1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
|
//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library for
// manipulating sparse tensors from MLIR. More specifically, it provides
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
// support library. The functionality provided in this library is meant
// to simplify benchmarking, testing, and debugging of MLIR code operating
// on sparse tensors. However, the provided functionality is **not**
// part of core MLIR itself.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by coordinate (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorRuntime.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
#include "mlir/ExecutionEngine/SparseTensor/File.h"
#include "mlir/ExecutionEngine/SparseTensor/PermutationRef.h"
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"
#include <cstring>
#include <numeric>
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
//
// Implementation details for public functions, which don't have a good
// place to live in the C++ library this file is wrapping.
//
//===----------------------------------------------------------------------===//
namespace {
/// Wrapper class to avoid memory leakage issues. The `SparseTensorCOO<V>`
/// class provides a standard C++ iterator interface, where the iterator
/// is implemented as per `std::vector`'s iterator. However, for MLIR's
/// usage we need to have an iterator which also holds onto the underlying
/// `SparseTensorCOO<V>` so that it can be freed whenever the iterator
/// is freed.
//
// We name this `SparseTensorIterator` rather than `SparseTensorCOOIterator`
// for future-proofing, since the use of `SparseTensorCOO` is an
// implementation detail that we eventually want to change (e.g., to
// use `SparseTensorEnumerator` directly, rather than constructing the
// intermediate `SparseTensorCOO` at all).
template <typename V>
class SparseTensorIterator final {
public:
/// This ctor requires `coo` to be a non-null pointer to a dynamically
/// allocated object, and takes ownership of that object. Therefore,
/// callers must not free the underlying COO object, since the iterator's
/// dtor will do so.
explicit SparseTensorIterator(const SparseTensorCOO<V> *coo)
: coo(coo), it(coo->begin()), end(coo->end()) {}
~SparseTensorIterator() { delete coo; }
// Disable copy-ctor and copy-assignment, to prevent double-free.
SparseTensorIterator(const SparseTensorIterator<V> &) = delete;
SparseTensorIterator<V> &operator=(const SparseTensorIterator<V> &) = delete;
/// Gets the next element. If there are no remaining elements, then
/// returns nullptr.
const Element<V> *getNext() { return it < end ? &*it++ : nullptr; }
private:
const SparseTensorCOO<V> *const coo; // Owning pointer.
typename SparseTensorCOO<V>::const_iterator it;
const typename SparseTensorCOO<V>::const_iterator end;
};
// TODO: When using this library from MLIR, the `toMLIRSparseTensor`/
// `IMPL_CONVERTTOMLIRSPARSETENSOR` and `fromMLIRSparseTensor`/
// `IMPL_CONVERTFROMMLIRSPARSETENSOR` constructs will be codegened away;
// therefore, these functions are only used by PyTACO, one place in the
// Python integration tests, and possibly by out-of-tree projects.
// This is notable because neither function can be easily generalized
// to handle non-permutations. In particular, while we could adjust
// the functions to take all the arguments they'd need, that would just
// push the problem into client code. So if we want to generalize these
// functions to support non-permutations, we'll need to figure out how
// to do so without putting undue burden on clients.
/// Initializes sparse tensor from an external COO-flavored format.
/// The `rank` argument is both dimension-rank and level-rank, and the
/// `dim2lvl` argument must be a permutation.
/// Used by `IMPL_CONVERTTOMLIRSPARSETENSOR`.
//
// TODO: generalize beyond 64-bit overhead types.
template <typename V>
static SparseTensorStorage<uint64_t, uint64_t, V> *
toMLIRSparseTensor(uint64_t rank, uint64_t nse, const uint64_t *dimSizes,
const V *values, const uint64_t *dimCoordinates,
const uint64_t *dim2lvl, const DimLevelType *lvlTypes) {
#ifndef NDEBUG
// Verify that the sparsity values are supported.
// TODO: update this check to match what we actually support.
for (uint64_t i = 0; i < rank; ++i)
if (lvlTypes[i] != DimLevelType::Dense &&
lvlTypes[i] != DimLevelType::Compressed)
MLIR_SPARSETENSOR_FATAL("unsupported level type: %d\n",
static_cast<uint8_t>(lvlTypes[i]));
#endif
// Verify that `dim2lvl` is a permutation of `[0..(rank-1)]`.
// NOTE: The construction of `lvlSizes` and `lvl2dim` don't generalize
// to arbitrary `dim2lvl` mappings. Whereas constructing `lvlCoords` from
// `dimCoords` does (though the details would have to be updated, just
// like for `IMPL_ADDELT`).
const detail::PermutationRef d2l(rank, dim2lvl);
// Convert external format to internal COO.
const auto lvlSizes = d2l.pushforward(rank, dimSizes);
auto *lvlCOO = new SparseTensorCOO<V>(lvlSizes, nse);
std::vector<uint64_t> lvlCoords(rank);
const uint64_t *dimCoords = dimCoordinates;
for (uint64_t i = 0; i < nse; ++i) {
d2l.pushforward(rank, dimCoords, lvlCoords.data());
lvlCOO->add(lvlCoords, values[i]);
dimCoords += rank;
}
// Return sparse tensor storage format as opaque pointer.
const auto lvl2dim = d2l.inverse();
auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newFromCOO(
rank, dimSizes, rank, lvlTypes, lvl2dim.data(), *lvlCOO);
delete lvlCOO;
return tensor;
}
/// Converts a sparse tensor to an external COO-flavored format.
/// Used by `IMPL_CONVERTFROMMLIRSPARSETENSOR`.
//
// TODO: Currently, values are copied from SparseTensorStorage to
// SparseTensorCOO, then to the output. We may want to reduce the number
// of copies.
//
// TODO: generalize beyond 64-bit overhead types, no dim ordering,
// all dimensions compressed
template <typename V>
static void
fromMLIRSparseTensor(const SparseTensorStorage<uint64_t, uint64_t, V> *tensor,
uint64_t *pRank, uint64_t *pNse, uint64_t **pShape,
V **pValues, uint64_t **pCoordinates) {
assert(tensor && "Received nullptr for tensor");
const uint64_t dimRank = tensor->getDimRank();
const auto &dimSizes = tensor->getDimSizes();
std::vector<uint64_t> identityPerm(dimRank);
std::iota(identityPerm.begin(), identityPerm.end(), 0);
SparseTensorCOO<V> *coo =
tensor->toCOO(dimRank, dimSizes.data(), dimRank, identityPerm.data());
const std::vector<Element<V>> &elements = coo->getElements();
const uint64_t nse = elements.size();
const auto &cooSizes = coo->getDimSizes();
assert(cooSizes.size() == dimRank && "Rank mismatch");
uint64_t *dimShape = new uint64_t[dimRank];
std::memcpy(static_cast<void *>(dimShape),
static_cast<const void *>(cooSizes.data()),
sizeof(uint64_t) * dimRank);
V *values = new V[nse];
uint64_t *coordinates = new uint64_t[dimRank * nse];
for (uint64_t i = 0, base = 0; i < nse; ++i) {
values[i] = elements[i].value;
for (uint64_t d = 0; d < dimRank; ++d)
coordinates[base + d] = elements[i].coords[d];
base += dimRank;
}
delete coo;
*pRank = dimRank;
*pNse = nse;
*pShape = dimShape;
*pValues = values;
*pCoordinates = coordinates;
}
//===----------------------------------------------------------------------===//
//
// Utilities for manipulating `StridedMemRefType`.
//
//===----------------------------------------------------------------------===//
// We shouldn't need to use `detail::safelyEQ` here since the `1` is a literal.
#define ASSERT_NO_STRIDE(MEMREF) \
do { \
assert((MEMREF) && "Memref is nullptr"); \
assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
} while (false)
// All our functions use `uint64_t` for ranks, but `StridedMemRefType::sizes`
// uses `int64_t` on some platforms. So we explicitly cast this lookup to
// ensure we get a consistent type, and we use `checkOverflowCast` rather
// than `static_cast` just to be extremely sure that the casting can't
// go awry. (The cast should aways be safe since (1) sizes should never
// be negative, and (2) the maximum `int64_t` is smaller than the maximum
// `uint64_t`. But it's better to be safe than sorry.)
#define MEMREF_GET_USIZE(MEMREF) \
detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
#define ASSERT_USIZE_EQ(MEMREF, SZ) \
assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
"Memref size mismatch")
#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
/// Initializes the memref with the provided size and data pointer. This
/// is designed for functions which want to "return" a memref that aliases
/// into memory owned by some other object (e.g., `SparseTensorStorage`),
/// without doing any actual copying. (The "return" is in scarequotes
/// because the `_mlir_ciface_` calling convention migrates any returned
/// memrefs into an out-parameter passed before all the other function
/// parameters.)
///
/// We make this a function rather than a macro mainly for type safety
/// reasons. This function does not modify the data pointer, but it
/// cannot be marked `const` because it is stored into the (necessarily)
/// non-`const` memref. This function is templated over the `DataSizeT`
/// to work around signedness warnings due to many data types having
/// varying signedness across different platforms. The templating allows
/// this function to ensure that it does the right thing and never
/// introduces errors due to implicit conversions.
template <typename DataSizeT, typename T>
static inline void aliasIntoMemref(DataSizeT size, T *data,
StridedMemRefType<T, 1> &ref) {
ref.basePtr = ref.data = data;
ref.offset = 0;
using MemrefSizeT = typename std::remove_reference_t<decltype(ref.sizes[0])>;
ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
ref.strides[0] = 1;
}
} // anonymous namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public functions which operate on MLIR buffers (memrefs) to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
#define CASE(p, c, v, P, C, V) \
if (posTp == (p) && crdTp == (c) && valTp == (v)) { \
switch (action) { \
case Action::kEmpty: \
return SparseTensorStorage<P, C, V>::newEmpty( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim); \
case Action::kFromCOO: { \
assert(ptr && "Received nullptr for SparseTensorCOO object"); \
auto &coo = *static_cast<SparseTensorCOO<V> *>(ptr); \
return SparseTensorStorage<P, C, V>::newFromCOO( \
dimRank, dimSizes, lvlRank, lvlTypes, lvl2dim, coo); \
} \
case Action::kSparseToSparse: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(ptr); \
return SparseTensorStorage<P, C, V>::newFromSparseTensor( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim, dimRank, \
dim2lvl, tensor); \
} \
case Action::kEmptyCOO: \
return new SparseTensorCOO<V>(lvlRank, lvlSizes); \
case Action::kToCOO: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
return tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
} \
case Action::kToIterator: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
auto *coo = tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
return new SparseTensorIterator<V>(coo); \
} \
} \
MLIR_SPARSETENSOR_FATAL("unknown action: %d\n", \
static_cast<uint32_t>(action)); \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
"Expected index_type == uint64_t");
// TODO: this swiss-army-knife should be split up into separate functions
// for each action, since the various actions don't agree on (1) whether
// the first two arguments are "sizes" vs "shapes", (2) whether the "lvl"
// arguments are actually storage-levels vs target tensor-dimensions,
// (3) whether all the arguments are actually used/required.
void *_mlir_ciface_newSparseTensor( // NOLINT
StridedMemRefType<index_type, 1> *dimSizesRef,
StridedMemRefType<index_type, 1> *lvlSizesRef,
StridedMemRefType<DimLevelType, 1> *lvlTypesRef,
StridedMemRefType<index_type, 1> *lvl2dimRef,
StridedMemRefType<index_type, 1> *dim2lvlRef, OverheadType posTp,
OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
ASSERT_NO_STRIDE(dimSizesRef);
ASSERT_NO_STRIDE(lvlSizesRef);
ASSERT_NO_STRIDE(lvlTypesRef);
ASSERT_NO_STRIDE(lvl2dimRef);
ASSERT_NO_STRIDE(dim2lvlRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
ASSERT_USIZE_EQ(dim2lvlRef, dimRank);
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
ASSERT_USIZE_EQ(lvl2dimRef, lvlRank);
const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
const DimLevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (posTp == OverheadType::kIndex)
posTp = OverheadType::kU64;
if (crdTp == OverheadType::kIndex)
crdTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Two-byte floats with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Complex matrices with wide overhead.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
// Unsupported case (add above if needed).
// TODO: better pretty-printing of enum values!
MLIR_SPARSETENSOR_FATAL(
"unsupported combination of types: <P=%d, C=%d, V=%d>\n",
static_cast<int>(posTp), static_cast<int>(crdTp),
static_cast<int>(valTp));
}
#undef CASE
#undef CASE_SECSAME
#define IMPL_SPARSEVALUES(VNAME, V) \
void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
void *tensor) { \
assert(ref &&tensor); \
std::vector<V> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
#undef IMPL_SPARSEVALUES
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_type lvl) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
#define IMPL_SPARSEPOSITIONS(PNAME, P) \
IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
#undef IMPL_SPARSEPOSITIONS
#define IMPL_SPARSECOORDINATES(CNAME, C) \
IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
#undef IMPL_SPARSECOORDINATES
#undef IMPL_GETOVERHEAD
// TODO: while this API design will work for arbitrary dim2lvl mappings,
// we should probably move the `dimCoords`-to-`lvlCoords` computation into
// codegen (since that could enable optimizations to remove the intermediate
// memref).
#define IMPL_ADDELT(VNAME, V) \
void *_mlir_ciface_addElt##VNAME( \
void *lvlCOO, StridedMemRefType<V, 0> *vref, \
StridedMemRefType<index_type, 1> *dimCoordsRef, \
StridedMemRefType<index_type, 1> *dim2lvlRef) { \
assert(lvlCOO &&vref); \
ASSERT_NO_STRIDE(dimCoordsRef); \
ASSERT_NO_STRIDE(dim2lvlRef); \
const uint64_t rank = MEMREF_GET_USIZE(dimCoordsRef); \
ASSERT_USIZE_EQ(dim2lvlRef, rank); \
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
std::vector<index_type> lvlCoords(rank); \
for (uint64_t d = 0; d < rank; ++d) \
lvlCoords[dim2lvl[d]] = dimCoords[d]; \
V *value = MEMREF_GET_PAYLOAD(vref); \
static_cast<SparseTensorCOO<V> *>(lvlCOO)->add(lvlCoords, *value); \
return lvlCOO; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_ADDELT)
#undef IMPL_ADDELT
// NOTE: the `cref` argument uses the same coordinate-space as the `iter`
// (which can be either dim- or lvl-coords, depending on context).
#define IMPL_GETNEXT(VNAME, V) \
bool _mlir_ciface_getNext##VNAME(void *iter, \
StridedMemRefType<index_type, 1> *cref, \
StridedMemRefType<V, 0> *vref) { \
assert(iter &&vref); \
ASSERT_NO_STRIDE(cref); \
index_type *coords = MEMREF_GET_PAYLOAD(cref); \
V *value = MEMREF_GET_PAYLOAD(vref); \
const uint64_t rank = MEMREF_GET_USIZE(cref); \
const Element<V> *elem = \
static_cast<SparseTensorIterator<V> *>(iter)->getNext(); \
if (elem == nullptr) \
return false; \
for (uint64_t d = 0; d < rank; d++) \
coords[d] = elem->coords[d]; \
*value = elem->value; \
return true; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
#undef IMPL_GETNEXT
#define IMPL_LEXINSERT(VNAME, V) \
void _mlir_ciface_lexInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(t &&vref); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
assert(lvlCoords); \
V *value = MEMREF_GET_PAYLOAD(vref); \
tensor.lexInsert(lvlCoords, *value); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
#undef IMPL_LEXINSERT
#define IMPL_EXPINSERT(VNAME, V) \
void _mlir_ciface_expInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_type, 1> *aref, index_type count) { \
assert(t); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
ASSERT_NO_STRIDE(vref); \
ASSERT_NO_STRIDE(fref); \
ASSERT_NO_STRIDE(aref); \
ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
V *values = MEMREF_GET_PAYLOAD(vref); \
bool *filled = MEMREF_GET_PAYLOAD(fref); \
index_type *added = MEMREF_GET_PAYLOAD(aref); \
tensor.expInsert(lvlCoords, values, filled, added, count); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
#undef IMPL_EXPINSERT
void *_mlir_ciface_createCheckedSparseTensorReader(
char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
PrimaryType valTp) {
ASSERT_NO_STRIDE(dimShapeRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
return static_cast<void *>(reader);
}
// FIXME: update `SparseTensorCodegenPass` to use
// `_mlir_ciface_getSparseTensorReaderDimSizes` instead.
void _mlir_ciface_copySparseTensorReaderDimSizes(
void *p, StridedMemRefType<index_type, 1> *dimSizesRef) {
assert(p);
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
ASSERT_NO_STRIDE(dimSizesRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
ASSERT_USIZE_EQ(dimSizesRef, reader.getRank());
index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
const index_type *fileSizes = reader.getDimSizes();
for (uint64_t d = 0; d < dimRank; ++d)
dimSizes[d] = fileSizes[d];
}
void _mlir_ciface_getSparseTensorReaderDimSizes(
StridedMemRefType<index_type, 1> *out, void *p) {
assert(out && p);
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
aliasIntoMemref(reader.getRank(), dimSizes, *out);
}
#define IMPL_GETNEXT(VNAME, V) \
void _mlir_ciface_getSparseTensorReaderNext##VNAME( \
void *p, StridedMemRefType<index_type, 1> *dimCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
auto &reader = *static_cast<SparseTensorReader *>(p); \
ASSERT_NO_STRIDE(dimCoordsRef); \
const uint64_t dimRank = MEMREF_GET_USIZE(dimCoordsRef); \
index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
V *value = MEMREF_GET_PAYLOAD(vref); \
*value = reader.readElement<V>(dimRank, dimCoords); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
#undef IMPL_GETNEXT
// FIXME: This function name is weird; should rename to
// "sparseTensorReaderReadToBuffers".
#define IMPL_GETNEXT(VNAME, V, CNAME, C) \
bool _mlir_ciface_getSparseTensorReaderRead##CNAME##VNAME( \
void *p, StridedMemRefType<index_type, 1> *dim2lvlRef, \
StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) { \
assert(p); \
auto &reader = *static_cast<SparseTensorReader *>(p); \
ASSERT_NO_STRIDE(cref); \
ASSERT_NO_STRIDE(vref); \
ASSERT_NO_STRIDE(dim2lvlRef); \
const uint64_t cSize = MEMREF_GET_USIZE(cref); \
const uint64_t vSize = MEMREF_GET_USIZE(vref); \
const uint64_t lvlRank = reader.getRank(); \
assert(vSize *lvlRank <= cSize); \
assert(vSize >= reader.getNSE() && "Not enough space in buffers"); \
ASSERT_USIZE_EQ(dim2lvlRef, lvlRank); \
(void)cSize; \
(void)vSize; \
(void)lvlRank; \
C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref); \
V *values = MEMREF_GET_PAYLOAD(vref); \
index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvlCoordinates, \
values); \
}
MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
#undef IMPL_GETNEXT
void *_mlir_ciface_newSparseTensorFromReader(
void *p, StridedMemRefType<index_type, 1> *lvlSizesRef,
StridedMemRefType<DimLevelType, 1> *lvlTypesRef,
StridedMemRefType<index_type, 1> *lvl2dimRef,
StridedMemRefType<index_type, 1> *dim2lvlRef, OverheadType posTp,
OverheadType crdTp, PrimaryType valTp) {
assert(p);
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
ASSERT_NO_STRIDE(lvlSizesRef);
ASSERT_NO_STRIDE(lvlTypesRef);
ASSERT_NO_STRIDE(lvl2dimRef);
ASSERT_NO_STRIDE(dim2lvlRef);
const uint64_t dimRank = reader.getRank();
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
ASSERT_USIZE_EQ(lvl2dimRef, lvlRank);
ASSERT_USIZE_EQ(dim2lvlRef, dimRank);
(void)dimRank;
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
const DimLevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
//
// FIXME(wrengr): Really need to define a separate x-macro for handling
// all this. (Or ideally some better, entirely-different approach)
#define CASE(p, c, v, P, C, V) \
if (posTp == OverheadType::p && crdTp == OverheadType::c && \
valTp == PrimaryType::v) \
return static_cast<void *>(reader.readSparseTensor<P, C, V>( \
lvlRank, lvlSizes, lvlTypes, lvl2dim, dim2lvl));
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (posTp == OverheadType::kIndex)
posTp = OverheadType::kU64;
if (crdTp == OverheadType::kIndex)
crdTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(kU64, kU64, kF64, uint64_t, uint64_t, double);
CASE(kU64, kU32, kF64, uint64_t, uint32_t, double);
CASE(kU64, kU16, kF64, uint64_t, uint16_t, double);
CASE(kU64, kU8, kF64, uint64_t, uint8_t, double);
CASE(kU32, kU64, kF64, uint32_t, uint64_t, double);
CASE(kU32, kU32, kF64, uint32_t, uint32_t, double);
CASE(kU32, kU16, kF64, uint32_t, uint16_t, double);
CASE(kU32, kU8, kF64, uint32_t, uint8_t, double);
CASE(kU16, kU64, kF64, uint16_t, uint64_t, double);
CASE(kU16, kU32, kF64, uint16_t, uint32_t, double);
CASE(kU16, kU16, kF64, uint16_t, uint16_t, double);
CASE(kU16, kU8, kF64, uint16_t, uint8_t, double);
CASE(kU8, kU64, kF64, uint8_t, uint64_t, double);
CASE(kU8, kU32, kF64, uint8_t, uint32_t, double);
CASE(kU8, kU16, kF64, uint8_t, uint16_t, double);
CASE(kU8, kU8, kF64, uint8_t, uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(kU64, kU64, kF32, uint64_t, uint64_t, float);
CASE(kU64, kU32, kF32, uint64_t, uint32_t, float);
CASE(kU64, kU16, kF32, uint64_t, uint16_t, float);
CASE(kU64, kU8, kF32, uint64_t, uint8_t, float);
CASE(kU32, kU64, kF32, uint32_t, uint64_t, float);
CASE(kU32, kU32, kF32, uint32_t, uint32_t, float);
CASE(kU32, kU16, kF32, uint32_t, uint16_t, float);
CASE(kU32, kU8, kF32, uint32_t, uint8_t, float);
CASE(kU16, kU64, kF32, uint16_t, uint64_t, float);
CASE(kU16, kU32, kF32, uint16_t, uint32_t, float);
CASE(kU16, kU16, kF32, uint16_t, uint16_t, float);
CASE(kU16, kU8, kF32, uint16_t, uint8_t, float);
CASE(kU8, kU64, kF32, uint8_t, uint64_t, float);
CASE(kU8, kU32, kF32, uint8_t, uint32_t, float);
CASE(kU8, kU16, kF32, uint8_t, uint16_t, float);
CASE(kU8, kU8, kF32, uint8_t, uint8_t, float);
// Two-byte floats with both overheads of the same type.
CASE_SECSAME(kU64, kF16, uint64_t, f16);
CASE_SECSAME(kU64, kBF16, uint64_t, bf16);
CASE_SECSAME(kU32, kF16, uint32_t, f16);
CASE_SECSAME(kU32, kBF16, uint32_t, bf16);
CASE_SECSAME(kU16, kF16, uint16_t, f16);
CASE_SECSAME(kU16, kBF16, uint16_t, bf16);
CASE_SECSAME(kU8, kF16, uint8_t, f16);
CASE_SECSAME(kU8, kBF16, uint8_t, bf16);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(kU64, kI64, uint64_t, int64_t);
CASE_SECSAME(kU64, kI32, uint64_t, int32_t);
CASE_SECSAME(kU64, kI16, uint64_t, int16_t);
CASE_SECSAME(kU64, kI8, uint64_t, int8_t);
CASE_SECSAME(kU32, kI64, uint32_t, int64_t);
CASE_SECSAME(kU32, kI32, uint32_t, int32_t);
CASE_SECSAME(kU32, kI16, uint32_t, int16_t);
CASE_SECSAME(kU32, kI8, uint32_t, int8_t);
CASE_SECSAME(kU16, kI64, uint16_t, int64_t);
CASE_SECSAME(kU16, kI32, uint16_t, int32_t);
CASE_SECSAME(kU16, kI16, uint16_t, int16_t);
CASE_SECSAME(kU16, kI8, uint16_t, int8_t);
CASE_SECSAME(kU8, kI64, uint8_t, int64_t);
CASE_SECSAME(kU8, kI32, uint8_t, int32_t);
CASE_SECSAME(kU8, kI16, uint8_t, int16_t);
CASE_SECSAME(kU8, kI8, uint8_t, int8_t);
// Complex matrices with wide overhead.
CASE_SECSAME(kU64, kC64, uint64_t, complex64);
CASE_SECSAME(kU64, kC32, uint64_t, complex32);
// Unsupported case (add above if needed).
// TODO: better pretty-printing of enum values!
MLIR_SPARSETENSOR_FATAL(
"unsupported combination of types: <P=%d, C=%d, V=%d>\n",
static_cast<int>(posTp), static_cast<int>(crdTp),
static_cast<int>(valTp));
#undef CASE_SECSAME
#undef CASE
}
void _mlir_ciface_outSparseTensorWriterMetaData(
void *p, index_type dimRank, index_type nse,
StridedMemRefType<index_type, 1> *dimSizesRef) {
assert(p);
ASSERT_NO_STRIDE(dimSizesRef);
assert(dimRank != 0);
index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p);
file << dimRank << " " << nse << std::endl;
for (index_type d = 0; d < dimRank - 1; ++d)
file << dimSizes[d] << " ";
file << dimSizes[dimRank - 1] << std::endl;
}
#define IMPL_OUTNEXT(VNAME, V) \
void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
void *p, index_type dimRank, \
StridedMemRefType<index_type, 1> *dimCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
ASSERT_NO_STRIDE(dimCoordsRef); \
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p); \
for (index_type d = 0; d < dimRank; ++d) \
file << (dimCoords[d] + 1) << " "; \
V *value = MEMREF_GET_PAYLOAD(vref); \
file << *value << std::endl; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
#undef IMPL_OUTNEXT
//===----------------------------------------------------------------------===//
//
// Public functions which accept only C-style data structures to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
index_type sparseLvlSize(void *tensor, index_type l) {
return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
}
index_type sparseDimSize(void *tensor, index_type d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
void endInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
}
#define IMPL_OUTSPARSETENSOR(VNAME, V) \
void outSparseTensor##VNAME(void *coo, void *dest, bool sort) { \
assert(coo && "Got nullptr for COO object"); \
auto &coo_ = *static_cast<SparseTensorCOO<V> *>(coo); \
if (sort) \
coo_.sort(); \
return writeExtFROSTT(coo_, static_cast<char *>(dest)); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTSPARSETENSOR)
#undef IMPL_OUTSPARSETENSOR
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
#define IMPL_DELCOO(VNAME, V) \
void delSparseTensorCOO##VNAME(void *coo) { \
delete static_cast<SparseTensorCOO<V> *>(coo); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELCOO)
#undef IMPL_DELCOO
#define IMPL_DELITER(VNAME, V) \
void delSparseTensorIterator##VNAME(void *iter) { \
delete static_cast<SparseTensorIterator<V> *>(iter); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELITER)
#undef IMPL_DELITER
char *getTensorFilename(index_type id) {
constexpr size_t BUF_SIZE = 80;
char var[BUF_SIZE];
snprintf(var, BUF_SIZE, "TENSOR%" PRIu64, id);
char *env = getenv(var);
if (!env)
MLIR_SPARSETENSOR_FATAL("Environment variable %s is not set\n", var);
return env;
}
void readSparseTensorShape(char *filename, std::vector<uint64_t> *out) {
assert(out && "Received nullptr for out-parameter");
SparseTensorReader reader(filename);
reader.openFile();
reader.readHeader();
reader.closeFile();
const uint64_t dimRank = reader.getRank();
const uint64_t *dimSizes = reader.getDimSizes();
out->reserve(dimRank);
out->assign(dimSizes, dimSizes + dimRank);
}
// We can't use `static_cast` here because `DimLevelType` is an enum-class.
#define IMPL_CONVERTTOMLIRSPARSETENSOR(VNAME, V) \
void *convertToMLIRSparseTensor##VNAME( \
uint64_t rank, uint64_t nse, uint64_t *dimSizes, V *values, \
uint64_t *dimCoordinates, uint64_t *dim2lvl, uint8_t *lvlTypes) { \
return toMLIRSparseTensor<V>(rank, nse, dimSizes, values, dimCoordinates, \
dim2lvl, \
reinterpret_cast<DimLevelType *>(lvlTypes)); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTTOMLIRSPARSETENSOR)
#undef IMPL_CONVERTTOMLIRSPARSETENSOR
#define IMPL_CONVERTFROMMLIRSPARSETENSOR(VNAME, V) \
void convertFromMLIRSparseTensor##VNAME( \
void *tensor, uint64_t *pRank, uint64_t *pNse, uint64_t **pShape, \
V **pValues, uint64_t **pCoordinates) { \
fromMLIRSparseTensor<V>( \
static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor), \
pRank, pNse, pShape, pValues, pCoordinates); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTFROMMLIRSPARSETENSOR)
#undef IMPL_CONVERTFROMMLIRSPARSETENSOR
// FIXME: update `SparseTensorCodegenPass` to use
// `_mlir_ciface_createCheckedSparseTensorReader` instead.
void *createSparseTensorReader(char *filename) {
SparseTensorReader *reader = new SparseTensorReader(filename);
reader->openFile();
reader->readHeader();
return static_cast<void *>(reader);
}
index_type getSparseTensorReaderRank(void *p) {
return static_cast<SparseTensorReader *>(p)->getRank();
}
bool getSparseTensorReaderIsSymmetric(void *p) {
return static_cast<SparseTensorReader *>(p)->isSymmetric();
}
index_type getSparseTensorReaderNSE(void *p) {
return static_cast<SparseTensorReader *>(p)->getNSE();
}
index_type getSparseTensorReaderDimSize(void *p, index_type d) {
return static_cast<SparseTensorReader *>(p)->getDimSize(d);
}
void delSparseTensorReader(void *p) {
delete static_cast<SparseTensorReader *>(p);
}
void *createSparseTensorWriter(char *filename) {
SparseTensorWriter *file =
(filename[0] == 0) ? &std::cout : new std::ofstream(filename);
*file << "# extended FROSTT format\n";
return static_cast<void *>(file);
}
void delSparseTensorWriter(void *p) {
SparseTensorWriter *file = static_cast<SparseTensorWriter *>(p);
file->flush();
assert(file->good());
if (file != &std::cout)
delete file;
}
} // extern "C"
#undef MEMREF_GET_PAYLOAD
#undef ASSERT_USIZE_EQ
#undef MEMREF_GET_USIZE
#undef ASSERT_NO_STRIDE
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|