summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--mysql-test/main/selectivity.result75
-rw-r--r--mysql-test/main/selectivity.test83
-rw-r--r--mysql-test/main/selectivity_innodb.result75
-rw-r--r--mysql-test/main/selectivity_no_engine.result6
-rw-r--r--sql/sql_statistics.cc127
-rw-r--r--sql/sql_statistics.h19
6 files changed, 330 insertions, 55 deletions
diff --git a/mysql-test/main/selectivity.result b/mysql-test/main/selectivity.result
index b5a48d341ae..6159186644b 100644
--- a/mysql-test/main/selectivity.result
+++ b/mysql-test/main/selectivity.result
@@ -834,7 +834,7 @@ flush table t1;
set optimizer_use_condition_selectivity=4;
explain extended select * from t1 where a=0;
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t1 ALL NULL NULL NULL NULL 1025 0.39 Using where
+1 SIMPLE t1 ALL NULL NULL NULL NULL 1025 0.79 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a` from `test`.`t1` where `test`.`t1`.`a` = 0
drop table t1;
@@ -1649,7 +1649,7 @@ test.t1 analyze status Table is already up to date
# Check what info the optimizer has about selectivities
explain extended select * from t1 use index () where a in (17,51,5);
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t1 ALL NULL NULL NULL NULL 1000 3.90 Using where
+1 SIMPLE t1 ALL NULL NULL NULL NULL 1000 3.91 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a`,`test`.`t1`.`b` AS `b` from `test`.`t1` USE INDEX () where `test`.`t1`.`a` in (17,51,5)
explain extended select * from t1 use index () where b=2;
@@ -1941,9 +1941,76 @@ id select_type table type possible_keys key key_len ref rows filtered Extra
1 SIMPLE t1 ALL NULL NULL NULL NULL 5 25.00 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a` from `test`.`t1` where `test`.`t1`.`a` = 2
+DROP TABLE t1;
+# End of 10.2 tests
+#
+# MDEV-31067: selectivity_from_histogram >1.0 for a DOUBLE_PREC_HB histogram
+#
+create table t0(a int);
+insert into t0 select 1 from seq_1_to_78;
+create table t1(a int);
+insert into t1 select 1 from seq_1_to_26;
+create table t10 (a int);
+insert into t10 select 0 from t0, seq_1_to_4;
+insert into t10 select 8693 from t1;
+insert into t10 select 8694 from t1;
+insert into t10 select 8695 from t1;
+insert into t10 select 34783 from t1;
+insert into t10 select 34784 from t1;
+insert into t10 select 34785 from t1;
+insert into t10 select 34785 from t0, seq_1_to_8;
+insert into t10 select 65214 from t1;
+insert into t10 select 65215 from t1;
+insert into t10 select 65216 from t1;
+insert into t10 select 65216 from t0, seq_1_to_52;
+insert into t10 select 65217 from t1;
+insert into t10 select 65218 from t1;
+insert into t10 select 65219 from t1;
+insert into t10 select 65219 from t0;
+insert into t10 select 73913 from t1;
+insert into t10 select 73914 from t1;
+insert into t10 select 73915 from t1;
+insert into t10 select 73915 from t0, seq_1_to_40;
+insert into t10 select 78257 from t1;
+insert into t10 select 78258 from t1;
+insert into t10 select 78259 from t1;
+insert into t10 select 91300 from t1;
+insert into t10 select 91301 from t1;
+insert into t10 select 91302 from t1;
+insert into t10 select 91302 from t0, seq_1_to_6;
+insert into t10 select 91303 from t1;
+insert into t10 select 91304 from t1;
+insert into t10 select 91305 from t1;
+insert into t10 select 91305 from t0, seq_1_to_8;
+insert into t10 select 99998 from t1;
+insert into t10 select 99999 from t1;
+insert into t10 select 100000 from t1;
+set use_stat_tables=preferably;
+analyze table t10 persistent for all;
+Table Op Msg_type Msg_text
+test.t10 analyze status Engine-independent statistics collected
+test.t10 analyze status OK
+flush tables;
+set statement optimizer_trace=1 for
+explain select * from t10 where a in (91303);
+id select_type table type possible_keys key key_len ref rows Extra
+1 SIMPLE t10 ALL NULL NULL NULL NULL 9984 Using where
+# Must have selectivity_from_histogram <= 1.0:
+select json_detailed(json_extract(trace, '$**.selectivity_for_columns'))
+from information_schema.optimizer_trace;
+json_detailed(json_extract(trace, '$**.selectivity_for_columns'))
+[
+ [
+ {
+ "column_name": "a",
+ "ranges":
+ ["91303 <= a <= 91303"],
+ "selectivity_from_histogram": 0.035714283
+ }
+ ]
+]
+drop table t0,t1,t10;
set optimizer_use_condition_selectivity= @save_optimizer_use_condition_selectivity;
set histogram_size=@save_histogram_size;
set use_stat_tables= @save_use_stat_tables;
-DROP TABLE t1;
-# End of 10.2 tests
set @@global.histogram_size=@save_histogram_size;
diff --git a/mysql-test/main/selectivity.test b/mysql-test/main/selectivity.test
index 4e4513d09d6..556ffd76a22 100644
--- a/mysql-test/main/selectivity.test
+++ b/mysql-test/main/selectivity.test
@@ -1321,14 +1321,91 @@ EXPLAIN EXTENDED SELECT * FROM t1 WHERE a=2;
FLUSH TABLES;
EXPLAIN EXTENDED SELECT * FROM t1 WHERE a=2;
-set optimizer_use_condition_selectivity= @save_optimizer_use_condition_selectivity;
-set histogram_size=@save_histogram_size;
-set use_stat_tables= @save_use_stat_tables;
DROP TABLE t1;
--echo # End of 10.2 tests
+--echo #
+--echo # MDEV-31067: selectivity_from_histogram >1.0 for a DOUBLE_PREC_HB histogram
+--echo #
+create table t0(a int); # This holds how many rows we hold in a bucket.
+insert into t0 select 1 from seq_1_to_78;
+
+create table t1(a int); # one-third of a bucket
+insert into t1 select 1 from seq_1_to_26;
+
+create table t10 (a int);
+insert into t10 select 0 from t0, seq_1_to_4;
+
+insert into t10 select 8693 from t1;
+insert into t10 select 8694 from t1;
+insert into t10 select 8695 from t1;
+
+
+insert into t10 select 34783 from t1;
+insert into t10 select 34784 from t1;
+insert into t10 select 34785 from t1;
+
+
+insert into t10 select 34785 from t0, seq_1_to_8;
+
+insert into t10 select 65214 from t1;
+insert into t10 select 65215 from t1;
+insert into t10 select 65216 from t1;
+
+insert into t10 select 65216 from t0, seq_1_to_52;
+
+insert into t10 select 65217 from t1;
+insert into t10 select 65218 from t1;
+insert into t10 select 65219 from t1;
+
+insert into t10 select 65219 from t0;
+
+
+insert into t10 select 73913 from t1;
+insert into t10 select 73914 from t1;
+insert into t10 select 73915 from t1;
+
+insert into t10 select 73915 from t0, seq_1_to_40;
+
+
+insert into t10 select 78257 from t1;
+insert into t10 select 78258 from t1;
+insert into t10 select 78259 from t1;
+
+insert into t10 select 91300 from t1;
+insert into t10 select 91301 from t1;
+insert into t10 select 91302 from t1;
+
+insert into t10 select 91302 from t0, seq_1_to_6;
+
+insert into t10 select 91303 from t1; # Only 1/3rd of bucket matches the search tuple
+insert into t10 select 91304 from t1;
+insert into t10 select 91305 from t1;
+
+insert into t10 select 91305 from t0, seq_1_to_8;
+
+insert into t10 select 99998 from t1;
+insert into t10 select 99999 from t1;
+insert into t10 select 100000 from t1;
+
+set use_stat_tables=preferably;
+analyze table t10 persistent for all;
+flush tables;
+set statement optimizer_trace=1 for
+explain select * from t10 where a in (91303);
+
+#select * from information_schema.optimizer_trace;
+--echo # Must have selectivity_from_histogram <= 1.0:
+select json_detailed(json_extract(trace, '$**.selectivity_for_columns'))
+from information_schema.optimizer_trace;
+
+drop table t0,t1,t10;
+
+set optimizer_use_condition_selectivity= @save_optimizer_use_condition_selectivity;
+set histogram_size=@save_histogram_size;
+set use_stat_tables= @save_use_stat_tables;
#
# Clean up
#
diff --git a/mysql-test/main/selectivity_innodb.result b/mysql-test/main/selectivity_innodb.result
index 3edf6d8e929..fd0cea27a81 100644
--- a/mysql-test/main/selectivity_innodb.result
+++ b/mysql-test/main/selectivity_innodb.result
@@ -845,7 +845,7 @@ flush table t1;
set optimizer_use_condition_selectivity=4;
explain extended select * from t1 where a=0;
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t1 ALL NULL NULL NULL NULL 1025 0.39 Using where
+1 SIMPLE t1 ALL NULL NULL NULL NULL 1025 0.79 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a` from `test`.`t1` where `test`.`t1`.`a` = 0
drop table t1;
@@ -1661,7 +1661,7 @@ test.t1 analyze status OK
# Check what info the optimizer has about selectivities
explain extended select * from t1 use index () where a in (17,51,5);
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t1 ALL NULL NULL NULL NULL 1000 3.90 Using where
+1 SIMPLE t1 ALL NULL NULL NULL NULL 1000 3.91 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a`,`test`.`t1`.`b` AS `b` from `test`.`t1` USE INDEX () where `test`.`t1`.`a` in (17,51,5)
explain extended select * from t1 use index () where b=2;
@@ -1953,11 +1953,78 @@ id select_type table type possible_keys key key_len ref rows filtered Extra
1 SIMPLE t1 ALL NULL NULL NULL NULL 5 25.00 Using where
Warnings:
Note 1003 select `test`.`t1`.`a` AS `a` from `test`.`t1` where `test`.`t1`.`a` = 2
+DROP TABLE t1;
+# End of 10.2 tests
+#
+# MDEV-31067: selectivity_from_histogram >1.0 for a DOUBLE_PREC_HB histogram
+#
+create table t0(a int);
+insert into t0 select 1 from seq_1_to_78;
+create table t1(a int);
+insert into t1 select 1 from seq_1_to_26;
+create table t10 (a int);
+insert into t10 select 0 from t0, seq_1_to_4;
+insert into t10 select 8693 from t1;
+insert into t10 select 8694 from t1;
+insert into t10 select 8695 from t1;
+insert into t10 select 34783 from t1;
+insert into t10 select 34784 from t1;
+insert into t10 select 34785 from t1;
+insert into t10 select 34785 from t0, seq_1_to_8;
+insert into t10 select 65214 from t1;
+insert into t10 select 65215 from t1;
+insert into t10 select 65216 from t1;
+insert into t10 select 65216 from t0, seq_1_to_52;
+insert into t10 select 65217 from t1;
+insert into t10 select 65218 from t1;
+insert into t10 select 65219 from t1;
+insert into t10 select 65219 from t0;
+insert into t10 select 73913 from t1;
+insert into t10 select 73914 from t1;
+insert into t10 select 73915 from t1;
+insert into t10 select 73915 from t0, seq_1_to_40;
+insert into t10 select 78257 from t1;
+insert into t10 select 78258 from t1;
+insert into t10 select 78259 from t1;
+insert into t10 select 91300 from t1;
+insert into t10 select 91301 from t1;
+insert into t10 select 91302 from t1;
+insert into t10 select 91302 from t0, seq_1_to_6;
+insert into t10 select 91303 from t1;
+insert into t10 select 91304 from t1;
+insert into t10 select 91305 from t1;
+insert into t10 select 91305 from t0, seq_1_to_8;
+insert into t10 select 99998 from t1;
+insert into t10 select 99999 from t1;
+insert into t10 select 100000 from t1;
+set use_stat_tables=preferably;
+analyze table t10 persistent for all;
+Table Op Msg_type Msg_text
+test.t10 analyze status Engine-independent statistics collected
+test.t10 analyze status OK
+flush tables;
+set statement optimizer_trace=1 for
+explain select * from t10 where a in (91303);
+id select_type table type possible_keys key key_len ref rows Extra
+1 SIMPLE t10 ALL NULL NULL NULL NULL 9984 Using where
+# Must have selectivity_from_histogram <= 1.0:
+select json_detailed(json_extract(trace, '$**.selectivity_for_columns'))
+from information_schema.optimizer_trace;
+json_detailed(json_extract(trace, '$**.selectivity_for_columns'))
+[
+ [
+ {
+ "column_name": "a",
+ "ranges":
+ ["91303 <= a <= 91303"],
+ "selectivity_from_histogram": 0.035714283
+ }
+ ]
+]
+drop table t0,t1,t10;
set optimizer_use_condition_selectivity= @save_optimizer_use_condition_selectivity;
set histogram_size=@save_histogram_size;
set use_stat_tables= @save_use_stat_tables;
-DROP TABLE t1;
-# End of 10.2 tests
set @@global.histogram_size=@save_histogram_size;
set optimizer_switch=@save_optimizer_switch_for_selectivity_test;
set @tmp_ust= @@use_stat_tables;
diff --git a/mysql-test/main/selectivity_no_engine.result b/mysql-test/main/selectivity_no_engine.result
index 3811b12a1be..9cb1a54e0b1 100644
--- a/mysql-test/main/selectivity_no_engine.result
+++ b/mysql-test/main/selectivity_no_engine.result
@@ -36,12 +36,12 @@ test.t2 analyze status OK
# The following two must have the same in 'Extra' column:
explain extended select * from t2 where col1 IN (20, 180);
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t2 ALL NULL NULL NULL NULL 1100 1.35 Using where
+1 SIMPLE t2 ALL NULL NULL NULL NULL 1100 2.00 Using where
Warnings:
Note 1003 select `test`.`t2`.`col1` AS `col1` from `test`.`t2` where `test`.`t2`.`col1` in (20,180)
explain extended select * from t2 where col1 IN (180, 20);
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t2 ALL NULL NULL NULL NULL 1100 1.35 Using where
+1 SIMPLE t2 ALL NULL NULL NULL NULL 1100 2.00 Using where
Warnings:
Note 1003 select `test`.`t2`.`col1` AS `col1` from `test`.`t2` where `test`.`t2`.`col1` in (180,20)
drop table t1, t2;
@@ -102,7 +102,7 @@ test.t1 analyze status Engine-independent statistics collected
test.t1 analyze status OK
explain extended select * from t1 where col1 in (1,2,3);
id select_type table type possible_keys key key_len ref rows filtered Extra
-1 SIMPLE t1 ALL NULL NULL NULL NULL 10000 3.37 Using where
+1 SIMPLE t1 ALL NULL NULL NULL NULL 10000 3.00 Using where
Warnings:
Note 1003 select `test`.`t1`.`col1` AS `col1` from `test`.`t1` where `test`.`t1`.`col1` in (1,2,3)
# Must not cause fp division by zero, or produce nonsense numbers:
diff --git a/sql/sql_statistics.cc b/sql/sql_statistics.cc
index be011adb60c..7481d3fd6ae 100644
--- a/sql/sql_statistics.cc
+++ b/sql/sql_statistics.cc
@@ -3780,9 +3780,9 @@ double get_column_range_cardinality(Field *field,
field->key_length());
double pos= field->pos_in_interval(col_stats->min_value,
col_stats->max_value);
+ double n_distinct= col_non_nulls / avg_frequency;
res= col_non_nulls *
- hist->point_selectivity(pos,
- avg_frequency / col_non_nulls);
+ hist->point_selectivity(pos, col_non_nulls, n_distinct);
}
}
else if (avg_frequency == 0.0)
@@ -3840,8 +3840,10 @@ double get_column_range_cardinality(Field *field,
@param pos Position of the "const" between column's min_value and
max_value. This is a number in [0..1] range.
- @param avg_sel Average selectivity of condition "col=const" in this table.
- It is calcuated as (#non_null_values / #distinct_values).
+ @param n_rows Number of rows covered by the histogram. This is number
+ of rows in the table that have non-NULL values for this
+ column.
+ @param n_distinct Number of distinct values for the histogram column.
@return
Expected condition selectivity (a number between 0 and 1)
@@ -3868,7 +3870,8 @@ double get_column_range_cardinality(Field *field,
value.
*/
-double Histogram::point_selectivity(double pos, double avg_sel)
+double Histogram::point_selectivity(double pos, double n_rows,
+ double n_distinct)
{
double sel;
/* Find the bucket that contains the value 'pos'. */
@@ -3901,54 +3904,100 @@ double Histogram::point_selectivity(double pos, double avg_sel)
}
else
{
- /*
+ double n_distinct_regular_values, regular_value_rows, rows_for_regular_val;
+ /*
The value 'pos' fits within one single histogram bucket.
- Histogram buckets have the same numbers of rows, but they cover
- different ranges of values.
-
- We assume that values are uniformly distributed across the [0..1] value
- range.
- */
-
- /*
- If all buckets covered value ranges of the same size, the width of
- value range would be:
+ We consider values that do not fit into one histogram values "popular".
+ The value we're looking for is "regular", not popular.
+ Compute the average selectivity for regular values.
*/
- double avg_bucket_width= 1.0 / (get_width() + 1);
+ /* Number of distinct regular values in the table: */
+ n_distinct_regular_values= n_distinct - n_popular_values;
+
+ if (n_distinct_regular_values < 1.0)
+ goto handle_edge_case;
+
/*
- Let's see what is the width of value range that our bucket is covering.
- (min==max currently. they are kept in the formula just in case we
- will want to extend it to handle multi-bucket case)
+ How many rows have regular values? Look at the fraction of histogram
+ buckets that are not occupied by popular values.
*/
- double inv_prec_factor= (double) 1.0 / prec_factor();
- double current_bucket_width=
- (max + 1 == get_width() ? 1.0 : (get_value(max) * inv_prec_factor)) -
- (min == 0 ? 0.0 : (get_value(min-1) * inv_prec_factor));
+ regular_value_rows=
+ n_rows * (get_width() - n_popular_values_buckets) / get_width();
- DBUG_ASSERT(current_bucket_width); /* We shouldn't get a one zero-width bucket */
+ if (regular_value_rows < 1.0)
+ goto handle_edge_case;
- /*
- So:
- - each bucket has the same #rows
- - values are unformly distributed across the [min_value,max_value] domain.
+ /* Average #rows that a regular value has: */
+ rows_for_regular_val= regular_value_rows / n_distinct_regular_values;
- If a bucket has value range that's N times bigger then average, than
- each value will have to have N times fewer rows than average.
- */
- sel= avg_sel * avg_bucket_width / current_bucket_width;
+ /* Selectiving this many rows out of total table rows gives: */
+ sel= rows_for_regular_val / n_rows;
- /*
- (Q: if we just follow this proportion we may end up in a situation
- where number of different values we expect to find in this bucket
- exceeds the number of rows that this histogram has in a bucket. Are
- we ok with this or we would want to have certain caps?)
- */
+ /* Handle possible errors: */
+ if (sel <= 0.0 || sel > 1.0 / (get_width()))
+ {
+ DBUG_ASSERT(0);
+ handle_edge_case:
+ sel= 1.0 / (get_width());
+ }
}
return sel;
}
+
+/*
+ @brief
+ Compute n_popular_values and n_popular_values_buckets
+
+ @detail
+ They are used in point_selectivity().
+*/
+
+void Histogram::update_popular_value_counts()
+{
+ n_popular_values=0;
+ n_popular_values_buckets=0;
+
+ // This variable means "previous bucket was occupied by a popular value":
+ bool cur_value_popular= false;
+ uint prev_value= 0;
+
+ for (uint i=0; i < get_width(); i++)
+ {
+ uint left_endpoint= prev_value;
+ uint right_endpoint= get_value(i);
+
+ if (left_endpoint == right_endpoint)
+ {
+ /* This bucket is occupied by one value. It's a popular value */
+ n_popular_values_buckets++;
+ cur_value_popular= true;
+ }
+ else
+ {
+ if (cur_value_popular)
+ {
+ /*
+ The previous bucket (and maybe also buckets before it) was fully
+ occupied by a popular value.
+ */
+ n_popular_values++;
+
+ /* But current bucket is not (as left_endpoint!=right_endpoint) */
+ cur_value_popular= false;
+ }
+ }
+ prev_value= right_endpoint;
+ }
+
+ /* Check if the last bucket was occupied by a popular value */
+ if (cur_value_popular)
+ n_popular_values++;
+}
+
+
/*
Check whether the table is one of the persistent statistical tables.
*/
diff --git a/sql/sql_statistics.h b/sql/sql_statistics.h
index 35b3aa33acc..8bd00437e67 100644
--- a/sql/sql_statistics.h
+++ b/sql/sql_statistics.h
@@ -148,6 +148,15 @@ private:
uint8 size; /* Size of values array, in bytes */
uchar *values;
+ /*
+ Number of popular values in the histogram. A value is considered popular if
+ it occupies one whole bucket or more than that.
+ */
+ uint n_popular_value;
+
+ /* Number of buckets that are fully occupied by popular values. */
+ uint n_popular_values_buckets;
+
uint prec_factor()
{
switch (type) {
@@ -223,6 +232,8 @@ private:
return i;
}
+ /* Re-compute n_popular_values and n_popular_values_buckets */
+ void update_popular_value_counts();
public:
uint get_size() { return (uint) size; }
@@ -235,7 +246,11 @@ public:
void set_type (Histogram_type t) { type= t; }
- void set_values (uchar *vals) { values= (uchar *) vals; }
+ void set_values(uchar *vals)
+ {
+ values= (uchar *) vals;
+ update_popular_value_counts();
+ }
bool is_available() { return get_size() > 0 && get_values(); }
@@ -287,7 +302,7 @@ public:
/*
Estimate selectivity of "col=const" using a histogram
*/
- double point_selectivity(double pos, double avg_sel);
+ double point_selectivity(double pos, double n_rows, double n_distinct);
};