
    return;
  }
  // remove entry in semi/leaf
  nodePopDown(node, pos, ent, 0);
  if (node.getLink(0) != NullTupLoc) {
    jam();
    treeRemoveSemi(frag, node, 0);
    return;
  }
  if (node.getLink(1) != NullTupLoc) {
    jam();
    treeRemoveSemi(frag, node, 1);
    return;
  }
  treeRemoveLeaf(frag, node);
}

/*
 * Remove entry when interior node underflows.  There is g.l.b node in
 * left subtree to borrow an entry from.  The max entry of the g.l.b
 * node becomes the min entry of this node.
 */
void
Dbtux::treeRemoveInner(Frag& frag, NodeHandle lubNode, unsigned pos)
{
  TreeHead& tree = frag.m_tree;
  TreeEnt ent;
  // find g.l.b node
  NodeHandle glbNode(frag);
  TupLoc loc = lubNode.getLink(0);
  do {
    jam();
    selectNode(glbNode, loc);
    loc = glbNode.getLink(1);
  } while (loc != NullTupLoc);
  // borrow max entry from semi/leaf
  Uint32 scanList = RNIL;
  nodePopDown(glbNode, glbNode.getOccup() - 1, ent, &scanList);
  // g.l.b may be empty now
  // a descending scan may try to enter the empty g.l.b
  // we prevent this in scanNext
  nodePopUp(lubNode, pos, ent, scanList);
  if (glbNode.getLink(0) != NullTupLoc) {
    jam();
    treeRemoveSemi(frag, glbNode, 0);
    return;
  }
  treeRemoveLeaf(frag, glbNode);
}

/*
 * Handle semi-leaf after removing an entry.  Move entries from leaf to
 * semi-leaf to bring semi-leaf occupancy above minOccup, if possible.
 * The leaf may become empty.
 */
void
Dbtux::treeRemoveSemi(Frag& frag, NodeHandle semiNode, unsigned i)
{
  TreeHead& tree = frag.m_tree;
  ndbrequire(semiNode.getChilds() < 2);
  TupLoc leafLoc = semiNode.getLink(i);
  NodeHandle leafNode(frag);
  selectNode(leafNode, leafLoc);
  if (semiNode.getOccup() < tree.m_minOccup) {
    jam();
    unsigned cnt = min(leafNode.getOccup(), tree.m_minOccup - semiNode.getOccup());
    nodeSlide(semiNode, leafNode, cnt, i);
    if (leafNode.getOccup() == 0) {
      // remove empty leaf
      jam();
      treeRemoveNode(frag, leafNode);
    }
  }
}

/*
 * Handle leaf after removing an entry.  If parent is semi-leaf, move
 * entries to it as in the semi-leaf case.  If parent is interior node,
 * do nothing.
 */
void
Dbtux::treeRemoveLeaf(Frag& frag, NodeHandle leafNode)
{
  TreeHead& tree = frag.m_tree;
  TupLoc parentLoc = leafNode.getLink(2);
  if (parentLoc != NullTupLoc) {
    jam();
    NodeHandle parentNode(frag);
    selectNode(parentNode, parentLoc);
    unsigned i = leafNode.getSide();
    if (parentNode.getLink(1 - i) == NullTupLoc) {
      // parent is semi-leaf
      jam();
      if (parentNode.getOccup() < tree.m_minOccup) {
        jam();
        unsigned cnt = min(leafNode.getOccup(), tree.m_minOccup - parentNode.getOccup());
        nodeSlide(parentNode, leafNode, cnt, i);
      }
    }
  }
  if (leafNode.getOccup() == 0) {
    jam();
    // remove empty leaf
    treeRemoveNode(frag, leafNode);
  }
}

/*
 * Remove empty leaf.
 */
void
Dbtux::treeRemoveNode(Frag& frag, NodeHandle leafNode)
{
  TreeHead& tree = frag.m_tree;
  ndbrequire(leafNode.getChilds() == 0);
  TupLoc parentLoc = leafNode.getLink(2);
  unsigned i = leafNode.getSide();
  deleteNode(leafNode);
  if (parentLoc != NullTupLoc) {
    jam();
    NodeHandle parentNode(frag);
    selectNode(parentNode, parentLoc);
    parentNode.setLink(i, NullTupLoc);
    // re-balance the tree
    treeRemoveRebalance(frag, parentNode, i);
    return;
  }
  // tree is now empty
  tree.m_root = NullTupLoc;
}

/*
 * Re-balance tree after removing a node.  The process starts with the
 * parent of the removed node.
 */
void
Dbtux::treeRemoveRebalance(Frag& frag, NodeHandle node, unsigned i)
{
  while (true) {
    // height of subtree i has decreased by 1
    int j = (i == 0 ? -1 : +1);
    int b = node.getBalance();
    if (b == 0) {
      // perfectly balanced
      jam();
      node.setBalance(-j);
      // height of tree did not change - done
      return;
    } else if (b == j) {
      // height of longer subtree has decreased
      jam();
      node.setBalance(0);
      // height change propagates up
    } else if (b == -j) {
      // height of shorter subtree has decreased
      jam();
      // child on the other side
      NodeHandle childNode(frag);
      selectNode(childNode, node.getLink(1 - i));
      int b2 = childNode.getBalance();
      if (b2 == b) {
        jam();
        treeRotateSingle(frag, node, 1 - i);
        // height of tree decreased and propagates up
      } else if (b2 == -b) {
        jam();
        treeRotateDouble(frag, node, 1 - i);
        // height of tree decreased and propagates up
      } else {
        jam();
        treeRotateSingle(frag, node, 1 - i);
        // height of tree did not change - done
        return;
      }
    } else {
      ndbrequire(false);
    }
    TupLoc parentLoc = node.getLink(2);
    if (parentLoc == NullTupLoc) {
      jam();
      // root node - done
      return;
    }
    i = node.getSide();
    selectNode(node, parentLoc);
  }
}

/*
 * Single rotation about node 5.  One of LL (i=0) or RR (i=1).
 *
 *           0                   0
 *           |                   |
 *           5       ==>         3
 *         /   \               /   \
 *        3     6             2     5
 *       / \                 /     / \
 *      2   4               1     4   6
 *     /
 *    1
 *
 * In this change 5,3 and 2 must always be there. 0, 1, 2, 4 and 6 are
 * all optional. If 4 are there it changes side.
*/
void
Dbtux::treeRotateSingle(Frag& frag, NodeHandle& node, unsigned i)
{
  ndbrequire(i <= 1);
  /*
  5 is the old top node that have been unbalanced due to an insert or
  delete. The balance is still the old balance before the update.
  Verify that bal5 is 1 if RR rotate and -1 if LL rotate.
  */
  NodeHandle node5 = node;
  const TupLoc loc5 = node5.m_loc;
  const int bal5 = node5.getBalance();
  const int side5 = node5.getSide();
  ndbrequire(bal5 + (1 - i) == i);
  /*
  3 is the new root of this part of the tree which is to swap place with
  node 5. For an insert to cause this it must have the same balance as 5.
  For deletes it can have the balance 0.
  */
  TupLoc loc3 = node5.getLink(i);
  NodeHandle node3(frag);
  selectNode(node3, loc3);
  const int bal3 = node3.getBalance();
  /*
  2 must always be there but is not changed. Thus we mereley check that it
  exists.
  */
  ndbrequire(node3.getLink(i) != NullTupLoc);
  /*
  4 is not necessarily there but if it is there it will move from one
  side of 3 to the other side of 5. For LL it moves from the right side
  to the left side and for RR it moves from the left side to the right
  side. This means that it also changes parent from 3 to 5.
  */
  TupLoc loc4 = node3.getLink(1 - i);
  NodeHandle node4(frag);
  if (loc4 != NullTupLoc) {
    jam();
    selectNode(node4, loc4);
    ndbrequire(node4.getSide() == (1 - i) &&
               node4.getLink(2) == loc3);
    node4.setSide(i);
    node4.setLink(2, loc5);
  }//if

  /*
  Retrieve the address of 5's parent before it is destroyed
  */
  TupLoc loc0 = node5.getLink(2);

  /*
  The next step is to perform the rotation. 3 will inherit 5's parent 
  and side. 5 will become a child of 3 on the right side for LL and on
  the left side for RR.
  5 will get 3 as the parent. It will get 4 as a child and it will be
  on the right side of 3 for LL and left side of 3 for RR.
  The final step of the rotate is to check whether 5 originally had any
  parent. If it had not then 3 is the new root node.
  We will also verify some preconditions for the change to occur.
  1. 3 must have had 5 as parent before the change.
  2. 3's side is left for LL and right for RR before change.
  */
  ndbrequire(node3.getLink(2) == loc5);
  ndbrequire(node3.getSide() == i);
  node3.setLink(1 - i, loc5);
  node3.setLink(2, loc0);
  node3.setSide(side5);
  node5.setLink(i, loc4);
  node5.setLink(2, loc3);
  node5.setSide(1 - i);
  if (loc0 != NullTupLoc) {
    jam();
    NodeHandle node0(frag);
    selectNode(node0, loc0);
    node0.setLink(side5, loc3);
  } else {
    jam();
    frag.m_tree.m_root = loc3;
  }//if
  /* The final step of the change is to update the balance of 3 and
  5 that changed places. There are two cases here. The first case is
  when 3 unbalanced in the same direction by an insert or a delete.
  In this case the changes will make the tree balanced again for both
  3 and 5.
  The second case only occurs at deletes. In this case 3 starts out
  balanced. In the figure above this could occur if 4 starts out with
  a right node and the rotate is triggered by a delete of 6's only child.
  In this case 5 will change balance but still be unbalanced and 3 will
  be unbalanced in the opposite direction of 5.
  */
  if (bal3 == bal5) {
    jam();
    node3.setBalance(0);
    node5.setBalance(0);
  } else if (bal3 == 0) {
    jam();
    node3.setBalance(-bal5);
    node5.setBalance(bal5);
  } else {
    ndbrequire(false);
  }//if
  /*
  Set node to 3 as return parameter for enabling caller to continue
  traversing the tree.
  */
  node = node3;
}

/*
 * Double rotation about node 6.  One of LR (i=0) or RL (i=1).
 *
 *        0                  0
 *        |                  |
 *        6      ==>         4
 *       / \               /   \
 *      2   7             2     6
 *     / \               / \   / \
 *    1   4             1   3 5   7
 *       / \
 *      3   5
 *
 * In this change 6, 2 and 4 must be there, all others are optional.
 * We will start by proving a Lemma.
 * Lemma:
 *   The height of the sub-trees 1 and 7 and the maximum height of the
 *   threes from 3 and 5 are all the same.
 * Proof:
 *   maxheight(3,5) is defined as the maximum height of 3 and 5.
 *   If height(7) > maxheight(3,5) then the AVL condition is ok and we
 *   don't need to perform a rotation.
 *   If height(7) < maxheight(3,5) then the balance of 6 would be at least
 *   -3 which cannot happen in an AVL tree even before a rotation.
 *   Thus we conclude that height(7) == maxheight(3,5)
 *
 *   The next step is to prove that the height of 1 is equal to maxheight(3,5).
 *   If height(1) - 1 > maxheight(3,5) then we would have
 *   balance in 6 equal to -3 at least which cannot happen in an AVL-tree.
 *   If height(1) - 1 = maxheight(3,5) then we should have solved the
 *   unbalance with a single rotate and not with a double rotate.
 *   If height(1) + 1 = maxheight(3,5) then we would be doing a rotate
 *   with node 2 as the root of the rotation.
 *   If height(1) + k = maxheight(3,5) where k >= 2 then the tree could not have
 *   been an AVL-tree before the insert or delete.
 *   Thus we conclude that height(1) = maxheight(3,5)
 *
 *   Thus we conclude that height(1) = maxheight(3,5) = height(7).
 *
 * Observation:
 *   The balance of node 4 before the rotation can be any (-1, 0, +1).
 *
 * The following changes are needed:
 * Node 6:
 * 1) Changes parent from 0 -> 4
 * 2) 1 - i link stays the same
 * 3) i side link is derived from 1 - i side link from 4
 * 4) Side is set to 1 - i
 * 5) Balance change:
 *    If balance(4) == 0 then balance(6) = 0
 *      since height(3) = height(5) = maxheight(3,5) = height(7)
 *    If balance(4) == +1 then balance(6) = 0 
 *      since height(5) = maxheight(3,5) = height(7)
 *    If balance(4) == -1 then balance(6) = 1
 *      since height(5) + 1 = maxheight(3,5) = height(7)
 *
 * Node 2:
 * 1) Changes parent from 6 -> 4
 * 2) i side link stays the same
 * 3) 1 - i side link is derived from i side link of 4
 * 4) Side is set to i (thus not changed)
 * 5) Balance change:
 *    If balance(4) == 0 then balance(2) = 0
 *      since height(3) = height(5) = maxheight(3,5) = height(1)
 *    If balance(4) == -1 then balance(2) = 0 
 *      since height(3) = maxheight(3,5) = height(1)
 *    If balance(4) == +1 then balance(6) = 1
 *      since height(3) + 1 = maxheight(3,5) = height(1)
 *
 * Node 4:
 * 1) Inherits parent from 6
 * 2) i side link is 2
 * 3) 1 - i side link is 6
 * 4) Side is inherited from 6
 * 5) Balance(4) = 0 independent of previous balance
 *    Proof:
 *      If height(1) = 0 then only 2, 4 and 6 are involved and then it is
 *      trivially true.
 *      If height(1) >= 1 then we are sure that 1 and 7 exist with the same
 *      height and that if 3 and 5 exist they are of the same height as 1 and
 *      7 and thus we know that 4 is balanced since newheight(2) = newheight(6).
 *
 * If Node 3 exists:
 * 1) Change parent from 4 to 2
 * 2) Change side from i to 1 - i
 *
 * If Node 5 exists:
 * 1) Change parent from 4 to 6
 * 2) Change side from 1 - i to i
 * 
 * If Node 0 exists:
 * 1) previous link to 6 is replaced by link to 4 on proper side
 *
 * Node 1 and 7 needs no changes at all.
 * 
 * Some additional requires are that balance(2) = - balance(6) = -1/+1 since
 * otherwise we would do a single rotate.
 *
 * The balance(6) is -1 if i == 0 and 1 if i == 1
 *
 */
void
Dbtux::treeRotateDouble(Frag& frag, NodeHandle& node, unsigned i)
{
  TreeHead& tree = frag.m_tree;

  // old top node
  NodeHandle node6 = node;
  const TupLoc loc6 = node6.m_loc;
  // the un-updated balance
  const int bal6 = node6.getBalance();
  const unsigned side6 = node6.getSide();

  // level 1
  TupLoc loc2 = node6.getLink(i);
  NodeHandle node2(frag);
  selectNode(node2, loc2);
  const int bal2 = node2.getBalance();

  // level 2
  TupLoc loc4 = node2.getLink(1 - i);
  NodeHandle node4(frag);
  selectNode(node4, loc4);
  const int bal4 = node4.getBalance();

  ndbrequire(i <= 1);
  ndbrequire(bal6 + (1 - i) == i);
  ndbrequire(bal2 == -bal6);
  ndbrequire(node2.getLink(2) == loc6);
  ndbrequire(node2.getSide() == i);
  ndbrequire(node4.getLink(2) == loc2);

  // level 3
  TupLoc loc3 = node4.getLink(i);
  TupLoc loc5 = node4.getLink(1 - i);

  // fill up leaf before it becomes internal
  if (loc3 == NullTupLoc && loc5 == NullTupLoc) {
    jam();
    if (node4.getOccup() < tree.m_minOccup) {
      jam();
      unsigned cnt = tree.m_minOccup - node4.getOccup();
      ndbrequire(cnt < node2.getOccup());
      nodeSlide(node4, node2, cnt, i);
      ndbrequire(node4.getOccup() >= tree.m_minOccup);
      ndbrequire(node2.getOccup() != 0);
    }
  } else {
    if (loc3 != NullTupLoc) {
      jam();
      NodeHandle node3(frag);
      selectNode(node3, loc3);
      node3.setLink(2, loc2);
      node3.setSide(1 - i);
    }
    if (loc5 != NullTupLoc) {
      jam();
      NodeHandle node5(frag);
      selectNode(node5, loc5);
      node5.setLink(2, node6.m_loc);
      node5.setSide(i);
    }
  }
  // parent
  TupLoc loc0 = node6.getLink(2);
  NodeHandle node0(frag);
  // perform the rotation
  node6.setLink(i, loc5);
  node6.setLink(2, loc4);
  node6.setSide(1 - i);

  node2.setLink(1 - i, loc3);
  node2.setLink(2, loc4);

  node4.setLink(i, loc2);
  node4.setLink(1 - i, loc6);
  node4.setLink(2, loc0);
  node4.setSide(side6);

  if (loc0 != NullTupLoc) {
    jam();
    selectNode(node0, loc0);
    node0.setLink(side6, loc4);
  } else {
    jam();
    frag.m_tree.m_root = loc4;
  }
  // set balance of changed nodes
  node4.setBalance(0);
  if (bal4 == 0) {
    jam();
    node2.setBalance(0);
    node6.setBalance(0);
  } else if (bal4 == -bal2) {
    jam();
    node2.setBalance(0);
    node6.setBalance(bal2);
  } else if (bal4 == bal2) {
    jam();
    node2.setBalance(-bal2);
    node6.setBalance(0);
  } else {
    ndbrequire(false);
  }
  // new top node
  node = node4;
}