1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
|
//===- Parser.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Tools/PDLL/Parser/Parser.h"
#include "Lexer.h"
#include "mlir/Support/IndentedOstream.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/TableGen/Argument.h"
#include "mlir/TableGen/Attribute.h"
#include "mlir/TableGen/Constraint.h"
#include "mlir/TableGen/Format.h"
#include "mlir/TableGen/Operator.h"
#include "mlir/Tools/PDLL/AST/Context.h"
#include "mlir/Tools/PDLL/AST/Diagnostic.h"
#include "mlir/Tools/PDLL/AST/Nodes.h"
#include "mlir/Tools/PDLL/AST/Types.h"
#include "mlir/Tools/PDLL/ODS/Constraint.h"
#include "mlir/Tools/PDLL/ODS/Context.h"
#include "mlir/Tools/PDLL/ODS/Operation.h"
#include "mlir/Tools/PDLL/Parser/CodeComplete.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Parser.h"
#include <string>
#include <optional>
using namespace mlir;
using namespace mlir::pdll;
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
namespace {
class Parser {
public:
Parser(ast::Context &ctx, llvm::SourceMgr &sourceMgr,
bool enableDocumentation, CodeCompleteContext *codeCompleteContext)
: ctx(ctx), lexer(sourceMgr, ctx.getDiagEngine(), codeCompleteContext),
curToken(lexer.lexToken()), enableDocumentation(enableDocumentation),
typeTy(ast::TypeType::get(ctx)), valueTy(ast::ValueType::get(ctx)),
typeRangeTy(ast::TypeRangeType::get(ctx)),
valueRangeTy(ast::ValueRangeType::get(ctx)),
attrTy(ast::AttributeType::get(ctx)),
codeCompleteContext(codeCompleteContext) {}
/// Try to parse a new module. Returns nullptr in the case of failure.
FailureOr<ast::Module *> parseModule();
private:
/// The current context of the parser. It allows for the parser to know a bit
/// about the construct it is nested within during parsing. This is used
/// specifically to provide additional verification during parsing, e.g. to
/// prevent using rewrites within a match context, matcher constraints within
/// a rewrite section, etc.
enum class ParserContext {
/// The parser is in the global context.
Global,
/// The parser is currently within a Constraint, which disallows all types
/// of rewrites (e.g. `erase`, `replace`, calls to Rewrites, etc.).
Constraint,
/// The parser is currently within the matcher portion of a Pattern, which
/// is allows a terminal operation rewrite statement but no other rewrite
/// transformations.
PatternMatch,
/// The parser is currently within a Rewrite, which disallows calls to
/// constraints, requires operation expressions to have names, etc.
Rewrite,
};
/// The current specification context of an operations result type. This
/// indicates how the result types of an operation may be inferred.
enum class OpResultTypeContext {
/// The result types of the operation are not known to be inferred.
Explicit,
/// The result types of the operation are inferred from the root input of a
/// `replace` statement.
Replacement,
/// The result types of the operation are inferred by using the
/// `InferTypeOpInterface` interface provided by the operation.
Interface,
};
//===--------------------------------------------------------------------===//
// Parsing
//===--------------------------------------------------------------------===//
/// Push a new decl scope onto the lexer.
ast::DeclScope *pushDeclScope() {
ast::DeclScope *newScope =
new (scopeAllocator.Allocate()) ast::DeclScope(curDeclScope);
return (curDeclScope = newScope);
}
void pushDeclScope(ast::DeclScope *scope) { curDeclScope = scope; }
/// Pop the last decl scope from the lexer.
void popDeclScope() { curDeclScope = curDeclScope->getParentScope(); }
/// Parse the body of an AST module.
LogicalResult parseModuleBody(SmallVectorImpl<ast::Decl *> &decls);
/// Try to convert the given expression to `type`. Returns failure and emits
/// an error if a conversion is not viable. On failure, `noteAttachFn` is
/// invoked to attach notes to the emitted error diagnostic. On success,
/// `expr` is updated to the expression used to convert to `type`.
LogicalResult convertExpressionTo(
ast::Expr *&expr, ast::Type type,
function_ref<void(ast::Diagnostic &diag)> noteAttachFn = {});
LogicalResult
convertOpExpressionTo(ast::Expr *&expr, ast::OperationType exprType,
ast::Type type,
function_ref<ast::InFlightDiagnostic()> emitErrorFn);
LogicalResult convertTupleExpressionTo(
ast::Expr *&expr, ast::TupleType exprType, ast::Type type,
function_ref<ast::InFlightDiagnostic()> emitErrorFn,
function_ref<void(ast::Diagnostic &diag)> noteAttachFn);
/// Given an operation expression, convert it to a Value or ValueRange
/// typed expression.
ast::Expr *convertOpToValue(const ast::Expr *opExpr);
/// Lookup ODS information for the given operation, returns nullptr if no
/// information is found.
const ods::Operation *lookupODSOperation(std::optional<StringRef> opName) {
return opName ? ctx.getODSContext().lookupOperation(*opName) : nullptr;
}
/// Process the given documentation string, or return an empty string if
/// documentation isn't enabled.
StringRef processDoc(StringRef doc) {
return enableDocumentation ? doc : StringRef();
}
/// Process the given documentation string and format it, or return an empty
/// string if documentation isn't enabled.
std::string processAndFormatDoc(const Twine &doc) {
if (!enableDocumentation)
return "";
std::string docStr;
{
llvm::raw_string_ostream docOS(docStr);
std::string tmpDocStr = doc.str();
raw_indented_ostream(docOS).printReindented(
StringRef(tmpDocStr).rtrim(" \t"));
}
return docStr;
}
//===--------------------------------------------------------------------===//
// Directives
LogicalResult parseDirective(SmallVectorImpl<ast::Decl *> &decls);
LogicalResult parseInclude(SmallVectorImpl<ast::Decl *> &decls);
LogicalResult parseTdInclude(StringRef filename, SMRange fileLoc,
SmallVectorImpl<ast::Decl *> &decls);
/// Process the records of a parsed tablegen include file.
void processTdIncludeRecords(llvm::RecordKeeper &tdRecords,
SmallVectorImpl<ast::Decl *> &decls);
/// Create a user defined native constraint for a constraint imported from
/// ODS.
template <typename ConstraintT>
ast::Decl *
createODSNativePDLLConstraintDecl(StringRef name, StringRef codeBlock,
SMRange loc, ast::Type type,
StringRef nativeType, StringRef docString);
template <typename ConstraintT>
ast::Decl *
createODSNativePDLLConstraintDecl(const tblgen::Constraint &constraint,
SMRange loc, ast::Type type,
StringRef nativeType);
//===--------------------------------------------------------------------===//
// Decls
/// This structure contains the set of pattern metadata that may be parsed.
struct ParsedPatternMetadata {
std::optional<uint16_t> benefit;
bool hasBoundedRecursion = false;
};
FailureOr<ast::Decl *> parseTopLevelDecl();
FailureOr<ast::NamedAttributeDecl *>
parseNamedAttributeDecl(std::optional<StringRef> parentOpName);
/// Parse an argument variable as part of the signature of a
/// UserConstraintDecl or UserRewriteDecl.
FailureOr<ast::VariableDecl *> parseArgumentDecl();
/// Parse a result variable as part of the signature of a UserConstraintDecl
/// or UserRewriteDecl.
FailureOr<ast::VariableDecl *> parseResultDecl(unsigned resultNum);
/// Parse a UserConstraintDecl. `isInline` signals if the constraint is being
/// defined in a non-global context.
FailureOr<ast::UserConstraintDecl *>
parseUserConstraintDecl(bool isInline = false);
/// Parse an inline UserConstraintDecl. An inline decl is one defined in a
/// non-global context, such as within a Pattern/Constraint/etc.
FailureOr<ast::UserConstraintDecl *> parseInlineUserConstraintDecl();
/// Parse a PDLL (i.e. non-native) UserRewriteDecl whose body is defined using
/// PDLL constructs.
FailureOr<ast::UserConstraintDecl *> parseUserPDLLConstraintDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
/// Parse a parseUserRewriteDecl. `isInline` signals if the rewrite is being
/// defined in a non-global context.
FailureOr<ast::UserRewriteDecl *> parseUserRewriteDecl(bool isInline = false);
/// Parse an inline UserRewriteDecl. An inline decl is one defined in a
/// non-global context, such as within a Pattern/Rewrite/etc.
FailureOr<ast::UserRewriteDecl *> parseInlineUserRewriteDecl();
/// Parse a PDLL (i.e. non-native) UserRewriteDecl whose body is defined using
/// PDLL constructs.
FailureOr<ast::UserRewriteDecl *> parseUserPDLLRewriteDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
/// Parse either a UserConstraintDecl or UserRewriteDecl. These decls have
/// effectively the same syntax, and only differ on slight semantics (given
/// the different parsing contexts).
template <typename T, typename ParseUserPDLLDeclFnT>
FailureOr<T *> parseUserConstraintOrRewriteDecl(
ParseUserPDLLDeclFnT &&parseUserPDLLFn, ParserContext declContext,
StringRef anonymousNamePrefix, bool isInline);
/// Parse a native (i.e. non-PDLL) UserConstraintDecl or UserRewriteDecl.
/// These decls have effectively the same syntax.
template <typename T>
FailureOr<T *> parseUserNativeConstraintOrRewriteDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
/// Parse the functional signature (i.e. the arguments and results) of a
/// UserConstraintDecl or UserRewriteDecl.
LogicalResult parseUserConstraintOrRewriteSignature(
SmallVectorImpl<ast::VariableDecl *> &arguments,
SmallVectorImpl<ast::VariableDecl *> &results,
ast::DeclScope *&argumentScope, ast::Type &resultType);
/// Validate the return (which if present is specified by bodyIt) of a
/// UserConstraintDecl or UserRewriteDecl.
LogicalResult validateUserConstraintOrRewriteReturn(
StringRef declType, ast::CompoundStmt *body,
ArrayRef<ast::Stmt *>::iterator bodyIt,
ArrayRef<ast::Stmt *>::iterator bodyE,
ArrayRef<ast::VariableDecl *> results, ast::Type &resultType);
FailureOr<ast::CompoundStmt *>
parseLambdaBody(function_ref<LogicalResult(ast::Stmt *&)> processStatementFn,
bool expectTerminalSemicolon = true);
FailureOr<ast::CompoundStmt *> parsePatternLambdaBody();
FailureOr<ast::Decl *> parsePatternDecl();
LogicalResult parsePatternDeclMetadata(ParsedPatternMetadata &metadata);
/// Check to see if a decl has already been defined with the given name, if
/// one has emit and error and return failure. Returns success otherwise.
LogicalResult checkDefineNamedDecl(const ast::Name &name);
/// Try to define a variable decl with the given components, returns the
/// variable on success.
FailureOr<ast::VariableDecl *>
defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
ast::Expr *initExpr,
ArrayRef<ast::ConstraintRef> constraints);
FailureOr<ast::VariableDecl *>
defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
ArrayRef<ast::ConstraintRef> constraints);
/// Parse the constraint reference list for a variable decl.
LogicalResult parseVariableDeclConstraintList(
SmallVectorImpl<ast::ConstraintRef> &constraints);
/// Parse the expression used within a type constraint, e.g. Attr<type-expr>.
FailureOr<ast::Expr *> parseTypeConstraintExpr();
/// Try to parse a single reference to a constraint. `typeConstraint` is the
/// location of a previously parsed type constraint for the entity that will
/// be constrained by the parsed constraint. `existingConstraints` are any
/// existing constraints that have already been parsed for the same entity
/// that will be constrained by this constraint. `allowInlineTypeConstraints`
/// allows the use of inline Type constraints, e.g. `Value<valueType: Type>`.
FailureOr<ast::ConstraintRef>
parseConstraint(std::optional<SMRange> &typeConstraint,
ArrayRef<ast::ConstraintRef> existingConstraints,
bool allowInlineTypeConstraints);
/// Try to parse the constraint for a UserConstraintDecl/UserRewriteDecl
/// argument or result variable. The constraints for these variables do not
/// allow inline type constraints, and only permit a single constraint.
FailureOr<ast::ConstraintRef> parseArgOrResultConstraint();
//===--------------------------------------------------------------------===//
// Exprs
FailureOr<ast::Expr *> parseExpr();
/// Identifier expressions.
FailureOr<ast::Expr *> parseAttributeExpr();
FailureOr<ast::Expr *> parseCallExpr(ast::Expr *parentExpr);
FailureOr<ast::Expr *> parseDeclRefExpr(StringRef name, SMRange loc);
FailureOr<ast::Expr *> parseIdentifierExpr();
FailureOr<ast::Expr *> parseInlineConstraintLambdaExpr();
FailureOr<ast::Expr *> parseInlineRewriteLambdaExpr();
FailureOr<ast::Expr *> parseMemberAccessExpr(ast::Expr *parentExpr);
FailureOr<ast::OpNameDecl *> parseOperationName(bool allowEmptyName = false);
FailureOr<ast::OpNameDecl *> parseWrappedOperationName(bool allowEmptyName);
FailureOr<ast::Expr *>
parseOperationExpr(OpResultTypeContext inputResultTypeContext =
OpResultTypeContext::Explicit);
FailureOr<ast::Expr *> parseTupleExpr();
FailureOr<ast::Expr *> parseTypeExpr();
FailureOr<ast::Expr *> parseUnderscoreExpr();
//===--------------------------------------------------------------------===//
// Stmts
FailureOr<ast::Stmt *> parseStmt(bool expectTerminalSemicolon = true);
FailureOr<ast::CompoundStmt *> parseCompoundStmt();
FailureOr<ast::EraseStmt *> parseEraseStmt();
FailureOr<ast::LetStmt *> parseLetStmt();
FailureOr<ast::ReplaceStmt *> parseReplaceStmt();
FailureOr<ast::ReturnStmt *> parseReturnStmt();
FailureOr<ast::RewriteStmt *> parseRewriteStmt();
//===--------------------------------------------------------------------===//
// Creation+Analysis
//===--------------------------------------------------------------------===//
//===--------------------------------------------------------------------===//
// Decls
/// Try to extract a callable from the given AST node. Returns nullptr on
/// failure.
ast::CallableDecl *tryExtractCallableDecl(ast::Node *node);
/// Try to create a pattern decl with the given components, returning the
/// Pattern on success.
FailureOr<ast::PatternDecl *>
createPatternDecl(SMRange loc, const ast::Name *name,
const ParsedPatternMetadata &metadata,
ast::CompoundStmt *body);
/// Build the result type for a UserConstraintDecl/UserRewriteDecl given a set
/// of results, defined as part of the signature.
ast::Type
createUserConstraintRewriteResultType(ArrayRef<ast::VariableDecl *> results);
/// Create a PDLL (i.e. non-native) UserConstraintDecl or UserRewriteDecl.
template <typename T>
FailureOr<T *> createUserPDLLConstraintOrRewriteDecl(
const ast::Name &name, ArrayRef<ast::VariableDecl *> arguments,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType,
ast::CompoundStmt *body);
/// Try to create a variable decl with the given components, returning the
/// Variable on success.
FailureOr<ast::VariableDecl *>
createVariableDecl(StringRef name, SMRange loc, ast::Expr *initializer,
ArrayRef<ast::ConstraintRef> constraints);
/// Create a variable for an argument or result defined as part of the
/// signature of a UserConstraintDecl/UserRewriteDecl.
FailureOr<ast::VariableDecl *>
createArgOrResultVariableDecl(StringRef name, SMRange loc,
const ast::ConstraintRef &constraint);
/// Validate the constraints used to constraint a variable decl.
/// `inferredType` is the type of the variable inferred by the constraints
/// within the list, and is updated to the most refined type as determined by
/// the constraints. Returns success if the constraint list is valid, failure
/// otherwise.
LogicalResult
validateVariableConstraints(ArrayRef<ast::ConstraintRef> constraints,
ast::Type &inferredType);
/// Validate a single reference to a constraint. `inferredType` contains the
/// currently inferred variabled type and is refined within the type defined
/// by the constraint. Returns success if the constraint is valid, failure
/// otherwise.
LogicalResult validateVariableConstraint(const ast::ConstraintRef &ref,
ast::Type &inferredType);
LogicalResult validateTypeConstraintExpr(const ast::Expr *typeExpr);
LogicalResult validateTypeRangeConstraintExpr(const ast::Expr *typeExpr);
//===--------------------------------------------------------------------===//
// Exprs
FailureOr<ast::CallExpr *>
createCallExpr(SMRange loc, ast::Expr *parentExpr,
MutableArrayRef<ast::Expr *> arguments);
FailureOr<ast::DeclRefExpr *> createDeclRefExpr(SMRange loc, ast::Decl *decl);
FailureOr<ast::DeclRefExpr *>
createInlineVariableExpr(ast::Type type, StringRef name, SMRange loc,
ArrayRef<ast::ConstraintRef> constraints);
FailureOr<ast::MemberAccessExpr *>
createMemberAccessExpr(ast::Expr *parentExpr, StringRef name, SMRange loc);
/// Validate the member access `name` into the given parent expression. On
/// success, this also returns the type of the member accessed.
FailureOr<ast::Type> validateMemberAccess(ast::Expr *parentExpr,
StringRef name, SMRange loc);
FailureOr<ast::OperationExpr *>
createOperationExpr(SMRange loc, const ast::OpNameDecl *name,
OpResultTypeContext resultTypeContext,
SmallVectorImpl<ast::Expr *> &operands,
MutableArrayRef<ast::NamedAttributeDecl *> attributes,
SmallVectorImpl<ast::Expr *> &results);
LogicalResult
validateOperationOperands(SMRange loc, std::optional<StringRef> name,
const ods::Operation *odsOp,
SmallVectorImpl<ast::Expr *> &operands);
LogicalResult validateOperationResults(SMRange loc,
std::optional<StringRef> name,
const ods::Operation *odsOp,
SmallVectorImpl<ast::Expr *> &results);
void checkOperationResultTypeInferrence(SMRange loc, StringRef name,
const ods::Operation *odsOp);
LogicalResult validateOperationOperandsOrResults(
StringRef groupName, SMRange loc, std::optional<SMRange> odsOpLoc,
std::optional<StringRef> name, SmallVectorImpl<ast::Expr *> &values,
ArrayRef<ods::OperandOrResult> odsValues, ast::Type singleTy,
ast::RangeType rangeTy);
FailureOr<ast::TupleExpr *> createTupleExpr(SMRange loc,
ArrayRef<ast::Expr *> elements,
ArrayRef<StringRef> elementNames);
//===--------------------------------------------------------------------===//
// Stmts
FailureOr<ast::EraseStmt *> createEraseStmt(SMRange loc, ast::Expr *rootOp);
FailureOr<ast::ReplaceStmt *>
createReplaceStmt(SMRange loc, ast::Expr *rootOp,
MutableArrayRef<ast::Expr *> replValues);
FailureOr<ast::RewriteStmt *>
createRewriteStmt(SMRange loc, ast::Expr *rootOp,
ast::CompoundStmt *rewriteBody);
//===--------------------------------------------------------------------===//
// Code Completion
//===--------------------------------------------------------------------===//
/// The set of various code completion methods. Every completion method
/// returns `failure` to stop the parsing process after providing completion
/// results.
LogicalResult codeCompleteMemberAccess(ast::Expr *parentExpr);
LogicalResult codeCompleteAttributeName(std::optional<StringRef> opName);
LogicalResult codeCompleteConstraintName(ast::Type inferredType,
bool allowInlineTypeConstraints);
LogicalResult codeCompleteDialectName();
LogicalResult codeCompleteOperationName(StringRef dialectName);
LogicalResult codeCompletePatternMetadata();
LogicalResult codeCompleteIncludeFilename(StringRef curPath);
void codeCompleteCallSignature(ast::Node *parent, unsigned currentNumArgs);
void codeCompleteOperationOperandsSignature(std::optional<StringRef> opName,
unsigned currentNumOperands);
void codeCompleteOperationResultsSignature(std::optional<StringRef> opName,
unsigned currentNumResults);
//===--------------------------------------------------------------------===//
// Lexer Utilities
//===--------------------------------------------------------------------===//
/// If the current token has the specified kind, consume it and return true.
/// If not, return false.
bool consumeIf(Token::Kind kind) {
if (curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(curToken.isNot(Token::eof, Token::error) &&
"shouldn't advance past EOF or errors");
curToken = lexer.lexToken();
}
/// Advance the current lexer onto the next token, asserting what the expected
/// current token is. This is preferred to the above method because it leads
/// to more self-documenting code with better checking.
void consumeToken(Token::Kind kind) {
assert(curToken.is(kind) && "consumed an unexpected token");
consumeToken();
}
/// Reset the lexer to the location at the given position.
void resetToken(SMRange tokLoc) {
lexer.resetPointer(tokLoc.Start.getPointer());
curToken = lexer.lexToken();
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
LogicalResult parseToken(Token::Kind kind, const Twine &msg) {
if (curToken.getKind() != kind)
return emitError(curToken.getLoc(), msg);
consumeToken();
return success();
}
LogicalResult emitError(SMRange loc, const Twine &msg) {
lexer.emitError(loc, msg);
return failure();
}
LogicalResult emitError(const Twine &msg) {
return emitError(curToken.getLoc(), msg);
}
LogicalResult emitErrorAndNote(SMRange loc, const Twine &msg, SMRange noteLoc,
const Twine ¬e) {
lexer.emitErrorAndNote(loc, msg, noteLoc, note);
return failure();
}
//===--------------------------------------------------------------------===//
// Fields
//===--------------------------------------------------------------------===//
/// The owning AST context.
ast::Context &ctx;
/// The lexer of this parser.
Lexer lexer;
/// The current token within the lexer.
Token curToken;
/// A flag indicating if the parser should add documentation to AST nodes when
/// viable.
bool enableDocumentation;
/// The most recently defined decl scope.
ast::DeclScope *curDeclScope = nullptr;
llvm::SpecificBumpPtrAllocator<ast::DeclScope> scopeAllocator;
/// The current context of the parser.
ParserContext parserContext = ParserContext::Global;
/// Cached types to simplify verification and expression creation.
ast::Type typeTy, valueTy;
ast::RangeType typeRangeTy, valueRangeTy;
ast::Type attrTy;
/// A counter used when naming anonymous constraints and rewrites.
unsigned anonymousDeclNameCounter = 0;
/// The optional code completion context.
CodeCompleteContext *codeCompleteContext;
};
} // namespace
FailureOr<ast::Module *> Parser::parseModule() {
SMLoc moduleLoc = curToken.getStartLoc();
pushDeclScope();
// Parse the top-level decls of the module.
SmallVector<ast::Decl *> decls;
if (failed(parseModuleBody(decls)))
return popDeclScope(), failure();
popDeclScope();
return ast::Module::create(ctx, moduleLoc, decls);
}
LogicalResult Parser::parseModuleBody(SmallVectorImpl<ast::Decl *> &decls) {
while (curToken.isNot(Token::eof)) {
if (curToken.is(Token::directive)) {
if (failed(parseDirective(decls)))
return failure();
continue;
}
FailureOr<ast::Decl *> decl = parseTopLevelDecl();
if (failed(decl))
return failure();
decls.push_back(*decl);
}
return success();
}
ast::Expr *Parser::convertOpToValue(const ast::Expr *opExpr) {
return ast::AllResultsMemberAccessExpr::create(ctx, opExpr->getLoc(), opExpr,
valueRangeTy);
}
LogicalResult Parser::convertExpressionTo(
ast::Expr *&expr, ast::Type type,
function_ref<void(ast::Diagnostic &diag)> noteAttachFn) {
ast::Type exprType = expr->getType();
if (exprType == type)
return success();
auto emitConvertError = [&]() -> ast::InFlightDiagnostic {
ast::InFlightDiagnostic diag = ctx.getDiagEngine().emitError(
expr->getLoc(), llvm::formatv("unable to convert expression of type "
"`{0}` to the expected type of "
"`{1}`",
exprType, type));
if (noteAttachFn)
noteAttachFn(*diag);
return diag;
};
if (auto exprOpType = exprType.dyn_cast<ast::OperationType>())
return convertOpExpressionTo(expr, exprOpType, type, emitConvertError);
// FIXME: Decide how to allow/support converting a single result to multiple,
// and multiple to a single result. For now, we just allow Single->Range,
// but this isn't something really supported in the PDL dialect. We should
// figure out some way to support both.
if ((exprType == valueTy || exprType == valueRangeTy) &&
(type == valueTy || type == valueRangeTy))
return success();
if ((exprType == typeTy || exprType == typeRangeTy) &&
(type == typeTy || type == typeRangeTy))
return success();
// Handle tuple types.
if (auto exprTupleType = exprType.dyn_cast<ast::TupleType>())
return convertTupleExpressionTo(expr, exprTupleType, type, emitConvertError,
noteAttachFn);
return emitConvertError();
}
LogicalResult Parser::convertOpExpressionTo(
ast::Expr *&expr, ast::OperationType exprType, ast::Type type,
function_ref<ast::InFlightDiagnostic()> emitErrorFn) {
// Two operation types are compatible if they have the same name, or if the
// expected type is more general.
if (auto opType = type.dyn_cast<ast::OperationType>()) {
if (opType.getName())
return emitErrorFn();
return success();
}
// An operation can always convert to a ValueRange.
if (type == valueRangeTy) {
expr = ast::AllResultsMemberAccessExpr::create(ctx, expr->getLoc(), expr,
valueRangeTy);
return success();
}
// Allow conversion to a single value by constraining the result range.
if (type == valueTy) {
// If the operation is registered, we can verify if it can ever have a
// single result.
if (const ods::Operation *odsOp = exprType.getODSOperation()) {
if (odsOp->getResults().empty()) {
return emitErrorFn()->attachNote(
llvm::formatv("see the definition of `{0}`, which was defined "
"with zero results",
odsOp->getName()),
odsOp->getLoc());
}
unsigned numSingleResults = llvm::count_if(
odsOp->getResults(), [](const ods::OperandOrResult &result) {
return result.getVariableLengthKind() ==
ods::VariableLengthKind::Single;
});
if (numSingleResults > 1) {
return emitErrorFn()->attachNote(
llvm::formatv("see the definition of `{0}`, which was defined "
"with at least {1} results",
odsOp->getName(), numSingleResults),
odsOp->getLoc());
}
}
expr = ast::AllResultsMemberAccessExpr::create(ctx, expr->getLoc(), expr,
valueTy);
return success();
}
return emitErrorFn();
}
LogicalResult Parser::convertTupleExpressionTo(
ast::Expr *&expr, ast::TupleType exprType, ast::Type type,
function_ref<ast::InFlightDiagnostic()> emitErrorFn,
function_ref<void(ast::Diagnostic &diag)> noteAttachFn) {
// Handle conversions between tuples.
if (auto tupleType = type.dyn_cast<ast::TupleType>()) {
if (tupleType.size() != exprType.size())
return emitErrorFn();
// Build a new tuple expression using each of the elements of the current
// tuple.
SmallVector<ast::Expr *> newExprs;
for (unsigned i = 0, e = exprType.size(); i < e; ++i) {
newExprs.push_back(ast::MemberAccessExpr::create(
ctx, expr->getLoc(), expr, llvm::to_string(i),
exprType.getElementTypes()[i]));
auto diagFn = [&](ast::Diagnostic &diag) {
diag.attachNote(llvm::formatv("when converting element #{0} of `{1}`",
i, exprType));
if (noteAttachFn)
noteAttachFn(diag);
};
if (failed(convertExpressionTo(newExprs.back(),
tupleType.getElementTypes()[i], diagFn)))
return failure();
}
expr = ast::TupleExpr::create(ctx, expr->getLoc(), newExprs,
tupleType.getElementNames());
return success();
}
// Handle conversion to a range.
auto convertToRange = [&](ArrayRef<ast::Type> allowedElementTypes,
ast::RangeType resultTy) -> LogicalResult {
// TODO: We currently only allow range conversion within a rewrite context.
if (parserContext != ParserContext::Rewrite) {
return emitErrorFn()->attachNote("Tuple to Range conversion is currently "
"only allowed within a rewrite context");
}
// All of the tuple elements must be allowed types.
for (ast::Type elementType : exprType.getElementTypes())
if (!llvm::is_contained(allowedElementTypes, elementType))
return emitErrorFn();
// Build a new tuple expression using each of the elements of the current
// tuple.
SmallVector<ast::Expr *> newExprs;
for (unsigned i = 0, e = exprType.size(); i < e; ++i) {
newExprs.push_back(ast::MemberAccessExpr::create(
ctx, expr->getLoc(), expr, llvm::to_string(i),
exprType.getElementTypes()[i]));
}
expr = ast::RangeExpr::create(ctx, expr->getLoc(), newExprs, resultTy);
return success();
};
if (type == valueRangeTy)
return convertToRange({valueTy, valueRangeTy}, valueRangeTy);
if (type == typeRangeTy)
return convertToRange({typeTy, typeRangeTy}, typeRangeTy);
return emitErrorFn();
}
//===----------------------------------------------------------------------===//
// Directives
LogicalResult Parser::parseDirective(SmallVectorImpl<ast::Decl *> &decls) {
StringRef directive = curToken.getSpelling();
if (directive == "#include")
return parseInclude(decls);
return emitError("unknown directive `" + directive + "`");
}
LogicalResult Parser::parseInclude(SmallVectorImpl<ast::Decl *> &decls) {
SMRange loc = curToken.getLoc();
consumeToken(Token::directive);
// Handle code completion of the include file path.
if (curToken.is(Token::code_complete_string))
return codeCompleteIncludeFilename(curToken.getStringValue());
// Parse the file being included.
if (!curToken.isString())
return emitError(loc,
"expected string file name after `include` directive");
SMRange fileLoc = curToken.getLoc();
std::string filenameStr = curToken.getStringValue();
StringRef filename = filenameStr;
consumeToken();
// Check the type of include. If ending with `.pdll`, this is another pdl file
// to be parsed along with the current module.
if (filename.endswith(".pdll")) {
if (failed(lexer.pushInclude(filename, fileLoc)))
return emitError(fileLoc,
"unable to open include file `" + filename + "`");
// If we added the include successfully, parse it into the current module.
// Make sure to update to the next token after we finish parsing the nested
// file.
curToken = lexer.lexToken();
LogicalResult result = parseModuleBody(decls);
curToken = lexer.lexToken();
return result;
}
// Otherwise, this must be a `.td` include.
if (filename.endswith(".td"))
return parseTdInclude(filename, fileLoc, decls);
return emitError(fileLoc,
"expected include filename to end with `.pdll` or `.td`");
}
LogicalResult Parser::parseTdInclude(StringRef filename, llvm::SMRange fileLoc,
SmallVectorImpl<ast::Decl *> &decls) {
llvm::SourceMgr &parserSrcMgr = lexer.getSourceMgr();
// Use the source manager to open the file, but don't yet add it.
std::string includedFile;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> includeBuffer =
parserSrcMgr.OpenIncludeFile(filename.str(), includedFile);
if (!includeBuffer)
return emitError(fileLoc, "unable to open include file `" + filename + "`");
// Setup the source manager for parsing the tablegen file.
llvm::SourceMgr tdSrcMgr;
tdSrcMgr.AddNewSourceBuffer(std::move(*includeBuffer), SMLoc());
tdSrcMgr.setIncludeDirs(parserSrcMgr.getIncludeDirs());
// This class provides a context argument for the llvm::SourceMgr diagnostic
// handler.
struct DiagHandlerContext {
Parser &parser;
StringRef filename;
llvm::SMRange loc;
} handlerContext{*this, filename, fileLoc};
// Set the diagnostic handler for the tablegen source manager.
tdSrcMgr.setDiagHandler(
[](const llvm::SMDiagnostic &diag, void *rawHandlerContext) {
auto *ctx = reinterpret_cast<DiagHandlerContext *>(rawHandlerContext);
(void)ctx->parser.emitError(
ctx->loc,
llvm::formatv("error while processing include file `{0}`: {1}",
ctx->filename, diag.getMessage()));
},
&handlerContext);
// Parse the tablegen file.
llvm::RecordKeeper tdRecords;
if (llvm::TableGenParseFile(tdSrcMgr, tdRecords))
return failure();
// Process the parsed records.
processTdIncludeRecords(tdRecords, decls);
// After we are done processing, move all of the tablegen source buffers to
// the main parser source mgr. This allows for directly using source locations
// from the .td files without needing to remap them.
parserSrcMgr.takeSourceBuffersFrom(tdSrcMgr, fileLoc.End);
return success();
}
void Parser::processTdIncludeRecords(llvm::RecordKeeper &tdRecords,
SmallVectorImpl<ast::Decl *> &decls) {
// Return the length kind of the given value.
auto getLengthKind = [](const auto &value) {
if (value.isOptional())
return ods::VariableLengthKind::Optional;
return value.isVariadic() ? ods::VariableLengthKind::Variadic
: ods::VariableLengthKind::Single;
};
// Insert a type constraint into the ODS context.
ods::Context &odsContext = ctx.getODSContext();
auto addTypeConstraint = [&](const tblgen::NamedTypeConstraint &cst)
-> const ods::TypeConstraint & {
return odsContext.insertTypeConstraint(
cst.constraint.getUniqueDefName(),
processDoc(cst.constraint.getSummary()),
cst.constraint.getCPPClassName());
};
auto convertLocToRange = [&](llvm::SMLoc loc) -> llvm::SMRange {
return {loc, llvm::SMLoc::getFromPointer(loc.getPointer() + 1)};
};
// Process the parsed tablegen records to build ODS information.
/// Operations.
for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Op")) {
tblgen::Operator op(def);
// Check to see if this operation is known to support type inferrence.
bool supportsResultTypeInferrence =
op.getTrait("::mlir::InferTypeOpInterface::Trait");
auto [odsOp, inserted] = odsContext.insertOperation(
op.getOperationName(), processDoc(op.getSummary()),
processAndFormatDoc(op.getDescription()), op.getQualCppClassName(),
supportsResultTypeInferrence, op.getLoc().front());
// Ignore operations that have already been added.
if (!inserted)
continue;
for (const tblgen::NamedAttribute &attr : op.getAttributes()) {
odsOp->appendAttribute(attr.name, attr.attr.isOptional(),
odsContext.insertAttributeConstraint(
attr.attr.getUniqueDefName(),
processDoc(attr.attr.getSummary()),
attr.attr.getStorageType()));
}
for (const tblgen::NamedTypeConstraint &operand : op.getOperands()) {
odsOp->appendOperand(operand.name, getLengthKind(operand),
addTypeConstraint(operand));
}
for (const tblgen::NamedTypeConstraint &result : op.getResults()) {
odsOp->appendResult(result.name, getLengthKind(result),
addTypeConstraint(result));
}
}
auto shouldBeSkipped = [this](llvm::Record *def) {
return def->isAnonymous() || curDeclScope->lookup(def->getName()) ||
def->isSubClassOf("DeclareInterfaceMethods");
};
/// Attr constraints.
for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Attr")) {
if (shouldBeSkipped(def))
continue;
tblgen::Attribute constraint(def);
decls.push_back(createODSNativePDLLConstraintDecl<ast::AttrConstraintDecl>(
constraint, convertLocToRange(def->getLoc().front()), attrTy,
constraint.getStorageType()));
}
/// Type constraints.
for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Type")) {
if (shouldBeSkipped(def))
continue;
tblgen::TypeConstraint constraint(def);
decls.push_back(createODSNativePDLLConstraintDecl<ast::TypeConstraintDecl>(
constraint, convertLocToRange(def->getLoc().front()), typeTy,
constraint.getCPPClassName()));
}
/// OpInterfaces.
ast::Type opTy = ast::OperationType::get(ctx);
for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("OpInterface")) {
if (shouldBeSkipped(def))
continue;
SMRange loc = convertLocToRange(def->getLoc().front());
std::string cppClassName =
llvm::formatv("{0}::{1}", def->getValueAsString("cppNamespace"),
def->getValueAsString("cppInterfaceName"))
.str();
std::string codeBlock =
llvm::formatv("return ::mlir::success(llvm::isa<{0}>(self));",
cppClassName)
.str();
std::string desc =
processAndFormatDoc(def->getValueAsString("description"));
decls.push_back(createODSNativePDLLConstraintDecl<ast::OpConstraintDecl>(
def->getName(), codeBlock, loc, opTy, cppClassName, desc));
}
}
template <typename ConstraintT>
ast::Decl *Parser::createODSNativePDLLConstraintDecl(
StringRef name, StringRef codeBlock, SMRange loc, ast::Type type,
StringRef nativeType, StringRef docString) {
// Build the single input parameter.
ast::DeclScope *argScope = pushDeclScope();
auto *paramVar = ast::VariableDecl::create(
ctx, ast::Name::create(ctx, "self", loc), type,
/*initExpr=*/nullptr, ast::ConstraintRef(ConstraintT::create(ctx, loc)));
argScope->add(paramVar);
popDeclScope();
// Build the native constraint.
auto *constraintDecl = ast::UserConstraintDecl::createNative(
ctx, ast::Name::create(ctx, name, loc), paramVar,
/*results=*/std::nullopt, codeBlock, ast::TupleType::get(ctx),
nativeType);
constraintDecl->setDocComment(ctx, docString);
curDeclScope->add(constraintDecl);
return constraintDecl;
}
template <typename ConstraintT>
ast::Decl *
Parser::createODSNativePDLLConstraintDecl(const tblgen::Constraint &constraint,
SMRange loc, ast::Type type,
StringRef nativeType) {
// Format the condition template.
tblgen::FmtContext fmtContext;
fmtContext.withSelf("self");
std::string codeBlock = tblgen::tgfmt(
"return ::mlir::success(" + constraint.getConditionTemplate() + ");",
&fmtContext);
// If documentation was enabled, build the doc string for the generated
// constraint. It would be nice to do this lazily, but TableGen information is
// destroyed after we finish parsing the file.
std::string docString;
if (enableDocumentation) {
StringRef desc = constraint.getDescription();
docString = processAndFormatDoc(
constraint.getSummary() +
(desc.empty() ? "" : ("\n\n" + constraint.getDescription())));
}
return createODSNativePDLLConstraintDecl<ConstraintT>(
constraint.getUniqueDefName(), codeBlock, loc, type, nativeType,
docString);
}
//===----------------------------------------------------------------------===//
// Decls
FailureOr<ast::Decl *> Parser::parseTopLevelDecl() {
FailureOr<ast::Decl *> decl;
switch (curToken.getKind()) {
case Token::kw_Constraint:
decl = parseUserConstraintDecl();
break;
case Token::kw_Pattern:
decl = parsePatternDecl();
break;
case Token::kw_Rewrite:
decl = parseUserRewriteDecl();
break;
default:
return emitError("expected top-level declaration, such as a `Pattern`");
}
if (failed(decl))
return failure();
// If the decl has a name, add it to the current scope.
if (const ast::Name *name = (*decl)->getName()) {
if (failed(checkDefineNamedDecl(*name)))
return failure();
curDeclScope->add(*decl);
}
return decl;
}
FailureOr<ast::NamedAttributeDecl *>
Parser::parseNamedAttributeDecl(std::optional<StringRef> parentOpName) {
// Check for name code completion.
if (curToken.is(Token::code_complete))
return codeCompleteAttributeName(parentOpName);
std::string attrNameStr;
if (curToken.isString())
attrNameStr = curToken.getStringValue();
else if (curToken.is(Token::identifier) || curToken.isKeyword())
attrNameStr = curToken.getSpelling().str();
else
return emitError("expected identifier or string attribute name");
const auto &name = ast::Name::create(ctx, attrNameStr, curToken.getLoc());
consumeToken();
// Check for a value of the attribute.
ast::Expr *attrValue = nullptr;
if (consumeIf(Token::equal)) {
FailureOr<ast::Expr *> attrExpr = parseExpr();
if (failed(attrExpr))
return failure();
attrValue = *attrExpr;
} else {
// If there isn't a concrete value, create an expression representing a
// UnitAttr.
attrValue = ast::AttributeExpr::create(ctx, name.getLoc(), "unit");
}
return ast::NamedAttributeDecl::create(ctx, name, attrValue);
}
FailureOr<ast::CompoundStmt *> Parser::parseLambdaBody(
function_ref<LogicalResult(ast::Stmt *&)> processStatementFn,
bool expectTerminalSemicolon) {
consumeToken(Token::equal_arrow);
// Parse the single statement of the lambda body.
SMLoc bodyStartLoc = curToken.getStartLoc();
pushDeclScope();
FailureOr<ast::Stmt *> singleStatement = parseStmt(expectTerminalSemicolon);
bool failedToParse =
failed(singleStatement) || failed(processStatementFn(*singleStatement));
popDeclScope();
if (failedToParse)
return failure();
SMRange bodyLoc(bodyStartLoc, curToken.getStartLoc());
return ast::CompoundStmt::create(ctx, bodyLoc, *singleStatement);
}
FailureOr<ast::VariableDecl *> Parser::parseArgumentDecl() {
// Ensure that the argument is named.
if (curToken.isNot(Token::identifier) && !curToken.isDependentKeyword())
return emitError("expected identifier argument name");
// Parse the argument similarly to a normal variable.
StringRef name = curToken.getSpelling();
SMRange nameLoc = curToken.getLoc();
consumeToken();
if (failed(
parseToken(Token::colon, "expected `:` before argument constraint")))
return failure();
FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
if (failed(cst))
return failure();
return createArgOrResultVariableDecl(name, nameLoc, *cst);
}
FailureOr<ast::VariableDecl *> Parser::parseResultDecl(unsigned resultNum) {
// Check to see if this result is named.
if (curToken.is(Token::identifier) || curToken.isDependentKeyword()) {
// Check to see if this name actually refers to a Constraint.
if (!curDeclScope->lookup<ast::ConstraintDecl>(curToken.getSpelling())) {
// If it wasn't a constraint, parse the result similarly to a variable. If
// there is already an existing decl, we will emit an error when defining
// this variable later.
StringRef name = curToken.getSpelling();
SMRange nameLoc = curToken.getLoc();
consumeToken();
if (failed(parseToken(Token::colon,
"expected `:` before result constraint")))
return failure();
FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
if (failed(cst))
return failure();
return createArgOrResultVariableDecl(name, nameLoc, *cst);
}
}
// If it isn't named, we parse the constraint directly and create an unnamed
// result variable.
FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
if (failed(cst))
return failure();
return createArgOrResultVariableDecl("", cst->referenceLoc, *cst);
}
FailureOr<ast::UserConstraintDecl *>
Parser::parseUserConstraintDecl(bool isInline) {
// Constraints and rewrites have very similar formats, dispatch to a shared
// interface for parsing.
return parseUserConstraintOrRewriteDecl<ast::UserConstraintDecl>(
[&](auto &&...args) {
return this->parseUserPDLLConstraintDecl(args...);
},
ParserContext::Constraint, "constraint", isInline);
}
FailureOr<ast::UserConstraintDecl *> Parser::parseInlineUserConstraintDecl() {
FailureOr<ast::UserConstraintDecl *> decl =
parseUserConstraintDecl(/*isInline=*/true);
if (failed(decl) || failed(checkDefineNamedDecl((*decl)->getName())))
return failure();
curDeclScope->add(*decl);
return decl;
}
FailureOr<ast::UserConstraintDecl *> Parser::parseUserPDLLConstraintDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
// Push the argument scope back onto the list, so that the body can
// reference arguments.
pushDeclScope(argumentScope);
// Parse the body of the constraint. The body is either defined as a compound
// block, i.e. `{ ... }`, or a lambda body, i.e. `=> <expr>`.
ast::CompoundStmt *body;
if (curToken.is(Token::equal_arrow)) {
FailureOr<ast::CompoundStmt *> bodyResult = parseLambdaBody(
[&](ast::Stmt *&stmt) -> LogicalResult {
ast::Expr *stmtExpr = dyn_cast<ast::Expr>(stmt);
if (!stmtExpr) {
return emitError(stmt->getLoc(),
"expected `Constraint` lambda body to contain a "
"single expression");
}
stmt = ast::ReturnStmt::create(ctx, stmt->getLoc(), stmtExpr);
return success();
},
/*expectTerminalSemicolon=*/!isInline);
if (failed(bodyResult))
return failure();
body = *bodyResult;
} else {
FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
if (failed(bodyResult))
return failure();
body = *bodyResult;
// Verify the structure of the body.
auto bodyIt = body->begin(), bodyE = body->end();
for (; bodyIt != bodyE; ++bodyIt)
if (isa<ast::ReturnStmt>(*bodyIt))
break;
if (failed(validateUserConstraintOrRewriteReturn(
"Constraint", body, bodyIt, bodyE, results, resultType)))
return failure();
}
popDeclScope();
return createUserPDLLConstraintOrRewriteDecl<ast::UserConstraintDecl>(
name, arguments, results, resultType, body);
}
FailureOr<ast::UserRewriteDecl *> Parser::parseUserRewriteDecl(bool isInline) {
// Constraints and rewrites have very similar formats, dispatch to a shared
// interface for parsing.
return parseUserConstraintOrRewriteDecl<ast::UserRewriteDecl>(
[&](auto &&...args) { return this->parseUserPDLLRewriteDecl(args...); },
ParserContext::Rewrite, "rewrite", isInline);
}
FailureOr<ast::UserRewriteDecl *> Parser::parseInlineUserRewriteDecl() {
FailureOr<ast::UserRewriteDecl *> decl =
parseUserRewriteDecl(/*isInline=*/true);
if (failed(decl) || failed(checkDefineNamedDecl((*decl)->getName())))
return failure();
curDeclScope->add(*decl);
return decl;
}
FailureOr<ast::UserRewriteDecl *> Parser::parseUserPDLLRewriteDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
// Push the argument scope back onto the list, so that the body can
// reference arguments.
curDeclScope = argumentScope;
ast::CompoundStmt *body;
if (curToken.is(Token::equal_arrow)) {
FailureOr<ast::CompoundStmt *> bodyResult = parseLambdaBody(
[&](ast::Stmt *&statement) -> LogicalResult {
if (isa<ast::OpRewriteStmt>(statement))
return success();
ast::Expr *statementExpr = dyn_cast<ast::Expr>(statement);
if (!statementExpr) {
return emitError(
statement->getLoc(),
"expected `Rewrite` lambda body to contain a single expression "
"or an operation rewrite statement; such as `erase`, "
"`replace`, or `rewrite`");
}
statement =
ast::ReturnStmt::create(ctx, statement->getLoc(), statementExpr);
return success();
},
/*expectTerminalSemicolon=*/!isInline);
if (failed(bodyResult))
return failure();
body = *bodyResult;
} else {
FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
if (failed(bodyResult))
return failure();
body = *bodyResult;
}
popDeclScope();
// Verify the structure of the body.
auto bodyIt = body->begin(), bodyE = body->end();
for (; bodyIt != bodyE; ++bodyIt)
if (isa<ast::ReturnStmt>(*bodyIt))
break;
if (failed(validateUserConstraintOrRewriteReturn("Rewrite", body, bodyIt,
bodyE, results, resultType)))
return failure();
return createUserPDLLConstraintOrRewriteDecl<ast::UserRewriteDecl>(
name, arguments, results, resultType, body);
}
template <typename T, typename ParseUserPDLLDeclFnT>
FailureOr<T *> Parser::parseUserConstraintOrRewriteDecl(
ParseUserPDLLDeclFnT &&parseUserPDLLFn, ParserContext declContext,
StringRef anonymousNamePrefix, bool isInline) {
SMRange loc = curToken.getLoc();
consumeToken();
llvm::SaveAndRestore saveCtx(parserContext, declContext);
// Parse the name of the decl.
const ast::Name *name = nullptr;
if (curToken.isNot(Token::identifier)) {
// Only inline decls can be un-named. Inline decls are similar to "lambdas"
// in C++, so being unnamed is fine.
if (!isInline)
return emitError("expected identifier name");
// Create a unique anonymous name to use, as the name for this decl is not
// important.
std::string anonName =
llvm::formatv("<anonymous_{0}_{1}>", anonymousNamePrefix,
anonymousDeclNameCounter++)
.str();
name = &ast::Name::create(ctx, anonName, loc);
} else {
// If a name was provided, we can use it directly.
name = &ast::Name::create(ctx, curToken.getSpelling(), curToken.getLoc());
consumeToken(Token::identifier);
}
// Parse the functional signature of the decl.
SmallVector<ast::VariableDecl *> arguments, results;
ast::DeclScope *argumentScope;
ast::Type resultType;
if (failed(parseUserConstraintOrRewriteSignature(arguments, results,
argumentScope, resultType)))
return failure();
// Check to see which type of constraint this is. If the constraint contains a
// compound body, this is a PDLL decl.
if (curToken.isAny(Token::l_brace, Token::equal_arrow))
return parseUserPDLLFn(*name, isInline, arguments, argumentScope, results,
resultType);
// Otherwise, this is a native decl.
return parseUserNativeConstraintOrRewriteDecl<T>(*name, isInline, arguments,
results, resultType);
}
template <typename T>
FailureOr<T *> Parser::parseUserNativeConstraintOrRewriteDecl(
const ast::Name &name, bool isInline,
ArrayRef<ast::VariableDecl *> arguments,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
// If followed by a string, the native code body has also been specified.
std::string codeStrStorage;
std::optional<StringRef> optCodeStr;
if (curToken.isString()) {
codeStrStorage = curToken.getStringValue();
optCodeStr = codeStrStorage;
consumeToken();
} else if (isInline) {
return emitError(name.getLoc(),
"external declarations must be declared in global scope");
} else if (curToken.is(Token::error)) {
return failure();
}
if (failed(parseToken(Token::semicolon,
"expected `;` after native declaration")))
return failure();
// TODO: PDL should be able to support constraint results in certain
// situations, we should revise this.
if (std::is_same<ast::UserConstraintDecl, T>::value && !results.empty()) {
return emitError(
"native Constraints currently do not support returning results");
}
return T::createNative(ctx, name, arguments, results, optCodeStr, resultType);
}
LogicalResult Parser::parseUserConstraintOrRewriteSignature(
SmallVectorImpl<ast::VariableDecl *> &arguments,
SmallVectorImpl<ast::VariableDecl *> &results,
ast::DeclScope *&argumentScope, ast::Type &resultType) {
// Parse the argument list of the decl.
if (failed(parseToken(Token::l_paren, "expected `(` to start argument list")))
return failure();
argumentScope = pushDeclScope();
if (curToken.isNot(Token::r_paren)) {
do {
FailureOr<ast::VariableDecl *> argument = parseArgumentDecl();
if (failed(argument))
return failure();
arguments.emplace_back(*argument);
} while (consumeIf(Token::comma));
}
popDeclScope();
if (failed(parseToken(Token::r_paren, "expected `)` to end argument list")))
return failure();
// Parse the results of the decl.
pushDeclScope();
if (consumeIf(Token::arrow)) {
auto parseResultFn = [&]() -> LogicalResult {
FailureOr<ast::VariableDecl *> result = parseResultDecl(results.size());
if (failed(result))
return failure();
results.emplace_back(*result);
return success();
};
// Check for a list of results.
if (consumeIf(Token::l_paren)) {
do {
if (failed(parseResultFn()))
return failure();
} while (consumeIf(Token::comma));
if (failed(parseToken(Token::r_paren, "expected `)` to end result list")))
return failure();
// Otherwise, there is only one result.
} else if (failed(parseResultFn())) {
return failure();
}
}
popDeclScope();
// Compute the result type of the decl.
resultType = createUserConstraintRewriteResultType(results);
// Verify that results are only named if there are more than one.
if (results.size() == 1 && !results.front()->getName().getName().empty()) {
return emitError(
results.front()->getLoc(),
"cannot create a single-element tuple with an element label");
}
return success();
}
LogicalResult Parser::validateUserConstraintOrRewriteReturn(
StringRef declType, ast::CompoundStmt *body,
ArrayRef<ast::Stmt *>::iterator bodyIt,
ArrayRef<ast::Stmt *>::iterator bodyE,
ArrayRef<ast::VariableDecl *> results, ast::Type &resultType) {
// Handle if a `return` was provided.
if (bodyIt != bodyE) {
// Emit an error if we have trailing statements after the return.
if (std::next(bodyIt) != bodyE) {
return emitError(
(*std::next(bodyIt))->getLoc(),
llvm::formatv("`return` terminated the `{0}` body, but found "
"trailing statements afterwards",
declType));
}
// Otherwise if a return wasn't provided, check that no results are
// expected.
} else if (!results.empty()) {
return emitError(
{body->getLoc().End, body->getLoc().End},
llvm::formatv("missing return in a `{0}` expected to return `{1}`",
declType, resultType));
}
return success();
}
FailureOr<ast::CompoundStmt *> Parser::parsePatternLambdaBody() {
return parseLambdaBody([&](ast::Stmt *&statement) -> LogicalResult {
if (isa<ast::OpRewriteStmt>(statement))
return success();
return emitError(
statement->getLoc(),
"expected Pattern lambda body to contain a single operation "
"rewrite statement, such as `erase`, `replace`, or `rewrite`");
});
}
FailureOr<ast::Decl *> Parser::parsePatternDecl() {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_Pattern);
llvm::SaveAndRestore saveCtx(parserContext, ParserContext::PatternMatch);
// Check for an optional identifier for the pattern name.
const ast::Name *name = nullptr;
if (curToken.is(Token::identifier)) {
name = &ast::Name::create(ctx, curToken.getSpelling(), curToken.getLoc());
consumeToken(Token::identifier);
}
// Parse any pattern metadata.
ParsedPatternMetadata metadata;
if (consumeIf(Token::kw_with) && failed(parsePatternDeclMetadata(metadata)))
return failure();
// Parse the pattern body.
ast::CompoundStmt *body;
// Handle a lambda body.
if (curToken.is(Token::equal_arrow)) {
FailureOr<ast::CompoundStmt *> bodyResult = parsePatternLambdaBody();
if (failed(bodyResult))
return failure();
body = *bodyResult;
} else {
if (curToken.isNot(Token::l_brace))
return emitError("expected `{` or `=>` to start pattern body");
FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
if (failed(bodyResult))
return failure();
body = *bodyResult;
// Verify the body of the pattern.
auto bodyIt = body->begin(), bodyE = body->end();
for (; bodyIt != bodyE; ++bodyIt) {
if (isa<ast::ReturnStmt>(*bodyIt)) {
return emitError((*bodyIt)->getLoc(),
"`return` statements are only permitted within a "
"`Constraint` or `Rewrite` body");
}
// Break when we've found the rewrite statement.
if (isa<ast::OpRewriteStmt>(*bodyIt))
break;
}
if (bodyIt == bodyE) {
return emitError(loc,
"expected Pattern body to terminate with an operation "
"rewrite statement, such as `erase`");
}
if (std::next(bodyIt) != bodyE) {
return emitError((*std::next(bodyIt))->getLoc(),
"Pattern body was terminated by an operation "
"rewrite statement, but found trailing statements");
}
}
return createPatternDecl(loc, name, metadata, body);
}
LogicalResult
Parser::parsePatternDeclMetadata(ParsedPatternMetadata &metadata) {
std::optional<SMRange> benefitLoc;
std::optional<SMRange> hasBoundedRecursionLoc;
do {
// Handle metadata code completion.
if (curToken.is(Token::code_complete))
return codeCompletePatternMetadata();
if (curToken.isNot(Token::identifier))
return emitError("expected pattern metadata identifier");
StringRef metadataStr = curToken.getSpelling();
SMRange metadataLoc = curToken.getLoc();
consumeToken(Token::identifier);
// Parse the benefit metadata: benefit(<integer-value>)
if (metadataStr == "benefit") {
if (benefitLoc) {
return emitErrorAndNote(metadataLoc,
"pattern benefit has already been specified",
*benefitLoc, "see previous definition here");
}
if (failed(parseToken(Token::l_paren,
"expected `(` before pattern benefit")))
return failure();
uint16_t benefitValue = 0;
if (curToken.isNot(Token::integer))
return emitError("expected integral pattern benefit");
if (curToken.getSpelling().getAsInteger(/*Radix=*/10, benefitValue))
return emitError(
"expected pattern benefit to fit within a 16-bit integer");
consumeToken(Token::integer);
metadata.benefit = benefitValue;
benefitLoc = metadataLoc;
if (failed(
parseToken(Token::r_paren, "expected `)` after pattern benefit")))
return failure();
continue;
}
// Parse the bounded recursion metadata: recursion
if (metadataStr == "recursion") {
if (hasBoundedRecursionLoc) {
return emitErrorAndNote(
metadataLoc,
"pattern recursion metadata has already been specified",
*hasBoundedRecursionLoc, "see previous definition here");
}
metadata.hasBoundedRecursion = true;
hasBoundedRecursionLoc = metadataLoc;
continue;
}
return emitError(metadataLoc, "unknown pattern metadata");
} while (consumeIf(Token::comma));
return success();
}
FailureOr<ast::Expr *> Parser::parseTypeConstraintExpr() {
consumeToken(Token::less);
FailureOr<ast::Expr *> typeExpr = parseExpr();
if (failed(typeExpr) ||
failed(parseToken(Token::greater,
"expected `>` after variable type constraint")))
return failure();
return typeExpr;
}
LogicalResult Parser::checkDefineNamedDecl(const ast::Name &name) {
assert(curDeclScope && "defining decl outside of a decl scope");
if (ast::Decl *lastDecl = curDeclScope->lookup(name.getName())) {
return emitErrorAndNote(
name.getLoc(), "`" + name.getName() + "` has already been defined",
lastDecl->getName()->getLoc(), "see previous definition here");
}
return success();
}
FailureOr<ast::VariableDecl *>
Parser::defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
ast::Expr *initExpr,
ArrayRef<ast::ConstraintRef> constraints) {
assert(curDeclScope && "defining variable outside of decl scope");
const ast::Name &nameDecl = ast::Name::create(ctx, name, nameLoc);
// If the name of the variable indicates a special variable, we don't add it
// to the scope. This variable is local to the definition point.
if (name.empty() || name == "_") {
return ast::VariableDecl::create(ctx, nameDecl, type, initExpr,
constraints);
}
if (failed(checkDefineNamedDecl(nameDecl)))
return failure();
auto *varDecl =
ast::VariableDecl::create(ctx, nameDecl, type, initExpr, constraints);
curDeclScope->add(varDecl);
return varDecl;
}
FailureOr<ast::VariableDecl *>
Parser::defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
ArrayRef<ast::ConstraintRef> constraints) {
return defineVariableDecl(name, nameLoc, type, /*initExpr=*/nullptr,
constraints);
}
LogicalResult Parser::parseVariableDeclConstraintList(
SmallVectorImpl<ast::ConstraintRef> &constraints) {
std::optional<SMRange> typeConstraint;
auto parseSingleConstraint = [&] {
FailureOr<ast::ConstraintRef> constraint = parseConstraint(
typeConstraint, constraints, /*allowInlineTypeConstraints=*/true);
if (failed(constraint))
return failure();
constraints.push_back(*constraint);
return success();
};
// Check to see if this is a single constraint, or a list.
if (!consumeIf(Token::l_square))
return parseSingleConstraint();
do {
if (failed(parseSingleConstraint()))
return failure();
} while (consumeIf(Token::comma));
return parseToken(Token::r_square, "expected `]` after constraint list");
}
FailureOr<ast::ConstraintRef>
Parser::parseConstraint(std::optional<SMRange> &typeConstraint,
ArrayRef<ast::ConstraintRef> existingConstraints,
bool allowInlineTypeConstraints) {
auto parseTypeConstraint = [&](ast::Expr *&typeExpr) -> LogicalResult {
if (!allowInlineTypeConstraints) {
return emitError(
curToken.getLoc(),
"inline `Attr`, `Value`, and `ValueRange` type constraints are not "
"permitted on arguments or results");
}
if (typeConstraint)
return emitErrorAndNote(
curToken.getLoc(),
"the type of this variable has already been constrained",
*typeConstraint, "see previous constraint location here");
FailureOr<ast::Expr *> constraintExpr = parseTypeConstraintExpr();
if (failed(constraintExpr))
return failure();
typeExpr = *constraintExpr;
typeConstraint = typeExpr->getLoc();
return success();
};
SMRange loc = curToken.getLoc();
switch (curToken.getKind()) {
case Token::kw_Attr: {
consumeToken(Token::kw_Attr);
// Check for a type constraint.
ast::Expr *typeExpr = nullptr;
if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
return failure();
return ast::ConstraintRef(
ast::AttrConstraintDecl::create(ctx, loc, typeExpr), loc);
}
case Token::kw_Op: {
consumeToken(Token::kw_Op);
// Parse an optional operation name. If the name isn't provided, this refers
// to "any" operation.
FailureOr<ast::OpNameDecl *> opName =
parseWrappedOperationName(/*allowEmptyName=*/true);
if (failed(opName))
return failure();
return ast::ConstraintRef(ast::OpConstraintDecl::create(ctx, loc, *opName),
loc);
}
case Token::kw_Type:
consumeToken(Token::kw_Type);
return ast::ConstraintRef(ast::TypeConstraintDecl::create(ctx, loc), loc);
case Token::kw_TypeRange:
consumeToken(Token::kw_TypeRange);
return ast::ConstraintRef(ast::TypeRangeConstraintDecl::create(ctx, loc),
loc);
case Token::kw_Value: {
consumeToken(Token::kw_Value);
// Check for a type constraint.
ast::Expr *typeExpr = nullptr;
if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
return failure();
return ast::ConstraintRef(
ast::ValueConstraintDecl::create(ctx, loc, typeExpr), loc);
}
case Token::kw_ValueRange: {
consumeToken(Token::kw_ValueRange);
// Check for a type constraint.
ast::Expr *typeExpr = nullptr;
if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
return failure();
return ast::ConstraintRef(
ast::ValueRangeConstraintDecl::create(ctx, loc, typeExpr), loc);
}
case Token::kw_Constraint: {
// Handle an inline constraint.
FailureOr<ast::UserConstraintDecl *> decl = parseInlineUserConstraintDecl();
if (failed(decl))
return failure();
return ast::ConstraintRef(*decl, loc);
}
case Token::identifier: {
StringRef constraintName = curToken.getSpelling();
consumeToken(Token::identifier);
// Lookup the referenced constraint.
ast::Decl *cstDecl = curDeclScope->lookup<ast::Decl>(constraintName);
if (!cstDecl) {
return emitError(loc, "unknown reference to constraint `" +
constraintName + "`");
}
// Handle a reference to a proper constraint.
if (auto *cst = dyn_cast<ast::ConstraintDecl>(cstDecl))
return ast::ConstraintRef(cst, loc);
return emitErrorAndNote(
loc, "invalid reference to non-constraint", cstDecl->getLoc(),
"see the definition of `" + constraintName + "` here");
}
// Handle single entity constraint code completion.
case Token::code_complete: {
// Try to infer the current type for use by code completion.
ast::Type inferredType;
if (failed(validateVariableConstraints(existingConstraints, inferredType)))
return failure();
return codeCompleteConstraintName(inferredType, allowInlineTypeConstraints);
}
default:
break;
}
return emitError(loc, "expected identifier constraint");
}
FailureOr<ast::ConstraintRef> Parser::parseArgOrResultConstraint() {
std::optional<SMRange> typeConstraint;
return parseConstraint(typeConstraint, /*existingConstraints=*/std::nullopt,
/*allowInlineTypeConstraints=*/false);
}
//===----------------------------------------------------------------------===//
// Exprs
FailureOr<ast::Expr *> Parser::parseExpr() {
if (curToken.is(Token::underscore))
return parseUnderscoreExpr();
// Parse the LHS expression.
FailureOr<ast::Expr *> lhsExpr;
switch (curToken.getKind()) {
case Token::kw_attr:
lhsExpr = parseAttributeExpr();
break;
case Token::kw_Constraint:
lhsExpr = parseInlineConstraintLambdaExpr();
break;
case Token::identifier:
lhsExpr = parseIdentifierExpr();
break;
case Token::kw_op:
lhsExpr = parseOperationExpr();
break;
case Token::kw_Rewrite:
lhsExpr = parseInlineRewriteLambdaExpr();
break;
case Token::kw_type:
lhsExpr = parseTypeExpr();
break;
case Token::l_paren:
lhsExpr = parseTupleExpr();
break;
default:
return emitError("expected expression");
}
if (failed(lhsExpr))
return failure();
// Check for an operator expression.
while (true) {
switch (curToken.getKind()) {
case Token::dot:
lhsExpr = parseMemberAccessExpr(*lhsExpr);
break;
case Token::l_paren:
lhsExpr = parseCallExpr(*lhsExpr);
break;
default:
return lhsExpr;
}
if (failed(lhsExpr))
return failure();
}
}
FailureOr<ast::Expr *> Parser::parseAttributeExpr() {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_attr);
// If we aren't followed by a `<`, the `attr` keyword is treated as a normal
// identifier.
if (!consumeIf(Token::less)) {
resetToken(loc);
return parseIdentifierExpr();
}
if (!curToken.isString())
return emitError("expected string literal containing MLIR attribute");
std::string attrExpr = curToken.getStringValue();
consumeToken();
loc.End = curToken.getEndLoc();
if (failed(
parseToken(Token::greater, "expected `>` after attribute literal")))
return failure();
return ast::AttributeExpr::create(ctx, loc, attrExpr);
}
FailureOr<ast::Expr *> Parser::parseCallExpr(ast::Expr *parentExpr) {
consumeToken(Token::l_paren);
// Parse the arguments of the call.
SmallVector<ast::Expr *> arguments;
if (curToken.isNot(Token::r_paren)) {
do {
// Handle code completion for the call arguments.
if (curToken.is(Token::code_complete)) {
codeCompleteCallSignature(parentExpr, arguments.size());
return failure();
}
FailureOr<ast::Expr *> argument = parseExpr();
if (failed(argument))
return failure();
arguments.push_back(*argument);
} while (consumeIf(Token::comma));
}
SMRange loc(parentExpr->getLoc().Start, curToken.getEndLoc());
if (failed(parseToken(Token::r_paren, "expected `)` after argument list")))
return failure();
return createCallExpr(loc, parentExpr, arguments);
}
FailureOr<ast::Expr *> Parser::parseDeclRefExpr(StringRef name, SMRange loc) {
ast::Decl *decl = curDeclScope->lookup(name);
if (!decl)
return emitError(loc, "undefined reference to `" + name + "`");
return createDeclRefExpr(loc, decl);
}
FailureOr<ast::Expr *> Parser::parseIdentifierExpr() {
StringRef name = curToken.getSpelling();
SMRange nameLoc = curToken.getLoc();
consumeToken();
// Check to see if this is a decl ref expression that defines a variable
// inline.
if (consumeIf(Token::colon)) {
SmallVector<ast::ConstraintRef> constraints;
if (failed(parseVariableDeclConstraintList(constraints)))
return failure();
ast::Type type;
if (failed(validateVariableConstraints(constraints, type)))
return failure();
return createInlineVariableExpr(type, name, nameLoc, constraints);
}
return parseDeclRefExpr(name, nameLoc);
}
FailureOr<ast::Expr *> Parser::parseInlineConstraintLambdaExpr() {
FailureOr<ast::UserConstraintDecl *> decl = parseInlineUserConstraintDecl();
if (failed(decl))
return failure();
return ast::DeclRefExpr::create(ctx, (*decl)->getLoc(), *decl,
ast::ConstraintType::get(ctx));
}
FailureOr<ast::Expr *> Parser::parseInlineRewriteLambdaExpr() {
FailureOr<ast::UserRewriteDecl *> decl = parseInlineUserRewriteDecl();
if (failed(decl))
return failure();
return ast::DeclRefExpr::create(ctx, (*decl)->getLoc(), *decl,
ast::RewriteType::get(ctx));
}
FailureOr<ast::Expr *> Parser::parseMemberAccessExpr(ast::Expr *parentExpr) {
SMRange dotLoc = curToken.getLoc();
consumeToken(Token::dot);
// Check for code completion of the member name.
if (curToken.is(Token::code_complete))
return codeCompleteMemberAccess(parentExpr);
// Parse the member name.
Token memberNameTok = curToken;
if (memberNameTok.isNot(Token::identifier, Token::integer) &&
!memberNameTok.isKeyword())
return emitError(dotLoc, "expected identifier or numeric member name");
StringRef memberName = memberNameTok.getSpelling();
SMRange loc(parentExpr->getLoc().Start, curToken.getEndLoc());
consumeToken();
return createMemberAccessExpr(parentExpr, memberName, loc);
}
FailureOr<ast::OpNameDecl *> Parser::parseOperationName(bool allowEmptyName) {
SMRange loc = curToken.getLoc();
// Check for code completion for the dialect name.
if (curToken.is(Token::code_complete))
return codeCompleteDialectName();
// Handle the case of an no operation name.
if (curToken.isNot(Token::identifier) && !curToken.isKeyword()) {
if (allowEmptyName)
return ast::OpNameDecl::create(ctx, SMRange());
return emitError("expected dialect namespace");
}
StringRef name = curToken.getSpelling();
consumeToken();
// Otherwise, this is a literal operation name.
if (failed(parseToken(Token::dot, "expected `.` after dialect namespace")))
return failure();
// Check for code completion for the operation name.
if (curToken.is(Token::code_complete))
return codeCompleteOperationName(name);
if (curToken.isNot(Token::identifier) && !curToken.isKeyword())
return emitError("expected operation name after dialect namespace");
name = StringRef(name.data(), name.size() + 1);
do {
name = StringRef(name.data(), name.size() + curToken.getSpelling().size());
loc.End = curToken.getEndLoc();
consumeToken();
} while (curToken.isAny(Token::identifier, Token::dot) ||
curToken.isKeyword());
return ast::OpNameDecl::create(ctx, ast::Name::create(ctx, name, loc));
}
FailureOr<ast::OpNameDecl *>
Parser::parseWrappedOperationName(bool allowEmptyName) {
if (!consumeIf(Token::less))
return ast::OpNameDecl::create(ctx, SMRange());
FailureOr<ast::OpNameDecl *> opNameDecl = parseOperationName(allowEmptyName);
if (failed(opNameDecl))
return failure();
if (failed(parseToken(Token::greater, "expected `>` after operation name")))
return failure();
return opNameDecl;
}
FailureOr<ast::Expr *>
Parser::parseOperationExpr(OpResultTypeContext inputResultTypeContext) {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_op);
// If it isn't followed by a `<`, the `op` keyword is treated as a normal
// identifier.
if (curToken.isNot(Token::less)) {
resetToken(loc);
return parseIdentifierExpr();
}
// Parse the operation name. The name may be elided, in which case the
// operation refers to "any" operation(i.e. a difference between `MyOp` and
// `Operation*`). Operation names within a rewrite context must be named.
bool allowEmptyName = parserContext != ParserContext::Rewrite;
FailureOr<ast::OpNameDecl *> opNameDecl =
parseWrappedOperationName(allowEmptyName);
if (failed(opNameDecl))
return failure();
std::optional<StringRef> opName = (*opNameDecl)->getName();
// Functor used to create an implicit range variable, used for implicit "all"
// operand or results variables.
auto createImplicitRangeVar = [&](ast::ConstraintDecl *cst, ast::Type type) {
FailureOr<ast::VariableDecl *> rangeVar =
defineVariableDecl("_", loc, type, ast::ConstraintRef(cst, loc));
assert(succeeded(rangeVar) && "expected range variable to be valid");
return ast::DeclRefExpr::create(ctx, loc, *rangeVar, type);
};
// Check for the optional list of operands.
SmallVector<ast::Expr *> operands;
if (!consumeIf(Token::l_paren)) {
// If the operand list isn't specified and we are in a match context, define
// an inplace unconstrained operand range corresponding to all of the
// operands of the operation. This avoids treating zero operands the same
// way as "unconstrained operands".
if (parserContext != ParserContext::Rewrite) {
operands.push_back(createImplicitRangeVar(
ast::ValueRangeConstraintDecl::create(ctx, loc), valueRangeTy));
}
} else if (!consumeIf(Token::r_paren)) {
// If the operand list was specified and non-empty, parse the operands.
do {
// Check for operand signature code completion.
if (curToken.is(Token::code_complete)) {
codeCompleteOperationOperandsSignature(opName, operands.size());
return failure();
}
FailureOr<ast::Expr *> operand = parseExpr();
if (failed(operand))
return failure();
operands.push_back(*operand);
} while (consumeIf(Token::comma));
if (failed(parseToken(Token::r_paren,
"expected `)` after operation operand list")))
return failure();
}
// Check for the optional list of attributes.
SmallVector<ast::NamedAttributeDecl *> attributes;
if (consumeIf(Token::l_brace)) {
do {
FailureOr<ast::NamedAttributeDecl *> decl =
parseNamedAttributeDecl(opName);
if (failed(decl))
return failure();
attributes.emplace_back(*decl);
} while (consumeIf(Token::comma));
if (failed(parseToken(Token::r_brace,
"expected `}` after operation attribute list")))
return failure();
}
// Handle the result types of the operation.
SmallVector<ast::Expr *> resultTypes;
OpResultTypeContext resultTypeContext = inputResultTypeContext;
// Check for an explicit list of result types.
if (consumeIf(Token::arrow)) {
if (failed(parseToken(Token::l_paren,
"expected `(` before operation result type list")))
return failure();
// If result types are provided, initially assume that the operation does
// not rely on type inferrence. We don't assert that it isn't, because we
// may be inferring the value of some type/type range variables, but given
// that these variables may be defined in calls we can't always discern when
// this is the case.
resultTypeContext = OpResultTypeContext::Explicit;
// Handle the case of an empty result list.
if (!consumeIf(Token::r_paren)) {
do {
// Check for result signature code completion.
if (curToken.is(Token::code_complete)) {
codeCompleteOperationResultsSignature(opName, resultTypes.size());
return failure();
}
FailureOr<ast::Expr *> resultTypeExpr = parseExpr();
if (failed(resultTypeExpr))
return failure();
resultTypes.push_back(*resultTypeExpr);
} while (consumeIf(Token::comma));
if (failed(parseToken(Token::r_paren,
"expected `)` after operation result type list")))
return failure();
}
} else if (parserContext != ParserContext::Rewrite) {
// If the result list isn't specified and we are in a match context, define
// an inplace unconstrained result range corresponding to all of the results
// of the operation. This avoids treating zero results the same way as
// "unconstrained results".
resultTypes.push_back(createImplicitRangeVar(
ast::TypeRangeConstraintDecl::create(ctx, loc), typeRangeTy));
} else if (resultTypeContext == OpResultTypeContext::Explicit) {
// If the result list isn't specified and we are in a rewrite, try to infer
// them at runtime instead.
resultTypeContext = OpResultTypeContext::Interface;
}
return createOperationExpr(loc, *opNameDecl, resultTypeContext, operands,
attributes, resultTypes);
}
FailureOr<ast::Expr *> Parser::parseTupleExpr() {
SMRange loc = curToken.getLoc();
consumeToken(Token::l_paren);
DenseMap<StringRef, SMRange> usedNames;
SmallVector<StringRef> elementNames;
SmallVector<ast::Expr *> elements;
if (curToken.isNot(Token::r_paren)) {
do {
// Check for the optional element name assignment before the value.
StringRef elementName;
if (curToken.is(Token::identifier) || curToken.isDependentKeyword()) {
Token elementNameTok = curToken;
consumeToken();
// The element name is only present if followed by an `=`.
if (consumeIf(Token::equal)) {
elementName = elementNameTok.getSpelling();
// Check to see if this name is already used.
auto elementNameIt =
usedNames.try_emplace(elementName, elementNameTok.getLoc());
if (!elementNameIt.second) {
return emitErrorAndNote(
elementNameTok.getLoc(),
llvm::formatv("duplicate tuple element label `{0}`",
elementName),
elementNameIt.first->getSecond(),
"see previous label use here");
}
} else {
// Otherwise, we treat this as part of an expression so reset the
// lexer.
resetToken(elementNameTok.getLoc());
}
}
elementNames.push_back(elementName);
// Parse the tuple element value.
FailureOr<ast::Expr *> element = parseExpr();
if (failed(element))
return failure();
elements.push_back(*element);
} while (consumeIf(Token::comma));
}
loc.End = curToken.getEndLoc();
if (failed(
parseToken(Token::r_paren, "expected `)` after tuple element list")))
return failure();
return createTupleExpr(loc, elements, elementNames);
}
FailureOr<ast::Expr *> Parser::parseTypeExpr() {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_type);
// If we aren't followed by a `<`, the `type` keyword is treated as a normal
// identifier.
if (!consumeIf(Token::less)) {
resetToken(loc);
return parseIdentifierExpr();
}
if (!curToken.isString())
return emitError("expected string literal containing MLIR type");
std::string attrExpr = curToken.getStringValue();
consumeToken();
loc.End = curToken.getEndLoc();
if (failed(parseToken(Token::greater, "expected `>` after type literal")))
return failure();
return ast::TypeExpr::create(ctx, loc, attrExpr);
}
FailureOr<ast::Expr *> Parser::parseUnderscoreExpr() {
StringRef name = curToken.getSpelling();
SMRange nameLoc = curToken.getLoc();
consumeToken(Token::underscore);
// Underscore expressions require a constraint list.
if (failed(parseToken(Token::colon, "expected `:` after `_` variable")))
return failure();
// Parse the constraints for the expression.
SmallVector<ast::ConstraintRef> constraints;
if (failed(parseVariableDeclConstraintList(constraints)))
return failure();
ast::Type type;
if (failed(validateVariableConstraints(constraints, type)))
return failure();
return createInlineVariableExpr(type, name, nameLoc, constraints);
}
//===----------------------------------------------------------------------===//
// Stmts
FailureOr<ast::Stmt *> Parser::parseStmt(bool expectTerminalSemicolon) {
FailureOr<ast::Stmt *> stmt;
switch (curToken.getKind()) {
case Token::kw_erase:
stmt = parseEraseStmt();
break;
case Token::kw_let:
stmt = parseLetStmt();
break;
case Token::kw_replace:
stmt = parseReplaceStmt();
break;
case Token::kw_return:
stmt = parseReturnStmt();
break;
case Token::kw_rewrite:
stmt = parseRewriteStmt();
break;
default:
stmt = parseExpr();
break;
}
if (failed(stmt) ||
(expectTerminalSemicolon &&
failed(parseToken(Token::semicolon, "expected `;` after statement"))))
return failure();
return stmt;
}
FailureOr<ast::CompoundStmt *> Parser::parseCompoundStmt() {
SMLoc startLoc = curToken.getStartLoc();
consumeToken(Token::l_brace);
// Push a new block scope and parse any nested statements.
pushDeclScope();
SmallVector<ast::Stmt *> statements;
while (curToken.isNot(Token::r_brace)) {
FailureOr<ast::Stmt *> statement = parseStmt();
if (failed(statement))
return popDeclScope(), failure();
statements.push_back(*statement);
}
popDeclScope();
// Consume the end brace.
SMRange location(startLoc, curToken.getEndLoc());
consumeToken(Token::r_brace);
return ast::CompoundStmt::create(ctx, location, statements);
}
FailureOr<ast::EraseStmt *> Parser::parseEraseStmt() {
if (parserContext == ParserContext::Constraint)
return emitError("`erase` cannot be used within a Constraint");
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_erase);
// Parse the root operation expression.
FailureOr<ast::Expr *> rootOp = parseExpr();
if (failed(rootOp))
return failure();
return createEraseStmt(loc, *rootOp);
}
FailureOr<ast::LetStmt *> Parser::parseLetStmt() {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_let);
// Parse the name of the new variable.
SMRange varLoc = curToken.getLoc();
if (curToken.isNot(Token::identifier) && !curToken.isDependentKeyword()) {
// `_` is a reserved variable name.
if (curToken.is(Token::underscore)) {
return emitError(varLoc,
"`_` may only be used to define \"inline\" variables");
}
return emitError(varLoc,
"expected identifier after `let` to name a new variable");
}
StringRef varName = curToken.getSpelling();
consumeToken();
// Parse the optional set of constraints.
SmallVector<ast::ConstraintRef> constraints;
if (consumeIf(Token::colon) &&
failed(parseVariableDeclConstraintList(constraints)))
return failure();
// Parse the optional initializer expression.
ast::Expr *initializer = nullptr;
if (consumeIf(Token::equal)) {
FailureOr<ast::Expr *> initOrFailure = parseExpr();
if (failed(initOrFailure))
return failure();
initializer = *initOrFailure;
// Check that the constraints are compatible with having an initializer,
// e.g. type constraints cannot be used with initializers.
for (ast::ConstraintRef constraint : constraints) {
LogicalResult result =
TypeSwitch<const ast::Node *, LogicalResult>(constraint.constraint)
.Case<ast::AttrConstraintDecl, ast::ValueConstraintDecl,
ast::ValueRangeConstraintDecl>([&](const auto *cst) {
if (auto *typeConstraintExpr = cst->getTypeExpr()) {
return this->emitError(
constraint.referenceLoc,
"type constraints are not permitted on variables with "
"initializers");
}
return success();
})
.Default(success());
if (failed(result))
return failure();
}
}
FailureOr<ast::VariableDecl *> varDecl =
createVariableDecl(varName, varLoc, initializer, constraints);
if (failed(varDecl))
return failure();
return ast::LetStmt::create(ctx, loc, *varDecl);
}
FailureOr<ast::ReplaceStmt *> Parser::parseReplaceStmt() {
if (parserContext == ParserContext::Constraint)
return emitError("`replace` cannot be used within a Constraint");
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_replace);
// Parse the root operation expression.
FailureOr<ast::Expr *> rootOp = parseExpr();
if (failed(rootOp))
return failure();
if (failed(
parseToken(Token::kw_with, "expected `with` after root operation")))
return failure();
// The replacement portion of this statement is within a rewrite context.
llvm::SaveAndRestore saveCtx(parserContext, ParserContext::Rewrite);
// Parse the replacement values.
SmallVector<ast::Expr *> replValues;
if (consumeIf(Token::l_paren)) {
if (consumeIf(Token::r_paren)) {
return emitError(
loc, "expected at least one replacement value, consider using "
"`erase` if no replacement values are desired");
}
do {
FailureOr<ast::Expr *> replExpr = parseExpr();
if (failed(replExpr))
return failure();
replValues.emplace_back(*replExpr);
} while (consumeIf(Token::comma));
if (failed(parseToken(Token::r_paren,
"expected `)` after replacement values")))
return failure();
} else {
// Handle replacement with an operation uniquely, as the replacement
// operation supports type inferrence from the root operation.
FailureOr<ast::Expr *> replExpr;
if (curToken.is(Token::kw_op))
replExpr = parseOperationExpr(OpResultTypeContext::Replacement);
else
replExpr = parseExpr();
if (failed(replExpr))
return failure();
replValues.emplace_back(*replExpr);
}
return createReplaceStmt(loc, *rootOp, replValues);
}
FailureOr<ast::ReturnStmt *> Parser::parseReturnStmt() {
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_return);
// Parse the result value.
FailureOr<ast::Expr *> resultExpr = parseExpr();
if (failed(resultExpr))
return failure();
return ast::ReturnStmt::create(ctx, loc, *resultExpr);
}
FailureOr<ast::RewriteStmt *> Parser::parseRewriteStmt() {
if (parserContext == ParserContext::Constraint)
return emitError("`rewrite` cannot be used within a Constraint");
SMRange loc = curToken.getLoc();
consumeToken(Token::kw_rewrite);
// Parse the root operation.
FailureOr<ast::Expr *> rootOp = parseExpr();
if (failed(rootOp))
return failure();
if (failed(parseToken(Token::kw_with, "expected `with` before rewrite body")))
return failure();
if (curToken.isNot(Token::l_brace))
return emitError("expected `{` to start rewrite body");
// The rewrite body of this statement is within a rewrite context.
llvm::SaveAndRestore saveCtx(parserContext, ParserContext::Rewrite);
FailureOr<ast::CompoundStmt *> rewriteBody = parseCompoundStmt();
if (failed(rewriteBody))
return failure();
// Verify the rewrite body.
for (const ast::Stmt *stmt : (*rewriteBody)->getChildren()) {
if (isa<ast::ReturnStmt>(stmt)) {
return emitError(stmt->getLoc(),
"`return` statements are only permitted within a "
"`Constraint` or `Rewrite` body");
}
}
return createRewriteStmt(loc, *rootOp, *rewriteBody);
}
//===----------------------------------------------------------------------===//
// Creation+Analysis
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Decls
ast::CallableDecl *Parser::tryExtractCallableDecl(ast::Node *node) {
// Unwrap reference expressions.
if (auto *init = dyn_cast<ast::DeclRefExpr>(node))
node = init->getDecl();
return dyn_cast<ast::CallableDecl>(node);
}
FailureOr<ast::PatternDecl *>
Parser::createPatternDecl(SMRange loc, const ast::Name *name,
const ParsedPatternMetadata &metadata,
ast::CompoundStmt *body) {
return ast::PatternDecl::create(ctx, loc, name, metadata.benefit,
metadata.hasBoundedRecursion, body);
}
ast::Type Parser::createUserConstraintRewriteResultType(
ArrayRef<ast::VariableDecl *> results) {
// Single result decls use the type of the single result.
if (results.size() == 1)
return results[0]->getType();
// Multiple results use a tuple type, with the types and names grabbed from
// the result variable decls.
auto resultTypes = llvm::map_range(
results, [&](const auto *result) { return result->getType(); });
auto resultNames = llvm::map_range(
results, [&](const auto *result) { return result->getName().getName(); });
return ast::TupleType::get(ctx, llvm::to_vector(resultTypes),
llvm::to_vector(resultNames));
}
template <typename T>
FailureOr<T *> Parser::createUserPDLLConstraintOrRewriteDecl(
const ast::Name &name, ArrayRef<ast::VariableDecl *> arguments,
ArrayRef<ast::VariableDecl *> results, ast::Type resultType,
ast::CompoundStmt *body) {
if (!body->getChildren().empty()) {
if (auto *retStmt = dyn_cast<ast::ReturnStmt>(body->getChildren().back())) {
ast::Expr *resultExpr = retStmt->getResultExpr();
// Process the result of the decl. If no explicit signature results
// were provided, check for return type inference. Otherwise, check that
// the return expression can be converted to the expected type.
if (results.empty())
resultType = resultExpr->getType();
else if (failed(convertExpressionTo(resultExpr, resultType)))
return failure();
else
retStmt->setResultExpr(resultExpr);
}
}
return T::createPDLL(ctx, name, arguments, results, body, resultType);
}
FailureOr<ast::VariableDecl *>
Parser::createVariableDecl(StringRef name, SMRange loc, ast::Expr *initializer,
ArrayRef<ast::ConstraintRef> constraints) {
// The type of the variable, which is expected to be inferred by either a
// constraint or an initializer expression.
ast::Type type;
if (failed(validateVariableConstraints(constraints, type)))
return failure();
if (initializer) {
// Update the variable type based on the initializer, or try to convert the
// initializer to the existing type.
if (!type)
type = initializer->getType();
else if (ast::Type mergedType = type.refineWith(initializer->getType()))
type = mergedType;
else if (failed(convertExpressionTo(initializer, type)))
return failure();
// Otherwise, if there is no initializer check that the type has already
// been resolved from the constraint list.
} else if (!type) {
return emitErrorAndNote(
loc, "unable to infer type for variable `" + name + "`", loc,
"the type of a variable must be inferable from the constraint "
"list or the initializer");
}
// Constraint types cannot be used when defining variables.
if (type.isa<ast::ConstraintType, ast::RewriteType>()) {
return emitError(
loc, llvm::formatv("unable to define variable of `{0}` type", type));
}
// Try to define a variable with the given name.
FailureOr<ast::VariableDecl *> varDecl =
defineVariableDecl(name, loc, type, initializer, constraints);
if (failed(varDecl))
return failure();
return *varDecl;
}
FailureOr<ast::VariableDecl *>
Parser::createArgOrResultVariableDecl(StringRef name, SMRange loc,
const ast::ConstraintRef &constraint) {
ast::Type argType;
if (failed(validateVariableConstraint(constraint, argType)))
return failure();
return defineVariableDecl(name, loc, argType, constraint);
}
LogicalResult
Parser::validateVariableConstraints(ArrayRef<ast::ConstraintRef> constraints,
ast::Type &inferredType) {
for (const ast::ConstraintRef &ref : constraints)
if (failed(validateVariableConstraint(ref, inferredType)))
return failure();
return success();
}
LogicalResult Parser::validateVariableConstraint(const ast::ConstraintRef &ref,
ast::Type &inferredType) {
ast::Type constraintType;
if (const auto *cst = dyn_cast<ast::AttrConstraintDecl>(ref.constraint)) {
if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
if (failed(validateTypeConstraintExpr(typeExpr)))
return failure();
}
constraintType = ast::AttributeType::get(ctx);
} else if (const auto *cst =
dyn_cast<ast::OpConstraintDecl>(ref.constraint)) {
constraintType = ast::OperationType::get(
ctx, cst->getName(), lookupODSOperation(cst->getName()));
} else if (isa<ast::TypeConstraintDecl>(ref.constraint)) {
constraintType = typeTy;
} else if (isa<ast::TypeRangeConstraintDecl>(ref.constraint)) {
constraintType = typeRangeTy;
} else if (const auto *cst =
dyn_cast<ast::ValueConstraintDecl>(ref.constraint)) {
if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
if (failed(validateTypeConstraintExpr(typeExpr)))
return failure();
}
constraintType = valueTy;
} else if (const auto *cst =
dyn_cast<ast::ValueRangeConstraintDecl>(ref.constraint)) {
if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
if (failed(validateTypeRangeConstraintExpr(typeExpr)))
return failure();
}
constraintType = valueRangeTy;
} else if (const auto *cst =
dyn_cast<ast::UserConstraintDecl>(ref.constraint)) {
ArrayRef<ast::VariableDecl *> inputs = cst->getInputs();
if (inputs.size() != 1) {
return emitErrorAndNote(ref.referenceLoc,
"`Constraint`s applied via a variable constraint "
"list must take a single input, but got " +
Twine(inputs.size()),
cst->getLoc(),
"see definition of constraint here");
}
constraintType = inputs.front()->getType();
} else {
llvm_unreachable("unknown constraint type");
}
// Check that the constraint type is compatible with the current inferred
// type.
if (!inferredType) {
inferredType = constraintType;
} else if (ast::Type mergedTy = inferredType.refineWith(constraintType)) {
inferredType = mergedTy;
} else {
return emitError(ref.referenceLoc,
llvm::formatv("constraint type `{0}` is incompatible "
"with the previously inferred type `{1}`",
constraintType, inferredType));
}
return success();
}
LogicalResult Parser::validateTypeConstraintExpr(const ast::Expr *typeExpr) {
ast::Type typeExprType = typeExpr->getType();
if (typeExprType != typeTy) {
return emitError(typeExpr->getLoc(),
"expected expression of `Type` in type constraint");
}
return success();
}
LogicalResult
Parser::validateTypeRangeConstraintExpr(const ast::Expr *typeExpr) {
ast::Type typeExprType = typeExpr->getType();
if (typeExprType != typeRangeTy) {
return emitError(typeExpr->getLoc(),
"expected expression of `TypeRange` in type constraint");
}
return success();
}
//===----------------------------------------------------------------------===//
// Exprs
FailureOr<ast::CallExpr *>
Parser::createCallExpr(SMRange loc, ast::Expr *parentExpr,
MutableArrayRef<ast::Expr *> arguments) {
ast::Type parentType = parentExpr->getType();
ast::CallableDecl *callableDecl = tryExtractCallableDecl(parentExpr);
if (!callableDecl) {
return emitError(loc,
llvm::formatv("expected a reference to a callable "
"`Constraint` or `Rewrite`, but got: `{0}`",
parentType));
}
if (parserContext == ParserContext::Rewrite) {
if (isa<ast::UserConstraintDecl>(callableDecl))
return emitError(
loc, "unable to invoke `Constraint` within a rewrite section");
} else if (isa<ast::UserRewriteDecl>(callableDecl)) {
return emitError(loc, "unable to invoke `Rewrite` within a match section");
}
// Verify the arguments of the call.
/// Handle size mismatch.
ArrayRef<ast::VariableDecl *> callArgs = callableDecl->getInputs();
if (callArgs.size() != arguments.size()) {
return emitErrorAndNote(
loc,
llvm::formatv("invalid number of arguments for {0} call; expected "
"{1}, but got {2}",
callableDecl->getCallableType(), callArgs.size(),
arguments.size()),
callableDecl->getLoc(),
llvm::formatv("see the definition of {0} here",
callableDecl->getName()->getName()));
}
/// Handle argument type mismatch.
auto attachDiagFn = [&](ast::Diagnostic &diag) {
diag.attachNote(llvm::formatv("see the definition of `{0}` here",
callableDecl->getName()->getName()),
callableDecl->getLoc());
};
for (auto it : llvm::zip(callArgs, arguments)) {
if (failed(convertExpressionTo(std::get<1>(it), std::get<0>(it)->getType(),
attachDiagFn)))
return failure();
}
return ast::CallExpr::create(ctx, loc, parentExpr, arguments,
callableDecl->getResultType());
}
FailureOr<ast::DeclRefExpr *> Parser::createDeclRefExpr(SMRange loc,
ast::Decl *decl) {
// Check the type of decl being referenced.
ast::Type declType;
if (isa<ast::ConstraintDecl>(decl))
declType = ast::ConstraintType::get(ctx);
else if (isa<ast::UserRewriteDecl>(decl))
declType = ast::RewriteType::get(ctx);
else if (auto *varDecl = dyn_cast<ast::VariableDecl>(decl))
declType = varDecl->getType();
else
return emitError(loc, "invalid reference to `" +
decl->getName()->getName() + "`");
return ast::DeclRefExpr::create(ctx, loc, decl, declType);
}
FailureOr<ast::DeclRefExpr *>
Parser::createInlineVariableExpr(ast::Type type, StringRef name, SMRange loc,
ArrayRef<ast::ConstraintRef> constraints) {
FailureOr<ast::VariableDecl *> decl =
defineVariableDecl(name, loc, type, constraints);
if (failed(decl))
return failure();
return ast::DeclRefExpr::create(ctx, loc, *decl, type);
}
FailureOr<ast::MemberAccessExpr *>
Parser::createMemberAccessExpr(ast::Expr *parentExpr, StringRef name,
SMRange loc) {
// Validate the member name for the given parent expression.
FailureOr<ast::Type> memberType = validateMemberAccess(parentExpr, name, loc);
if (failed(memberType))
return failure();
return ast::MemberAccessExpr::create(ctx, loc, parentExpr, name, *memberType);
}
FailureOr<ast::Type> Parser::validateMemberAccess(ast::Expr *parentExpr,
StringRef name, SMRange loc) {
ast::Type parentType = parentExpr->getType();
if (ast::OperationType opType = parentType.dyn_cast<ast::OperationType>()) {
if (name == ast::AllResultsMemberAccessExpr::getMemberName())
return valueRangeTy;
// Verify member access based on the operation type.
if (const ods::Operation *odsOp = opType.getODSOperation()) {
auto results = odsOp->getResults();
// Handle indexed results.
unsigned index = 0;
if (llvm::isDigit(name[0]) && !name.getAsInteger(/*Radix=*/10, index) &&
index < results.size()) {
return results[index].isVariadic() ? valueRangeTy : valueTy;
}
// Handle named results.
const auto *it = llvm::find_if(results, [&](const auto &result) {
return result.getName() == name;
});
if (it != results.end())
return it->isVariadic() ? valueRangeTy : valueTy;
} else if (llvm::isDigit(name[0])) {
// Allow unchecked numeric indexing of the results of unregistered
// operations. It returns a single value.
return valueTy;
}
} else if (auto tupleType = parentType.dyn_cast<ast::TupleType>()) {
// Handle indexed results.
unsigned index = 0;
if (llvm::isDigit(name[0]) && !name.getAsInteger(/*Radix=*/10, index) &&
index < tupleType.size()) {
return tupleType.getElementTypes()[index];
}
// Handle named results.
auto elementNames = tupleType.getElementNames();
const auto *it = llvm::find(elementNames, name);
if (it != elementNames.end())
return tupleType.getElementTypes()[it - elementNames.begin()];
}
return emitError(
loc,
llvm::formatv("invalid member access `{0}` on expression of type `{1}`",
name, parentType));
}
FailureOr<ast::OperationExpr *> Parser::createOperationExpr(
SMRange loc, const ast::OpNameDecl *name,
OpResultTypeContext resultTypeContext,
SmallVectorImpl<ast::Expr *> &operands,
MutableArrayRef<ast::NamedAttributeDecl *> attributes,
SmallVectorImpl<ast::Expr *> &results) {
std::optional<StringRef> opNameRef = name->getName();
const ods::Operation *odsOp = lookupODSOperation(opNameRef);
// Verify the inputs operands.
if (failed(validateOperationOperands(loc, opNameRef, odsOp, operands)))
return failure();
// Verify the attribute list.
for (ast::NamedAttributeDecl *attr : attributes) {
// Check for an attribute type, or a type awaiting resolution.
ast::Type attrType = attr->getValue()->getType();
if (!attrType.isa<ast::AttributeType>()) {
return emitError(
attr->getValue()->getLoc(),
llvm::formatv("expected `Attr` expression, but got `{0}`", attrType));
}
}
assert(
(resultTypeContext == OpResultTypeContext::Explicit || results.empty()) &&
"unexpected inferrence when results were explicitly specified");
// If we aren't relying on type inferrence, or explicit results were provided,
// validate them.
if (resultTypeContext == OpResultTypeContext::Explicit) {
if (failed(validateOperationResults(loc, opNameRef, odsOp, results)))
return failure();
// Validate the use of interface based type inferrence for this operation.
} else if (resultTypeContext == OpResultTypeContext::Interface) {
assert(opNameRef &&
"expected valid operation name when inferring operation results");
checkOperationResultTypeInferrence(loc, *opNameRef, odsOp);
}
return ast::OperationExpr::create(ctx, loc, odsOp, name, operands, results,
attributes);
}
LogicalResult
Parser::validateOperationOperands(SMRange loc, std::optional<StringRef> name,
const ods::Operation *odsOp,
SmallVectorImpl<ast::Expr *> &operands) {
return validateOperationOperandsOrResults(
"operand", loc, odsOp ? odsOp->getLoc() : std::optional<SMRange>(), name,
operands, odsOp ? odsOp->getOperands() : std::nullopt, valueTy,
valueRangeTy);
}
LogicalResult
Parser::validateOperationResults(SMRange loc, std::optional<StringRef> name,
const ods::Operation *odsOp,
SmallVectorImpl<ast::Expr *> &results) {
return validateOperationOperandsOrResults(
"result", loc, odsOp ? odsOp->getLoc() : std::optional<SMRange>(), name,
results, odsOp ? odsOp->getResults() : std::nullopt, typeTy, typeRangeTy);
}
void Parser::checkOperationResultTypeInferrence(SMRange loc, StringRef opName,
const ods::Operation *odsOp) {
// If the operation might not have inferrence support, emit a warning to the
// user. We don't emit an error because the interface might be added to the
// operation at runtime. It's rare, but it could still happen. We emit a
// warning here instead.
// Handle inferrence warnings for unknown operations.
if (!odsOp) {
ctx.getDiagEngine().emitWarning(
loc, llvm::formatv(
"operation result types are marked to be inferred, but "
"`{0}` is unknown. Ensure that `{0}` supports zero "
"results or implements `InferTypeOpInterface`. Include "
"the ODS definition of this operation to remove this warning.",
opName));
return;
}
// Handle inferrence warnings for known operations that expected at least one
// result, but don't have inference support. An elided results list can mean
// "zero-results", and we don't want to warn when that is the expected
// behavior.
bool requiresInferrence =
llvm::any_of(odsOp->getResults(), [](const ods::OperandOrResult &result) {
return !result.isVariableLength();
});
if (requiresInferrence && !odsOp->hasResultTypeInferrence()) {
ast::InFlightDiagnostic diag = ctx.getDiagEngine().emitWarning(
loc,
llvm::formatv("operation result types are marked to be inferred, but "
"`{0}` does not provide an implementation of "
"`InferTypeOpInterface`. Ensure that `{0}` attaches "
"`InferTypeOpInterface` at runtime, or add support to "
"the ODS definition to remove this warning.",
opName));
diag->attachNote(llvm::formatv("see the definition of `{0}` here", opName),
odsOp->getLoc());
return;
}
}
LogicalResult Parser::validateOperationOperandsOrResults(
StringRef groupName, SMRange loc, std::optional<SMRange> odsOpLoc,
std::optional<StringRef> name, SmallVectorImpl<ast::Expr *> &values,
ArrayRef<ods::OperandOrResult> odsValues, ast::Type singleTy,
ast::RangeType rangeTy) {
// All operation types accept a single range parameter.
if (values.size() == 1) {
if (failed(convertExpressionTo(values[0], rangeTy)))
return failure();
return success();
}
/// If the operation has ODS information, we can more accurately verify the
/// values.
if (odsOpLoc) {
auto emitSizeMismatchError = [&] {
return emitErrorAndNote(
loc,
llvm::formatv("invalid number of {0} groups for `{1}`; expected "
"{2}, but got {3}",
groupName, *name, odsValues.size(), values.size()),
*odsOpLoc, llvm::formatv("see the definition of `{0}` here", *name));
};
// Handle the case where no values were provided.
if (values.empty()) {
// If we don't expect any on the ODS side, we are done.
if (odsValues.empty())
return success();
// If we do, check if we actually need to provide values (i.e. if any of
// the values are actually required).
unsigned numVariadic = 0;
for (const auto &odsValue : odsValues) {
if (!odsValue.isVariableLength())
return emitSizeMismatchError();
++numVariadic;
}
// If we are in a non-rewrite context, we don't need to do anything more.
// Zero-values is a valid constraint on the operation.
if (parserContext != ParserContext::Rewrite)
return success();
// Otherwise, when in a rewrite we may need to provide values to match the
// ODS signature of the operation to create.
// If we only have one variadic value, just use an empty list.
if (numVariadic == 1)
return success();
// Otherwise, create dummy values for each of the entries so that we
// adhere to the ODS signature.
for (unsigned i = 0, e = odsValues.size(); i < e; ++i) {
values.push_back(ast::RangeExpr::create(
ctx, loc, /*elements=*/std::nullopt, rangeTy));
}
return success();
}
// Verify that the number of values provided matches the number of value
// groups ODS expects.
if (odsValues.size() != values.size())
return emitSizeMismatchError();
auto diagFn = [&](ast::Diagnostic &diag) {
diag.attachNote(llvm::formatv("see the definition of `{0}` here", *name),
*odsOpLoc);
};
for (unsigned i = 0, e = values.size(); i < e; ++i) {
ast::Type expectedType = odsValues[i].isVariadic() ? rangeTy : singleTy;
if (failed(convertExpressionTo(values[i], expectedType, diagFn)))
return failure();
}
return success();
}
// Otherwise, accept the value groups as they have been defined and just
// ensure they are one of the expected types.
for (ast::Expr *&valueExpr : values) {
ast::Type valueExprType = valueExpr->getType();
// Check if this is one of the expected types.
if (valueExprType == rangeTy || valueExprType == singleTy)
continue;
// If the operand is an Operation, allow converting to a Value or
// ValueRange. This situations arises quite often with nested operation
// expressions: `op<my_dialect.foo>(op<my_dialect.bar>)`
if (singleTy == valueTy) {
if (valueExprType.isa<ast::OperationType>()) {
valueExpr = convertOpToValue(valueExpr);
continue;
}
}
// Otherwise, try to convert the expression to a range.
if (succeeded(convertExpressionTo(valueExpr, rangeTy)))
continue;
return emitError(
valueExpr->getLoc(),
llvm::formatv(
"expected `{0}` or `{1}` convertible expression, but got `{2}`",
singleTy, rangeTy, valueExprType));
}
return success();
}
FailureOr<ast::TupleExpr *>
Parser::createTupleExpr(SMRange loc, ArrayRef<ast::Expr *> elements,
ArrayRef<StringRef> elementNames) {
for (const ast::Expr *element : elements) {
ast::Type eleTy = element->getType();
if (eleTy.isa<ast::ConstraintType, ast::RewriteType, ast::TupleType>()) {
return emitError(
element->getLoc(),
llvm::formatv("unable to build a tuple with `{0}` element", eleTy));
}
}
return ast::TupleExpr::create(ctx, loc, elements, elementNames);
}
//===----------------------------------------------------------------------===//
// Stmts
FailureOr<ast::EraseStmt *> Parser::createEraseStmt(SMRange loc,
ast::Expr *rootOp) {
// Check that root is an Operation.
ast::Type rootType = rootOp->getType();
if (!rootType.isa<ast::OperationType>())
return emitError(rootOp->getLoc(), "expected `Op` expression");
return ast::EraseStmt::create(ctx, loc, rootOp);
}
FailureOr<ast::ReplaceStmt *>
Parser::createReplaceStmt(SMRange loc, ast::Expr *rootOp,
MutableArrayRef<ast::Expr *> replValues) {
// Check that root is an Operation.
ast::Type rootType = rootOp->getType();
if (!rootType.isa<ast::OperationType>()) {
return emitError(
rootOp->getLoc(),
llvm::formatv("expected `Op` expression, but got `{0}`", rootType));
}
// If there are multiple replacement values, we implicitly convert any Op
// expressions to the value form.
bool shouldConvertOpToValues = replValues.size() > 1;
for (ast::Expr *&replExpr : replValues) {
ast::Type replType = replExpr->getType();
// Check that replExpr is an Operation, Value, or ValueRange.
if (replType.isa<ast::OperationType>()) {
if (shouldConvertOpToValues)
replExpr = convertOpToValue(replExpr);
continue;
}
if (replType != valueTy && replType != valueRangeTy) {
return emitError(replExpr->getLoc(),
llvm::formatv("expected `Op`, `Value` or `ValueRange` "
"expression, but got `{0}`",
replType));
}
}
return ast::ReplaceStmt::create(ctx, loc, rootOp, replValues);
}
FailureOr<ast::RewriteStmt *>
Parser::createRewriteStmt(SMRange loc, ast::Expr *rootOp,
ast::CompoundStmt *rewriteBody) {
// Check that root is an Operation.
ast::Type rootType = rootOp->getType();
if (!rootType.isa<ast::OperationType>()) {
return emitError(
rootOp->getLoc(),
llvm::formatv("expected `Op` expression, but got `{0}`", rootType));
}
return ast::RewriteStmt::create(ctx, loc, rootOp, rewriteBody);
}
//===----------------------------------------------------------------------===//
// Code Completion
//===----------------------------------------------------------------------===//
LogicalResult Parser::codeCompleteMemberAccess(ast::Expr *parentExpr) {
ast::Type parentType = parentExpr->getType();
if (ast::OperationType opType = parentType.dyn_cast<ast::OperationType>())
codeCompleteContext->codeCompleteOperationMemberAccess(opType);
else if (ast::TupleType tupleType = parentType.dyn_cast<ast::TupleType>())
codeCompleteContext->codeCompleteTupleMemberAccess(tupleType);
return failure();
}
LogicalResult
Parser::codeCompleteAttributeName(std::optional<StringRef> opName) {
if (opName)
codeCompleteContext->codeCompleteOperationAttributeName(*opName);
return failure();
}
LogicalResult
Parser::codeCompleteConstraintName(ast::Type inferredType,
bool allowInlineTypeConstraints) {
codeCompleteContext->codeCompleteConstraintName(
inferredType, allowInlineTypeConstraints, curDeclScope);
return failure();
}
LogicalResult Parser::codeCompleteDialectName() {
codeCompleteContext->codeCompleteDialectName();
return failure();
}
LogicalResult Parser::codeCompleteOperationName(StringRef dialectName) {
codeCompleteContext->codeCompleteOperationName(dialectName);
return failure();
}
LogicalResult Parser::codeCompletePatternMetadata() {
codeCompleteContext->codeCompletePatternMetadata();
return failure();
}
LogicalResult Parser::codeCompleteIncludeFilename(StringRef curPath) {
codeCompleteContext->codeCompleteIncludeFilename(curPath);
return failure();
}
void Parser::codeCompleteCallSignature(ast::Node *parent,
unsigned currentNumArgs) {
ast::CallableDecl *callableDecl = tryExtractCallableDecl(parent);
if (!callableDecl)
return;
codeCompleteContext->codeCompleteCallSignature(callableDecl, currentNumArgs);
}
void Parser::codeCompleteOperationOperandsSignature(
std::optional<StringRef> opName, unsigned currentNumOperands) {
codeCompleteContext->codeCompleteOperationOperandsSignature(
opName, currentNumOperands);
}
void Parser::codeCompleteOperationResultsSignature(
std::optional<StringRef> opName, unsigned currentNumResults) {
codeCompleteContext->codeCompleteOperationResultsSignature(opName,
currentNumResults);
}
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
FailureOr<ast::Module *>
mlir::pdll::parsePDLLAST(ast::Context &ctx, llvm::SourceMgr &sourceMgr,
bool enableDocumentation,
CodeCompleteContext *codeCompleteContext) {
Parser parser(ctx, sourceMgr, enableDocumentation, codeCompleteContext);
return parser.parseModule();
}
|