summaryrefslogtreecommitdiff
path: root/lib/crypto/crypto_scrypt-ref.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/crypto_scrypt-ref.c')
-rw-r--r--lib/crypto/crypto_scrypt-ref.c283
1 files changed, 0 insertions, 283 deletions
diff --git a/lib/crypto/crypto_scrypt-ref.c b/lib/crypto/crypto_scrypt-ref.c
deleted file mode 100644
index 1b0d514..0000000
--- a/lib/crypto/crypto_scrypt-ref.c
+++ /dev/null
@@ -1,283 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "sha256.h"
-#include "sysendian.h"
-
-#include "crypto_scrypt.h"
-
-static void blkcpy(uint8_t *, uint8_t *, size_t);
-static void blkxor(uint8_t *, uint8_t *, size_t);
-static void salsa20_8(uint8_t[64]);
-static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
-static uint64_t integerify(uint8_t *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
-
-static void
-blkcpy(uint8_t * dest, uint8_t * src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len; i++)
- dest[i] = src[i];
-}
-
-static void
-blkxor(uint8_t * dest, uint8_t * src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len; i++)
- dest[i] ^= src[i];
-}
-
-/**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
-static void
-salsa20_8(uint8_t B[64])
-{
- uint32_t B32[16];
- uint32_t x[16];
- size_t i;
-
- /* Convert little-endian values in. */
- for (i = 0; i < 16; i++)
- B32[i] = le32dec(&B[i * 4]);
-
- /* Compute x = doubleround^4(B32). */
- for (i = 0; i < 16; i++)
- x[i] = B32[i];
- for (i = 0; i < 8; i += 2) {
-#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
- /* Operate on columns. */
- x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
- x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
-
- x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
- x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
-
- x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
- x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
-
- x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
- x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
-
- /* Operate on rows. */
- x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
- x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
-
- x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
- x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
-
- x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
- x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
-
- x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
- x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
-#undef R
- }
-
- /* Compute B32 = B32 + x. */
- for (i = 0; i < 16; i++)
- B32[i] += x[i];
-
- /* Convert little-endian values out. */
- for (i = 0; i < 16; i++)
- le32enc(&B[4 * i], B32[i]);
-}
-
-/**
- * blockmix_salsa8(B, Y, r):
- * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
- * length; the temporary space Y must also be the same size.
- */
-static void
-blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
-{
- uint8_t X[64];
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &B[(2 * r - 1) * 64], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < 2 * r; i++) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &B[i * 64], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- blkcpy(&Y[i * 64], X, 64);
- }
-
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- for (i = 0; i < r; i++)
- blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
- for (i = 0; i < r; i++)
- blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(uint8_t * B, size_t r)
-{
- uint8_t * X = &B[(2 * r - 1) * 64];
-
- return (le64dec(X));
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
- * temporary storage V must be 128rN bytes in length; the temporary storage
- * XY must be 256r bytes in length. The value N must be a power of 2.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
-{
- uint8_t * X = XY;
- uint8_t * Y = &XY[128 * r];
- uint64_t i;
- uint64_t j;
-
- /* 1: X <-- B */
- blkcpy(X, B, 128 * r);
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i++) {
- /* 3: V_i <-- X */
- blkcpy(&V[i * (128 * r)], X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i++) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, &V[j * (128 * r)], 128 * r);
- blockmix_salsa8(X, Y, r);
- }
-
- /* 10: B' <-- X */
- blkcpy(B, X, 128 * r);
-}
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
- uint8_t * buf, size_t buflen)
-{
- uint8_t * B;
- uint8_t * V;
- uint8_t * XY;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- goto err0;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- goto err0;
- }
- if (((N & (N - 1)) != 0) || (N == 0)) {
- errno = EINVAL;
- goto err0;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > SIZE_MAX / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- goto err0;
- }
-
- /* Allocate memory. */
- if ((B = malloc(128 * r * p)) == NULL)
- goto err0;
- if ((XY = malloc(256 * r)) == NULL)
- goto err1;
- if ((V = malloc(128 * r * N)) == NULL)
- goto err2;
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
-
- /* Free memory. */
- free(V);
- free(XY);
- free(B);
-
- /* Success! */
- return (0);
-
-err2:
- free(XY);
-err1:
- free(B);
-err0:
- /* Failure! */
- return (-1);
-}