summaryrefslogtreecommitdiff
path: root/storage/innobase/row/row0undo.c
diff options
context:
space:
mode:
Diffstat (limited to 'storage/innobase/row/row0undo.c')
-rw-r--r--storage/innobase/row/row0undo.c377
1 files changed, 377 insertions, 0 deletions
diff --git a/storage/innobase/row/row0undo.c b/storage/innobase/row/row0undo.c
new file mode 100644
index 00000000000..3d739c9689a
--- /dev/null
+++ b/storage/innobase/row/row0undo.c
@@ -0,0 +1,377 @@
+/*****************************************************************************
+
+Copyright (c) 1997, 2009, Innobase Oy. All Rights Reserved.
+
+This program is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free Software
+Foundation; version 2 of the License.
+
+This program is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+Place, Suite 330, Boston, MA 02111-1307 USA
+
+*****************************************************************************/
+
+/**************************************************//**
+@file row/row0undo.c
+Row undo
+
+Created 1/8/1997 Heikki Tuuri
+*******************************************************/
+
+#include "row0undo.h"
+
+#ifdef UNIV_NONINL
+#include "row0undo.ic"
+#endif
+
+#include "fsp0fsp.h"
+#include "mach0data.h"
+#include "trx0rseg.h"
+#include "trx0trx.h"
+#include "trx0roll.h"
+#include "trx0undo.h"
+#include "trx0purge.h"
+#include "trx0rec.h"
+#include "que0que.h"
+#include "row0row.h"
+#include "row0uins.h"
+#include "row0umod.h"
+#include "row0upd.h"
+#include "row0mysql.h"
+#include "srv0srv.h"
+
+/* How to undo row operations?
+(1) For an insert, we have stored a prefix of the clustered index record
+in the undo log. Using it, we look for the clustered record, and using
+that we look for the records in the secondary indexes. The insert operation
+may have been left incomplete, if the database crashed, for example.
+We may have look at the trx id and roll ptr to make sure the record in the
+clustered index is really the one for which the undo log record was
+written. We can use the framework we get from the original insert op.
+(2) Delete marking: We can use the framework we get from the original
+delete mark op. We only have to check the trx id.
+(3) Update: This may be the most complicated. We have to use the framework
+we get from the original update op.
+
+What if the same trx repeatedly deletes and inserts an identical row.
+Then the row id changes and also roll ptr. What if the row id was not
+part of the ordering fields in the clustered index? Maybe we have to write
+it to undo log. Well, maybe not, because if we order the row id and trx id
+in descending order, then the only undeleted copy is the first in the
+index. Our searches in row operations always position the cursor before
+the first record in the result set. But, if there is no key defined for
+a table, then it would be desirable that row id is in ascending order.
+So, lets store row id in descending order only if it is not an ordering
+field in the clustered index.
+
+NOTE: Deletes and inserts may lead to situation where there are identical
+records in a secondary index. Is that a problem in the B-tree? Yes.
+Also updates can lead to this, unless trx id and roll ptr are included in
+ord fields.
+(1) Fix in clustered indexes: include row id, trx id, and roll ptr
+in node pointers of B-tree.
+(2) Fix in secondary indexes: include all fields in node pointers, and
+if an entry is inserted, check if it is equal to the right neighbor,
+in which case update the right neighbor: the neighbor must be delete
+marked, set it unmarked and write the trx id of the current transaction.
+
+What if the same trx repeatedly updates the same row, updating a secondary
+index field or not? Updating a clustered index ordering field?
+
+(1) If it does not update the secondary index and not the clustered index
+ord field. Then the secondary index record stays unchanged, but the
+trx id in the secondary index record may be smaller than in the clustered
+index record. This is no problem?
+(2) If it updates secondary index ord field but not clustered: then in
+secondary index there are delete marked records, which differ in an
+ord field. No problem.
+(3) Updates clustered ord field but not secondary, and secondary index
+is unique. Then the record in secondary index is just updated at the
+clustered ord field.
+(4)
+
+Problem with duplicate records:
+Fix 1: Add a trx op no field to all indexes. A problem: if a trx with a
+bigger trx id has inserted and delete marked a similar row, our trx inserts
+again a similar row, and a trx with an even bigger id delete marks it. Then
+the position of the row should change in the index if the trx id affects
+the alphabetical ordering.
+
+Fix 2: If an insert encounters a similar row marked deleted, we turn the
+insert into an 'update' of the row marked deleted. Then we must write undo
+info on the update. A problem: what if a purge operation tries to remove
+the delete marked row?
+
+We can think of the database row versions as a linked list which starts
+from the record in the clustered index, and is linked by roll ptrs
+through undo logs. The secondary index records are references which tell
+what kinds of records can be found in this linked list for a record
+in the clustered index.
+
+How to do the purge? A record can be removed from the clustered index
+if its linked list becomes empty, i.e., the row has been marked deleted
+and its roll ptr points to the record in the undo log we are going through,
+doing the purge. Similarly, during a rollback, a record can be removed
+if the stored roll ptr in the undo log points to a trx already (being) purged,
+or if the roll ptr is NULL, i.e., it was a fresh insert. */
+
+/********************************************************************//**
+Creates a row undo node to a query graph.
+@return own: undo node */
+UNIV_INTERN
+undo_node_t*
+row_undo_node_create(
+/*=================*/
+ trx_t* trx, /*!< in: transaction */
+ que_thr_t* parent, /*!< in: parent node, i.e., a thr node */
+ mem_heap_t* heap) /*!< in: memory heap where created */
+{
+ undo_node_t* undo;
+
+ ut_ad(trx && parent && heap);
+
+ undo = mem_heap_alloc(heap, sizeof(undo_node_t));
+
+ undo->common.type = QUE_NODE_UNDO;
+ undo->common.parent = parent;
+
+ undo->state = UNDO_NODE_FETCH_NEXT;
+ undo->trx = trx;
+
+ btr_pcur_init(&(undo->pcur));
+
+ undo->heap = mem_heap_create(256);
+
+ return(undo);
+}
+
+/***********************************************************//**
+Looks for the clustered index record when node has the row reference.
+The pcur in node is used in the search. If found, stores the row to node,
+and stores the position of pcur, and detaches it. The pcur must be closed
+by the caller in any case.
+@return TRUE if found; NOTE the node->pcur must be closed by the
+caller, regardless of the return value */
+UNIV_INTERN
+ibool
+row_undo_search_clust_to_pcur(
+/*==========================*/
+ undo_node_t* node) /*!< in: row undo node */
+{
+ dict_index_t* clust_index;
+ ibool found;
+ mtr_t mtr;
+ ibool ret;
+ rec_t* rec;
+ mem_heap_t* heap = NULL;
+ ulint offsets_[REC_OFFS_NORMAL_SIZE];
+ ulint* offsets = offsets_;
+ rec_offs_init(offsets_);
+
+ mtr_start(&mtr);
+
+ clust_index = dict_table_get_first_index(node->table);
+
+ found = row_search_on_row_ref(&(node->pcur), BTR_MODIFY_LEAF,
+ node->table, node->ref, &mtr);
+
+ rec = btr_pcur_get_rec(&(node->pcur));
+
+ offsets = rec_get_offsets(rec, clust_index, offsets,
+ ULINT_UNDEFINED, &heap);
+
+ if (!found || 0 != ut_dulint_cmp(node->roll_ptr,
+ row_get_rec_roll_ptr(rec, clust_index,
+ offsets))) {
+
+ /* We must remove the reservation on the undo log record
+ BEFORE releasing the latch on the clustered index page: this
+ is to make sure that some thread will eventually undo the
+ modification corresponding to node->roll_ptr. */
+
+ /* fputs("--------------------undoing a previous version\n",
+ stderr); */
+
+ ret = FALSE;
+ } else {
+ node->row = row_build(ROW_COPY_DATA, clust_index, rec,
+ offsets, NULL, &node->ext, node->heap);
+ if (node->update) {
+ node->undo_row = dtuple_copy(node->row, node->heap);
+ row_upd_replace(node->undo_row, &node->undo_ext,
+ clust_index, node->update, node->heap);
+ } else {
+ node->undo_row = NULL;
+ node->undo_ext = NULL;
+ }
+
+ btr_pcur_store_position(&(node->pcur), &mtr);
+
+ ret = TRUE;
+ }
+
+ btr_pcur_commit_specify_mtr(&(node->pcur), &mtr);
+
+ if (UNIV_LIKELY_NULL(heap)) {
+ mem_heap_free(heap);
+ }
+ return(ret);
+}
+
+/***********************************************************//**
+Fetches an undo log record and does the undo for the recorded operation.
+If none left, or a partial rollback completed, returns control to the
+parent node, which is always a query thread node.
+@return DB_SUCCESS if operation successfully completed, else error code */
+static
+ulint
+row_undo(
+/*=====*/
+ undo_node_t* node, /*!< in: row undo node */
+ que_thr_t* thr) /*!< in: query thread */
+{
+ ulint err;
+ trx_t* trx;
+ roll_ptr_t roll_ptr;
+ ibool locked_data_dict;
+
+ ut_ad(node && thr);
+
+ trx = node->trx;
+
+ if (node->state == UNDO_NODE_FETCH_NEXT) {
+
+ node->undo_rec = trx_roll_pop_top_rec_of_trx(trx,
+ trx->roll_limit,
+ &roll_ptr,
+ node->heap);
+ if (!node->undo_rec) {
+ /* Rollback completed for this query thread */
+
+ thr->run_node = que_node_get_parent(node);
+
+ return(DB_SUCCESS);
+ }
+
+ node->roll_ptr = roll_ptr;
+ node->undo_no = trx_undo_rec_get_undo_no(node->undo_rec);
+
+ if (trx_undo_roll_ptr_is_insert(roll_ptr)) {
+
+ node->state = UNDO_NODE_INSERT;
+ } else {
+ node->state = UNDO_NODE_MODIFY;
+ }
+
+ } else if (node->state == UNDO_NODE_PREV_VERS) {
+
+ /* Undo should be done to the same clustered index record
+ again in this same rollback, restoring the previous version */
+
+ roll_ptr = node->new_roll_ptr;
+
+ node->undo_rec = trx_undo_get_undo_rec_low(roll_ptr,
+ node->heap);
+ node->roll_ptr = roll_ptr;
+ node->undo_no = trx_undo_rec_get_undo_no(node->undo_rec);
+
+ if (trx_undo_roll_ptr_is_insert(roll_ptr)) {
+
+ node->state = UNDO_NODE_INSERT;
+ } else {
+ node->state = UNDO_NODE_MODIFY;
+ }
+ }
+
+ /* Prevent DROP TABLE etc. while we are rolling back this row.
+ If we are doing a TABLE CREATE or some other dictionary operation,
+ then we already have dict_operation_lock locked in x-mode. Do not
+ try to lock again, because that would cause a hang. */
+
+ locked_data_dict = (trx->dict_operation_lock_mode == 0);
+
+ if (locked_data_dict) {
+
+ row_mysql_lock_data_dictionary(trx);
+ }
+
+ if (node->state == UNDO_NODE_INSERT) {
+
+ err = row_undo_ins(node);
+
+ node->state = UNDO_NODE_FETCH_NEXT;
+ } else {
+ ut_ad(node->state == UNDO_NODE_MODIFY);
+ err = row_undo_mod(node, thr);
+ }
+
+ if (locked_data_dict) {
+
+ row_mysql_unlock_data_dictionary(trx);
+ }
+
+ /* Do some cleanup */
+ btr_pcur_close(&(node->pcur));
+
+ mem_heap_empty(node->heap);
+
+ thr->run_node = node;
+
+ return(err);
+}
+
+/***********************************************************//**
+Undoes a row operation in a table. This is a high-level function used
+in SQL execution graphs.
+@return query thread to run next or NULL */
+UNIV_INTERN
+que_thr_t*
+row_undo_step(
+/*==========*/
+ que_thr_t* thr) /*!< in: query thread */
+{
+ ulint err;
+ undo_node_t* node;
+ trx_t* trx;
+
+ ut_ad(thr);
+
+ srv_activity_count++;
+
+ trx = thr_get_trx(thr);
+
+ node = thr->run_node;
+
+ ut_ad(que_node_get_type(node) == QUE_NODE_UNDO);
+
+ err = row_undo(node, thr);
+
+ trx->error_state = err;
+
+ if (err != DB_SUCCESS) {
+ /* SQL error detected */
+
+ fprintf(stderr, "InnoDB: Fatal error %lu in rollback.\n",
+ (ulong) err);
+
+ if (err == DB_OUT_OF_FILE_SPACE) {
+ fprintf(stderr,
+ "InnoDB: Error 13 means out of tablespace.\n"
+ "InnoDB: Consider increasing"
+ " your tablespace.\n");
+
+ exit(1);
+ }
+
+ ut_error;
+
+ return(NULL);
+ }
+
+ return(thr);
+}