| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
variables
In MariaDB, we have a confusing problem where:
* The transaction_isolation option can be set in a configuration file, but it cannot be set dynamically.
* The tx_isolation system variable can be set dynamically, but it cannot be set in a configuration file.
Therefore, we have two different names for the same thing in different contexts. This is needlessly confusing, and it complicates the documentation. The same thing applys for transaction_read_only.
MySQL 5.7 solved this problem by making them into system variables. https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-20.html
This commit takes a similar approach by adding new system variables and marking the original ones as deprecated. This commit also resolves some legacy problems related to SET STATEMENT and transaction_isolation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main difference in code path between EQ_REF and REF is that for
REF we have to do an extra read_next on the index to check that there
is no more matching rows.
Before this patch we added a preference of EQ_REF by ensuring that REF
would always estimate to find at least 2 rows.
This patch adds the cost of the extra key read_next to REF access and
removes the code that limited REF to at least 2 rows. For some queries
this can have a big effect as the total estimated rows will be halved
for each REF table with 1 rows.
multi_range cost calculations are also changed to take into account
the difference between EQ_REF and REF.
The effect of the patch to the test suite:
- About 80 test case changed
- Almost all changes where for EXPLAIN where estimated rows for REF
where changed from 2 to 1.
- A few test cases using explain extended had a change of 'filtered'.
This is because of the estimated rows are now closer to the
calculated selectivity.
- A very few test had a change of table order.
This is because the change of estimated rows from 2 to 1 or the small
cost change for REF
(main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown,
main.distinct, main.join_nested, main.order_by, main.join_cache)
- No key statistics and the estimated rows are now smaller which cased
estimated filtering to be lower.
(main.subselect_sj_mat)
- The number of total rows are halved.
(main.derived_cond_pushdown)
- Plans with 1 row changed to use RANGE instead of REF.
(main.group_min_max)
- ALL changed to REF
(main.key_diff)
- Key changed from ref + index_only to PRIMARY key for InnoDB, as
OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than
OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST.
(main.join_outer_innodb)
- Cost changes printouts
(main.opt_trace*)
- Result order change
(innodb_gis.rtree)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.
Some of the things that caused changes in the result files:
- As part of fixing tests, I added 'echo' to some comments to be able to
easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
- Some test cases that required MATERIALIZED to repeat a bug was
changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
something smaller. This is because now filtered also takes into
account the smallest possible ref access and filters, even if they
where not used. Another reason for 'Filtered' being smaller is that
we now also take into account implicit filtering done for subqueries
using FIRSTMATCH.
(main.subselect_no_exists_to_in)
This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
have to read the blocks from disk that range optimizer has already read.
This can be confusing in the case where there is no obvious where clause
but instead there is a hidden 'key_column > NULL' added by the optimizer.
(main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
(It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
clustered primary key than one lookup trough a secondary.
(main.stat_tables_innodb)
Notes:
- There was a 4.7% more calls to best_extension_by_limited_search() in
the main.greedy_optimizer test. However examining the test results
it looked that the plans where slightly better (eq_ref where more
chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
changes in the plan and in all cases the new optimizer plans where
faster. (main.greedy_optimizer and some others)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The original code was mostly rule based and preferred clustered or
covering indexed independent of cost.
There where a few test changes:
- Some test changed from using filesort to index or table scan. This
happened when most of the rows had to be sorted and the ORDER BY could
use covering or a clustered index (innodb_mysql, create_spatial_index).
- Some test changed range to filesort. This where mainly because the range
was scanning most of the rows or using index scan + row lookup and
filesort with table scan is cheaper. (order_by).
- Change in join_cache was because sorting 2 rows is faster than retrieving
10 rows.
- In selectivity_innodb.test one test changed to use a cheaper index.
|
|\ |
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases of MDEV-29835 are fixed yet.
Failure to follow the correct latching order will cause deadlocks
of threads due to lock order inversion.
As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The DEBUG_SYNC test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.
We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.
buf_page_get_low(): If innodb_change_buffering_debug=1, to avoid
a hang, do not try to evict blocks if we are holding a latch on
a modified page. The test innodb.innodb-change-buffer-recovery
will be removed, because change buffering may no longer be forced
by debug injection when the change buffer comprises multiple pages.
Remove a debug assertion that could fail when
innodb_change_buffering_debug=1 fails to evict a page.
For other cases, the assertion is redundant, because we already
checked that right after the got_block: label. The test
innodb.innodb-change-buffering-recovery will be removed, because
due to this change, we will be unable to evict the desired page.
mtr_t::lock_register(): Register a change of a page latch
on an unmodified buffer-fixed block.
mtr_t::x_latch_at_savepoint(), mtr_t::sx_latch_at_savepoint():
Replaced by the use of mtr_t::upgrade_buffer_fix(), which now
also handles RW_S_LATCH.
mtr_t::set_modified(): For temporary tables, invoke
buf_page_t::set_modified() here and not in mtr_t::commit().
We will never set the MTR_MEMO_MODIFY flag on other than
persistent data pages, nor set mtr_t::m_modifications when
temporary data pages are modified.
mtr_t::commit(): Only invoke the buf_flush_note_modification() loop
if persistent data pages were modified.
mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.
btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.
btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as performing redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().
btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.
btr_cur_t::left_block: Remove. btr_pcur_move_backward_from_page()
can retrieve the left sibling from the end of mtr_t::m_memo.
btr_cur_t::open_leaf(): Some clean-up.
btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level). We will never release
parent page latches before acquiring leaf page latches. If we need to
temporarily release the level=1 page latch in the BTR_SEARCH_PREV or
BTR_MODIFY_PREV latch_mode, we will reposition the cursor on the
child node pointer so that we will land on the correct leaf page.
btr_cur_t::pessimistic_search_leaf(): Implement new BTR_MODIFY_TREE
latching logic in the case that page splits or merges will be needed.
The parent pages (and their siblings) should already be latched on
the first dive to the leaf and be present in mtr_t::m_memo; there
should be no need for BTR_CONT_MODIFY_TREE. This pre-latching almost
suffices; it must be revised in MDEV-29835 and work-arounds removed
for cases where mtr_t::get_already_latched() fails to find a block.
rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).
rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().
rtr_search(): Replaces rtr_pcur_open().
rtr_latch_leaves(): Replaces btr_cur_latch_leaves(). Note that unlike
in the B-tree code, there is no error handling in case the sibling
pages are corrupted.
rtr_cur_restore_position(): Remove an unused constant parameter.
btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.
row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.
BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.
BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().
btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().
ibuf_delete_rec(): Acquire exclusive ibuf.index->lock in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).
btr_blob_log_check_t(): Acquire a U latch on the root page,
so that btr_page_alloc() in btr_store_big_rec_extern_fields()
will avoid a deadlock.
btr_store_big_rec_extern_fields(): Assert that the root page latch
is being held.
Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
|
| | |
| | |
| | |
| | |
| | | |
This reverts commit f9cac8d2cbf82d4d616905fb3dfab34a9901179d
which was accidentally pushed prematurely.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases are fixed yet. Failure to
follow the correct latching order will cause deadlocks of threads
due to lock order inversion.
As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.
We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.
mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.
btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.
btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().
btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.
btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level).
btr_cur_t::pessimistic_search_leaf(): Implement the new
BTR_MODIFY_TREE latching logic in the case that page splits
or merges will be needed. The parent pages (and their siblings)
should already be latched on the first dive to the leaf and be
present in mtr_t::m_memo; there should be no need for
BTR_CONT_MODIFY_TREE. This pre-latching almost suffices;
MDEV-29835 will have to revise it and remove work-arounds where
mtr_t::get_already_latched() fails to find a block.
rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).
rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().
rtr_search(): Replaces rtr_pcur_open().
rtr_cur_restore_position(): Remove an unused constant parameter.
btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.
btr_cur_latch_leaves(): Update a pre-existing mtr_t::m_memo entry
for the current leaf page.
row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.
btr_cur_t::open_leaf(): Some clean-up.
mtr_t::lock_register(): Register a page latch on a buffer-fixed block.
BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.
BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().
btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().
ibuf_delete_rec(): Acquire ibuf.index->lock.u_lock() in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).
Tested by: Matthias Leich
|
|\ \ \
| |/ / |
|
| |\ \
| | |/ |
|
| | |\ |
|
| | | | |
|
| | |\ \
| | | |/ |
|
| | | |\ |
|
| | | | |\ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
spatial_index_info: Replaces index_tuple_info_t. Always take
a memory heap as a parameter to the member functions.
Remove pointer indirection for m_dtuple_vec.
spatial_index_info::add(): Duplicate any PRIMARY KEY fields that would
point to within ext->buf because that buffer will be allocated in
a shorter-lifetime memory heap.
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
InnoDB crash recovery can run out of memory before
commit 50324ce62448f284522ee1e3be24d8f5ba3bf904 in
MariaDB Server 10.5.
Let us disable some frequently failing recovery tests
in earlier versions.
|
|\ \ \ \ \ \
| |/ / / / / |
|
| |\ \ \ \ \
| | |/ / / / |
|
| | |\ \ \ \
| | | |/ / / |
|
| | | |\ \ \
| | | | |/ / |
|
| | | | |\ \
| | | | | |/ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
row_merge_read_clustered_index(): Do not call mem_heap_empty(row_heap)
before row_merge_spatial_rows() has been able to read the data.
|
| | | | | | |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
lock_place_prdt_page_lock(): Do not place locks on temporary tables.
Temporary tables can only be accessed from one connection, so
it does not make any sense to acquire any transactional locks on them.
|
|\ \ \ \ \ \
| |/ / / / / |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
solves, breaks usability
1. Store assignment failures on incompatible data types now raise errors if:
- STRICT_ALL_TABLES or STRICT_TRANS_TABLES sql_mode is used, and
- IGNORE is not used
Otherwise, only a warning is raised and the statement continues.
2. Changing the error/warning test as follows:
-ERROR HY000: Illegal parameter data types inet6 and int for operation 'SET'
+ERROR HY000: Cannot cast 'int' as 'inet6' in assignment of `db`.`t`.`col`
so in case of a big table it's easier to see which column has the problem.
The new error text is also applied to SP variables.
|
|\ \ \ \ \ \
| |/ / / / / |
|
| |\ \ \ \ \
| | |/ / / / |
|
| | |\ \ \ \
| | | |/ / / |
|
| | | |\ \ \
| | | | |/ / |
|
| | | | |\ \
| | | | | |/ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
and strings
|
| | | | |\ \
| | | | | |/ |
|
| | | | | |\ |
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
row_ins_sec_index_entry_low(): If a separate mini-transaction is
needed to adjust the minimum bounding rectangle (MBR) in the parent
page, we must disable redo logging if the table is a temporary table.
For temporary tables, no log is supposed to be written, because
the temporary tablespace will be reinitialized on server restart.
rtr_update_mbr_field(): Plug a memory leak.
|
|\ \ \ \ \ \ \
| |/ / / / / / |
|
| |\ \ \ \ \ \
| | |/ / / / / |
|
| | |\ \ \ \ \
| | | |/ / / / |
|
| | | | | | | |
|
|\ \ \ \ \ \ \
| |/ / / / / / |
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
ALTER
Now INSERT, UPDATE, ALTER statements involving incompatible data type pairs, e.g.:
UPDATE TABLE t1 SET col_inet6=col_int;
INSERT INTO t1 (col_inet6) SELECT col_in FROM t2;
ALTER TABLE t1 MODIFY col_inet6 INT;
consistently return an error at the statement preparation time:
ERROR HY000: Illegal parameter data types inet6 and int for operation 'SET'
and abort the statement before starting interating rows.
This error is the same with what is raised for queries like:
SELECT col_inet6 FROM t1 UNION SELECT col_int FROM t2;
SELECT COALESCE(col_inet6, col_int) FROM t1;
Before this change the error was caught only during the execution time,
when a Field_xxx::store_xxx() was called for the very firts row.
The behavior was not consistent between various statements and could do different things:
- abort the statement
- set a column to the data type default value (e.g. '::' for INET6)
- set a column to NULL
A typical old error was:
ERROR 22007: Incorrect inet6 value: '1' for column `test`.`t1`.`a` at row 1
EXCEPTION:
Note, there is an exception: a multi-row INSERT..VALUES, e.g.:
INSERT INTO t1 (col_a,col_b) VALUES (a1,b1),(a2,b2);
checks assignment compability at the preparation time for the very first row only:
(col_a,col_b) vs (a1,b1)
Other rows are still checked at the execution time and return the old warnings
or errors in case of a failure. This is done because catching all rows at the
preparation time would change behavior significantly. So it still works
according to the STRICT_XXX_TABLES sql_mode flags and the table transaction ability.
This is too late to change this behavior in 10.7.
There is no a firm decision yet if a multi-row INSERT..VALUES
behavior will change in later versions.
|
|\ \ \ \ \ \ \
| |/ / / / / / |
|
| |\ \ \ \ \ \
| | |/ / / / / |
|
| | |\ \ \ \ \
| | | |/ / / / |
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
This is based on commit 20ae4816bba712a3faa0110c973e197d92f43b42
with some adjustments for MDEV-12353.
row_ins_sec_index_entry_low(): If a separate mini-transaction is
needed to adjust the minimum bounding rectangle (MBR) in the parent
page, we must disable redo logging if the table is a temporary table.
For temporary tables, no log is supposed to be written, because
the temporary tablespace will be reinitialized on server restart.
rtr_update_mbr_field(), rtr_merge_and_update_mbr(): Changed the return
type to void and removed unreachable code. In older versions, these
used to return a different value for temporary tables.
page_id_t: Add constexpr to most member functions.
mtr_t::log_write(): Catch log writes to invalid tablespaces
so that the test case would crash without the fix to
row_ins_sec_index_entry_low().
|
|\ \ \ \ \ \ \
| |/ / / / / / |
|
| |\ \ \ \ \ \
| | |/ / / / / |
|
| | |\ \ \ \ \
| | | |/ / / / |
|