summaryrefslogtreecommitdiff
path: root/src/lopcodes.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/lopcodes.h')
-rw-r--r--src/lopcodes.h260
1 files changed, 165 insertions, 95 deletions
diff --git a/src/lopcodes.h b/src/lopcodes.h
index 2df72ce7..0b6b58f3 100644
--- a/src/lopcodes.h
+++ b/src/lopcodes.h
@@ -1,5 +1,5 @@
/*
-** $Id: lopcodes.h,v 1.68 2000/10/24 16:05:59 roberto Exp $
+** $Id: lopcodes.h,v 1.102 2002/08/21 18:56:09 roberto Exp $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
@@ -12,29 +12,58 @@
/*===========================================================================
We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits. Moreover,
- an instruction can have 0, 1, or 2 arguments. Instructions can
- have the following types:
- type 0: no arguments
- type 1: 1 unsigned argument in the higher bits (called `U')
- type 2: 1 signed argument in the higher bits (`S')
- type 3: 1st unsigned argument in the higher bits (`A')
- 2nd unsigned argument in the middle bits (`B')
+ All instructions have an opcode in the first 6 bits.
+ Instructions can have the following fields:
+ `A' : 8 bits
+ `B' : 9 bits
+ `C' : 9 bits
+ `Bx' : 18 bits (`B' and `C' together)
+ `sBx' : signed Bx
A signed argument is represented in excess K; that is, the number
value is the unsigned value minus K. K is exactly the maximum value
for that argument (so that -max is represented by 0, and +max is
represented by 2*max), which is half the maximum for the corresponding
unsigned argument.
-
- The size of each argument is defined in `llimits.h'. The usual is an
- instruction with 32 bits, U arguments with 26 bits (32-6), B arguments
- with 9 bits, and A arguments with 17 bits (32-6-9). For small
- installations, the instruction size can be 16, so U has 10 bits,
- and A and B have 5 bits each.
===========================================================================*/
+enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
+
+
+/*
+** size and position of opcode arguments.
+*/
+#define SIZE_C 9
+#define SIZE_B 9
+#define SIZE_Bx (SIZE_C + SIZE_B)
+#define SIZE_A 8
+
+#define SIZE_OP 6
+
+#define POS_C SIZE_OP
+#define POS_B (POS_C + SIZE_C)
+#define POS_Bx POS_C
+#define POS_A (POS_B + SIZE_B)
+
+
+/*
+** limits for opcode arguments.
+** we use (signed) int to manipulate most arguments,
+** so they must fit in BITS_INT-1 bits (-1 for sign)
+*/
+#if SIZE_Bx < BITS_INT-1
+#define MAXARG_Bx ((1<<SIZE_Bx)-1)
+#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
+#else
+#define MAXARG_Bx MAX_INT
+#define MAXARG_sBx MAX_INT
+#endif
+
+
+#define MAXARG_A ((1<<SIZE_A)-1)
+#define MAXARG_B ((1<<SIZE_B)-1)
+#define MAXARG_C ((1<<SIZE_C)-1)
/* creates a mask with `n' 1 bits at position `p' */
@@ -47,122 +76,163 @@
** the following macros help to manipulate instructions
*/
-#define CREATE_0(o) ((Instruction)(o))
-#define GET_OPCODE(i) ((OpCode)((i)&MASK1(SIZE_OP,0)))
-#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,0)) | (Instruction)(o)))
+#define GET_OPCODE(i) (cast(OpCode, (i)&MASK1(SIZE_OP,0)))
+#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,0)) | cast(Instruction, o)))
-#define CREATE_U(o,u) ((Instruction)(o) | ((Instruction)(u)<<POS_U))
-#define GETARG_U(i) ((int)((i)>>POS_U))
-#define SETARG_U(i,u) ((i) = (((i)&MASK0(SIZE_U,POS_U)) | \
- ((Instruction)(u)<<POS_U)))
+#define GETARG_A(i) (cast(int, (i)>>POS_A))
+#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
+ ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
-#define CREATE_S(o,s) CREATE_U((o),(s)+MAXARG_S)
-#define GETARG_S(i) (GETARG_U(i)-MAXARG_S)
-#define SETARG_S(i,s) SETARG_U((i),(s)+MAXARG_S)
+#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
+#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
+ ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
+
+#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
+#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
+ ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
+
+#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
+#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
+ ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
+
+#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
+#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
+
+
+#define CREATE_ABC(o,a,b,c) (cast(Instruction, o) \
+ | (cast(Instruction, a)<<POS_A) \
+ | (cast(Instruction, b)<<POS_B) \
+ | (cast(Instruction, c)<<POS_C))
+
+#define CREATE_ABx(o,a,bc) (cast(Instruction, o) \
+ | (cast(Instruction, a)<<POS_A) \
+ | (cast(Instruction, bc)<<POS_Bx))
-#define CREATE_AB(o,a,b) ((Instruction)(o) | ((Instruction)(a)<<POS_A) \
- | ((Instruction)(b)<<POS_B))
-#define GETARG_A(i) ((int)((i)>>POS_A))
-#define SETARG_A(i,a) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
- ((Instruction)(a)<<POS_A)))
-#define GETARG_B(i) ((int)(((i)>>POS_B) & MASK1(SIZE_B,0)))
-#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
- ((Instruction)(b)<<POS_B)))
/*
-** K = U argument used as index to `kstr'
-** J = S argument used as jump offset (relative to pc of next instruction)
-** L = unsigned argument used as index of local variable
-** N = U argument used as index to `knum'
+** invalid register that fits in 8 bits
+*/
+#define NO_REG MAXARG_A
+
+
+/*
+** R(x) - register
+** Kst(x) - constant (in constant table)
+** RK(x) == if x < MAXSTACK then R(x) else Kst(x-MAXSTACK)
+*/
+
+
+/*
+** grep "ORDER OP" if you change these enums
*/
typedef enum {
/*----------------------------------------------------------------------
-name args stack before stack after side effects
+name args description
------------------------------------------------------------------------*/
-OP_END,/* - - (return) no results */
-OP_RETURN,/* U v_n-v_x(at u) (return) returns v_x-v_n */
+OP_MOVE,/* A B R(A) := R(B) */
+OP_LOADK,/* A Bx R(A) := Kst(Bx) */
+OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) PC++ */
+OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
+OP_GETUPVAL,/* A B R(A) := UpValue[B] */
-OP_CALL,/* A B v_n-v_1 f(at a) r_b-r_1 f(v1,...,v_n) */
-OP_TAILCALL,/* A B v_n-v_1 f(at a) (return) f(v1,...,v_n) */
+OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
+OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
-OP_PUSHNIL,/* U - nil_1-nil_u */
-OP_POP,/* U a_u-a_1 - */
+OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
+OP_SETUPVAL,/* A B UpValue[B] := R(A) */
+OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
-OP_PUSHINT,/* S - (Number)s */
-OP_PUSHSTRING,/* K - KSTR[k] */
-OP_PUSHNUM,/* N - KNUM[n] */
-OP_PUSHNEGNUM,/* N - -KNUM[n] */
+OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
-OP_PUSHUPVALUE,/* U - Closure[u] */
+OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
-OP_GETLOCAL,/* L - LOC[l] */
-OP_GETGLOBAL,/* K - VAR[KSTR[k]] */
+OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
+OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
+OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
+OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
+OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
+OP_UNM,/* A B R(A) := -R(B) */
+OP_NOT,/* A B R(A) := not R(B) */
-OP_GETTABLE,/* - i t t[i] */
-OP_GETDOTTED,/* K t t[KSTR[k]] */
-OP_GETINDEXED,/* L t t[LOC[l]] */
-OP_PUSHSELF,/* K t t t[KSTR[k]] */
+OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
-OP_CREATETABLE,/* U - newarray(size = u) */
+OP_JMP,/* sBx PC += sBx */
-OP_SETLOCAL,/* L x - LOC[l]=x */
-OP_SETGLOBAL,/* K x - VAR[KSTR[k]]=x */
-OP_SETTABLE,/* A B v a_a-a_1 i t (pops b values) t[i]=v */
+OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
+OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
+OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
-OP_SETLIST,/* A B v_b-v_1 t t t[i+a*FPF]=v_i */
-OP_SETMAP,/* U v_u k_u - v_1 k_1 t t t[k_i]=v_i */
+OP_TEST,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
-OP_ADD,/* - y x x+y */
-OP_ADDI,/* S x x+s */
-OP_SUB,/* - y x x-y */
-OP_MULT,/* - y x x*y */
-OP_DIV,/* - y x x/y */
-OP_POW,/* - y x x^y */
-OP_CONCAT,/* U v_u-v_1 v1..-..v_u */
-OP_MINUS,/* - x -x */
-OP_NOT,/* - x (x==nil)? 1 : nil */
+OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
+OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
+OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
-OP_JMPNE,/* J y x - (x~=y)? PC+=s */
-OP_JMPEQ,/* J y x - (x==y)? PC+=s */
-OP_JMPLT,/* J y x - (x<y)? PC+=s */
-OP_JMPLE,/* J y x - (x<y)? PC+=s */
-OP_JMPGT,/* J y x - (x>y)? PC+=s */
-OP_JMPGE,/* J y x - (x>=y)? PC+=s */
+OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then PC+= sBx */
-OP_JMPT,/* J x - (x~=nil)? PC+=s */
-OP_JMPF,/* J x - (x==nil)? PC+=s */
-OP_JMPONT,/* J x (x~=nil)? x : - (x~=nil)? PC+=s */
-OP_JMPONF,/* J x (x==nil)? x : - (x==nil)? PC+=s */
-OP_JMP,/* J - - PC+=s */
+OP_TFORLOOP,/* A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
+ if R(A+2) ~= nil then pc++ */
+OP_TFORPREP,/* A sBx if type(R(A)) == table then R(A+1):=R(A), R(A):=next;
+ PC += sBx */
-OP_PUSHNILJMP,/* - - nil PC++; */
+OP_SETLIST,/* A Bx R(A)[Bx-Bx%FPF+i] := R(A+i), 1 <= i <= Bx%FPF+1 */
+OP_SETLISTO,/* A Bx */
-OP_FORPREP,/* J */
-OP_FORLOOP,/* J */
+OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
+OP_CLOSURE/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
+} OpCode;
-OP_LFORPREP,/* J */
-OP_LFORLOOP,/* J */
-OP_CLOSURE/* A B v_b-v_1 closure(KPROTO[a], v_1-v_b) */
+#define NUM_OPCODES (cast(int, OP_CLOSURE+1))
+
-} OpCode;
-#define NUM_OPCODES ((int)OP_CLOSURE+1)
+/*===========================================================================
+ Notes:
+ (1) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
+ and can be 0: OP_CALL then sets `top' to last_result+1, so
+ next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
+
+ (2) In OP_RETURN, if (B == 0) then return up to `top'
+
+ (3) For comparisons, B specifies what conditions the test should accept.
+
+ (4) All `skips' (pc++) assume that next instruction is a jump
+===========================================================================*/
-#define ISJUMP(o) (OP_JMPNE <= (o) && (o) <= OP_JMP)
+/*
+** masks for instruction properties
+*/
+enum OpModeMask {
+ OpModeBreg = 2, /* B is a register */
+ OpModeBrk, /* B is a register/constant */
+ OpModeCrk, /* C is a register/constant */
+ OpModesetA, /* instruction set register A */
+ OpModeK, /* Bx is a constant */
+ OpModeT /* operator is a test */
+
+};
+extern const lu_byte luaP_opmodes[NUM_OPCODES];
-/* special code to fit a LUA_MULTRET inside an argB */
-#define MULT_RET 255 /* (<=MAXARG_B) */
-#if MULT_RET>MAXARG_B
-#undef MULT_RET
-#define MULT_RET MAXARG_B
+#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
+#define testOpMode(m, b) (luaP_opmodes[m] & (1 << (b)))
+
+
+#ifdef LUA_OPNAMES
+extern const char *const luaP_opnames[]; /* opcode names */
#endif
+
+/* number of list items to accumulate before a SETLIST instruction */
+/* (must be a power of 2) */
+#define LFIELDS_PER_FLUSH 32
+
+
#endif