1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
//===- VectorUnrollDistribute.cpp - patterns to do vector unrolling -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to do vector unrolling and vector distribution.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "vector-unrolling"
using namespace mlir;
using namespace mlir::vector;
/// During unrolling from `originalShape` to `targetShape` return the offset for
/// the slice `index`.
static SmallVector<int64_t> getVectorOffset(ArrayRef<int64_t> ratioStrides,
int64_t index,
ArrayRef<int64_t> targetShape) {
return computeElementwiseMul(delinearize(index, ratioStrides), targetShape);
}
/// A functor that accomplishes the same thing as `getVectorOffset` but
/// allows for reordering the traversal of the dimensions. The order of
/// traversal is given in "for loop order" (outer to inner).
namespace {
class DecomposeShapeIterator {
private:
SmallVector<int64_t> vectorShape;
SmallVector<int64_t> loopOrder;
SmallVector<int64_t> sliceStrides;
int64_t maxIndexVal{1};
public:
DecomposeShapeIterator(ArrayRef<int64_t> originalShape,
ArrayRef<int64_t> targetShape,
ArrayRef<int64_t> loopOrder)
: vectorShape(targetShape.begin(), targetShape.end()),
loopOrder(loopOrder.begin(), loopOrder.end()),
sliceStrides(originalShape.size()) {
assert(originalShape.size() >= targetShape.size());
assert(loopOrder.size() == originalShape.size());
// Compute the count for each dimension.
auto maybeShapeRatio = computeShapeRatio(originalShape, targetShape);
assert(maybeShapeRatio && "Shape does not evenly divide");
// Pad `sliceDimCounts` with leading 1s so that all sizes match.
SmallVector<int64_t> sliceDimCounts = *maybeShapeRatio;
maxIndexVal = computeMaxLinearIndex(sliceDimCounts);
// Reversing "loop order" gives dimensions from fastest varying to slowest
// varying (smallest stride to largest stride).
int64_t accum = 1;
for (auto idx : llvm::reverse(loopOrder)) {
sliceStrides[idx] = accum;
accum *= sliceDimCounts[idx];
}
}
// Turn the linear index into a d-tuple based on units of vectors of size
// `vectorShape`. The linear index is assumed to represent traversal of the
// dimensions based on `order`.
SmallVector<int64_t> delinearize(int64_t index) const {
// Traverse in for loop order (largest stride to smallest stride).
SmallVector<int64_t> vectorOffsets(sliceStrides.size());
for (auto idx : loopOrder) {
vectorOffsets[idx] = index / sliceStrides[idx];
index %= sliceStrides[idx];
}
return vectorOffsets;
}
int64_t maxIndex() const { return maxIndexVal; }
/// Return the offset within d-tuple based on the ordering given by
/// `loopOrder`.
SmallVector<int64_t> getVectorOffset(int64_t index) const {
SmallVector<int64_t> vectorOffsets = delinearize(index);
SmallVector<int64_t> elementOffsets =
computeElementwiseMul(vectorShape, vectorOffsets);
return elementOffsets;
}
};
} // namespace
/// Compute the indices of the slice `index` for a tranfer op.
static SmallVector<Value> sliceTransferIndices(ArrayRef<int64_t> elementOffsets,
ArrayRef<Value> indices,
AffineMap permutationMap,
Location loc,
OpBuilder &builder) {
MLIRContext *ctx = builder.getContext();
auto isBroadcast = [](AffineExpr expr) {
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>())
return constExpr.getValue() == 0;
return false;
};
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
SmallVector<Value> slicedIndices(indices.begin(), indices.end());
for (const auto &dim : llvm::enumerate(permutationMap.getResults())) {
if (isBroadcast(dim.value()))
continue;
unsigned pos = dim.value().cast<AffineDimExpr>().getPosition();
auto expr = getAffineDimExpr(0, builder.getContext()) +
getAffineConstantExpr(elementOffsets[dim.index()], ctx);
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
slicedIndices[pos] =
builder.create<affine::AffineApplyOp>(loc, map, indices[pos]);
}
return slicedIndices;
}
// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
Operation *op,
ArrayRef<Value> operands,
ArrayRef<Type> resultTypes) {
return builder.create(loc, op->getName().getIdentifier(), operands,
resultTypes, op->getAttrs());
}
/// Return the target shape for unrolling for the given `op`. Return
/// std::nullopt if the op shouldn't be or cannot be unrolled.
static std::optional<SmallVector<int64_t>>
getTargetShape(const vector::UnrollVectorOptions &options, Operation *op) {
if (options.filterConstraint && failed(options.filterConstraint(op)))
return std::nullopt;
assert(options.nativeShape &&
"vector unrolling expects the native shape or native"
"shape call back function to be set");
auto unrollableVectorOp = dyn_cast<VectorUnrollOpInterface>(op);
if (!unrollableVectorOp)
return std::nullopt;
auto maybeUnrollShape = unrollableVectorOp.getShapeForUnroll();
if (!maybeUnrollShape)
return std::nullopt;
std::optional<SmallVector<int64_t>> targetShape = options.nativeShape(op);
if (!targetShape)
return std::nullopt;
auto maybeShapeRatio = computeShapeRatio(*maybeUnrollShape, *targetShape);
if (!maybeShapeRatio ||
llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; }))
return std::nullopt;
return targetShape;
}
static SmallVector<int64_t>
getUnrollOrder(unsigned numLoops, Operation *op,
const vector::UnrollVectorOptions &options) {
SmallVector<int64_t> loopOrder =
llvm::to_vector(llvm::seq<int64_t>(0, static_cast<int64_t>(numLoops)));
if (options.traversalOrderCallback != nullptr) {
std::optional<SmallVector<int64_t>> order =
options.traversalOrderCallback(op);
if (order) {
loopOrder = std::move(*order);
}
}
return loopOrder;
}
namespace {
struct UnrollTransferReadPattern
: public OpRewritePattern<vector::TransferReadOp> {
UnrollTransferReadPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferReadOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (readOp.getTransferRank() == 0)
return failure();
if (readOp.getMask())
return failure();
auto targetShape = getTargetShape(options, readOp);
if (!targetShape)
return failure();
auto sourceVectorType = readOp.getVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = readOp.getLoc();
ArrayRef<int64_t> originalSize = readOp.getVectorType().getShape();
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
auto targetType =
VectorType::get(*targetShape, sourceVectorType.getElementType());
SmallVector<Value> originalIndices(readOp.getIndices().begin(),
readOp.getIndices().end());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), readOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
for (int64_t i = 0; i < indexToOffsets.maxIndex(); i++) {
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
SmallVector<Value> indices =
sliceTransferIndices(elementOffsets, originalIndices,
readOp.getPermutationMap(), loc, rewriter);
auto slicedRead = rewriter.create<vector::TransferReadOp>(
loc, targetType, readOp.getSource(), indices,
readOp.getPermutationMapAttr(), readOp.getPadding(), readOp.getMask(),
readOp.getInBoundsAttr());
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, slicedRead, result, elementOffsets, strides);
}
rewriter.replaceOp(readOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollTransferWritePattern
: public OpRewritePattern<vector::TransferWriteOp> {
UnrollTransferWritePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferWriteOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (writeOp.getTransferRank() == 0)
return failure();
if (writeOp.getMask())
return failure();
auto targetShape = getTargetShape(options, writeOp);
if (!targetShape)
return failure();
auto sourceVectorType = writeOp.getVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = writeOp.getLoc();
ArrayRef<int64_t> originalSize = sourceVectorType.getShape();
SmallVector<Value> originalIndices(writeOp.getIndices().begin(),
writeOp.getIndices().end());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), writeOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
Value resultTensor;
for (int64_t i = 0; i < indexToOffsets.maxIndex(); i++) {
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
Value slicedVector = rewriter.create<vector::ExtractStridedSliceOp>(
loc, writeOp.getVector(), elementOffsets, *targetShape, strides);
SmallVector<Value> indices =
sliceTransferIndices(elementOffsets, originalIndices,
writeOp.getPermutationMap(), loc, rewriter);
Operation *slicedWrite = rewriter.create<vector::TransferWriteOp>(
loc, slicedVector, resultTensor ? resultTensor : writeOp.getSource(),
indices, writeOp.getPermutationMapAttr(), writeOp.getInBoundsAttr());
// For the tensor case update the destination for the next transfer write.
if (!slicedWrite->getResults().empty())
resultTensor = slicedWrite->getResult(0);
}
if (resultTensor)
rewriter.replaceOp(writeOp, resultTensor);
else
rewriter.eraseOp(writeOp);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct OffsetMapInfo {
static SmallVector<int64_t> getEmptyKey() { return {int64_t(-1)}; }
static SmallVector<int64_t> getTombstoneKey() { return {int64_t(-2)}; }
static unsigned getHashValue(const SmallVector<int64_t> &v) {
return static_cast<unsigned>(llvm::hash_combine_range(v.begin(), v.end()));
}
static bool isEqual(const SmallVector<int64_t> &lhs,
const SmallVector<int64_t> &rhs) {
return lhs == rhs;
}
};
struct UnrollContractionPattern
: public OpRewritePattern<vector::ContractionOp> {
UnrollContractionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::ContractionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
auto targetShape = getTargetShape(options, contractOp);
if (!targetShape)
return failure();
auto dstVecType = cast<VectorType>(contractOp.getResultType());
SmallVector<int64_t> originalSize = *contractOp.getShapeForUnroll();
Location loc = contractOp.getLoc();
unsigned accIndex = vector::ContractionOp::getAccOperandIndex();
AffineMap dstAffineMap = contractOp.getIndexingMapsArray()[accIndex];
llvm::MapVector<
SmallVector<int64_t>, Value,
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
accCache;
SmallVector<int64_t> loopOrder = getUnrollOrder(
contractOp.getIteratorTypes().size(), contractOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
const int64_t sliceCount = indexToOffsets.maxIndex();
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets = indexToOffsets.getVectorOffset(i);
SmallVector<Value> slicesOperands(contractOp.getNumOperands());
// Helper to compute the new shape of each operand and extract the slice.
auto extractOperand = [&](unsigned index, Value operand,
AffineMap permutationMap,
ArrayRef<int64_t> operandOffets) {
SmallVector<int64_t> operandShape = applyPermutationMap(
permutationMap, ArrayRef<int64_t>(*targetShape));
SmallVector<int64_t> operandStrides(operandOffets.size(), 1);
slicesOperands[index] = rewriter.create<vector::ExtractStridedSliceOp>(
loc, operand, operandOffets, operandShape, operandStrides);
};
// Extract the new lhs operand.
AffineMap lhsPermutationMap = contractOp.getIndexingMapsArray()[0];
SmallVector<int64_t> lhsOffets =
applyPermutationMap(lhsPermutationMap, ArrayRef<int64_t>(offsets));
extractOperand(0, contractOp.getLhs(), lhsPermutationMap, lhsOffets);
// Extract the new rhs operand.
AffineMap rhsPermutationMap = contractOp.getIndexingMapsArray()[1];
SmallVector<int64_t> rhsOffets =
applyPermutationMap(rhsPermutationMap, ArrayRef<int64_t>(offsets));
extractOperand(1, contractOp.getRhs(), rhsPermutationMap, rhsOffets);
AffineMap accPermutationMap = contractOp.getIndexingMapsArray()[2];
SmallVector<int64_t> accOffets =
applyPermutationMap(accPermutationMap, ArrayRef<int64_t>(offsets));
// If a version of the accumulator has already been computed, use it
// otherwise extract the first version from the original operand.
auto accIt = accCache.find(accOffets);
if (accIt != accCache.end())
slicesOperands[2] = accIt->second;
else
extractOperand(2, contractOp.getAcc(), accPermutationMap, accOffets);
SmallVector<int64_t> dstShape =
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(*targetShape));
auto targetType = VectorType::get(dstShape, dstVecType.getElementType());
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, contractOp, slicesOperands, targetType);
SmallVector<int64_t> dstOffets =
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(offsets));
// Save the accumulated value untill all the loops are unrolled since
// reduction loop keep updating the accumulator.
accCache[dstOffets] = newOp->getResult(0);
}
// Assemble back the accumulator into a single vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
for (const auto &it : accCache) {
SmallVector<int64_t> dstStrides(it.first.size(), 1);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, it.second, result, it.first, dstStrides);
}
rewriter.replaceOp(contractOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollMultiReductionPattern
: public OpRewritePattern<vector::MultiDimReductionOp> {
UnrollMultiReductionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp reductionOp,
PatternRewriter &rewriter) const override {
std::optional<SmallVector<int64_t>> targetShape =
getTargetShape(options, reductionOp);
if (!targetShape)
return failure();
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
llvm::MapVector<
SmallVector<int64_t>, Value,
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
accCache;
// Compute shape ratio of 'shape' and 'sizes'.
int64_t sliceCount = computeMaxLinearIndex(ratio);
Location loc = reductionOp.getLoc();
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<Value> operands;
SmallVector<int64_t> operandStrides(offsets.size(), 1);
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getSource(), offsets, *targetShape, operandStrides);
operands.push_back(slicedOperand);
SmallVector<int64_t> dstShape;
SmallVector<int64_t> destOffset;
for (size_t i : llvm::seq(size_t(0), targetShape->size())) {
if (!reductionOp.isReducedDim(i)) {
destOffset.push_back(offsets[i]);
dstShape.push_back((*targetShape)[i]);
}
}
Value acc;
SmallVector<int64_t> accStrides(destOffset.size(), 1);
// If a version of the accumulator has already been computed, use it
// otherwise extract the first version from the original operand.
auto accIt = accCache.find(destOffset);
if (accIt != accCache.end())
acc = accIt->second;
else
acc = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getAcc(), destOffset, dstShape, accStrides);
operands.push_back(acc);
auto targetType = VectorType::get(
dstShape, reductionOp.getSourceVectorType().getElementType());
Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, reductionOp,
operands, targetType);
Value result = newOp->getResult(0);
accCache[destOffset] = result;
}
// Assemble back the accumulator into a single vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, reductionOp.getDestType(),
rewriter.getZeroAttr(reductionOp.getDestType()));
for (const auto &it : accCache) {
SmallVector<int64_t> dstStrides(it.first.size(), 1);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, it.second, result, it.first, dstStrides);
}
rewriter.replaceOp(reductionOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollElementwisePattern : public RewritePattern {
UnrollElementwisePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: RewritePattern(MatchAnyOpTypeTag(), benefit, context),
options(options) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto targetShape = getTargetShape(options, op);
if (!targetShape)
return failure();
auto dstVecType = cast<VectorType>(op->getResult(0).getType());
SmallVector<int64_t> originalSize =
*cast<VectorUnrollOpInterface>(op).getShapeForUnroll();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = computeMaxLinearIndex(ratio);
Location loc = op->getLoc();
// Prepare the result vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
SmallVector<int64_t> strides(targetShape->size(), 1);
VectorType newVecType =
VectorType::get(*targetShape, dstVecType.getElementType());
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<Value> extractOperands;
for (OpOperand &operand : op->getOpOperands()) {
auto vecType = dyn_cast<VectorType>(operand.get().getType());
if (!vecType) {
extractOperands.push_back(operand.get());
continue;
}
extractOperands.push_back(
rewriter.create<vector::ExtractStridedSliceOp>(
loc, operand.get(), offsets, *targetShape, strides));
}
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, op, extractOperands, newVecType);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, newOp->getResult(0), result, offsets, strides);
}
rewriter.replaceOp(op, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollReductionPattern : public OpRewritePattern<vector::ReductionOp> {
UnrollReductionPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::ReductionOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::ReductionOp reductionOp,
PatternRewriter &rewriter) const override {
std::optional<SmallVector<int64_t>> targetShape =
getTargetShape(options, reductionOp);
if (!targetShape)
return failure();
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
auto ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = ratio[0];
// Create unrolled vector reduction.
Location loc = reductionOp.getLoc();
Value accumulator = nullptr;
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; ++i) {
SmallVector<int64_t> offsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<int64_t> strides(offsets.size(), 1);
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, reductionOp.getVector(), offsets, *targetShape, strides);
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, reductionOp, slicedOperand, reductionOp.getType());
Value result = newOp->getResult(0);
if (!accumulator) {
// This is the first reduction.
accumulator = result;
} else {
// On subsequent reduction, combine with the accumulator.
accumulator = makeArithReduction(rewriter, loc, reductionOp.getKind(),
accumulator, result);
}
}
rewriter.replaceOp(reductionOp, accumulator);
return success();
}
private:
const vector::UnrollVectorOptions options;
};
struct UnrollTransposePattern : public OpRewritePattern<vector::TransposeOp> {
UnrollTransposePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
options(options) {}
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
if (transposeOp.getResultVectorType().getRank() == 0)
return failure();
auto targetShape = getTargetShape(options, transposeOp);
if (!targetShape)
return failure();
auto originalVectorType = transposeOp.getResultVectorType();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = transposeOp.getLoc();
ArrayRef<int64_t> originalSize = originalVectorType.getShape();
SmallVector<int64_t> ratio = *computeShapeRatio(originalSize, *targetShape);
int64_t sliceCount = computeMaxLinearIndex(ratio);
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, originalVectorType, rewriter.getZeroAttr(originalVectorType));
SmallVector<int64_t> permutation;
transposeOp.getTransp(permutation);
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
// of multiples of the targetShape.
auto ratioStrides = computeStrides(ratio);
for (int64_t i = 0; i < sliceCount; i++) {
SmallVector<int64_t> elementOffsets =
getVectorOffset(ratioStrides, i, *targetShape);
SmallVector<int64_t> permutedOffsets(elementOffsets.size());
SmallVector<int64_t> permutedShape(elementOffsets.size());
// Compute the source offsets and shape.
for (auto indices : llvm::enumerate(permutation)) {
permutedOffsets[indices.value()] = elementOffsets[indices.index()];
permutedShape[indices.value()] = (*targetShape)[indices.index()];
}
Value slicedOperand = rewriter.create<vector::ExtractStridedSliceOp>(
loc, transposeOp.getVector(), permutedOffsets, permutedShape,
strides);
Value transposedSlice =
rewriter.create<vector::TransposeOp>(loc, slicedOperand, permutation);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, transposedSlice, result, elementOffsets, strides);
}
rewriter.replaceOp(transposeOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
UnrollGatherPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::GatherOp>(context, benefit), options(options) {
}
LogicalResult matchAndRewrite(vector::GatherOp gatherOp,
PatternRewriter &rewriter) const override {
VectorType sourceVectorType = gatherOp.getVectorType();
if (sourceVectorType.getRank() == 0)
return failure();
auto targetShape = getTargetShape(options, gatherOp);
if (!targetShape)
return failure();
SmallVector<int64_t> strides(targetShape->size(), 1);
Location loc = gatherOp.getLoc();
ArrayRef<int64_t> originalSize = gatherOp.getVectorType().getShape();
// Prepare the result vector;
Value result = rewriter.create<arith::ConstantOp>(
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
auto targetType =
VectorType::get(*targetShape, sourceVectorType.getElementType());
SmallVector<int64_t> loopOrder =
getUnrollOrder(originalSize.size(), gatherOp, options);
DecomposeShapeIterator indexToOffsets(originalSize, *targetShape,
loopOrder);
for (int64_t i = 0, e = indexToOffsets.maxIndex(); i < e; ++i) {
// To get the unrolled gather, extract the same slice based on the
// decomposed shape from each of the index, mask, and pass-through
// vectors.
SmallVector<int64_t> elementOffsets = indexToOffsets.getVectorOffset(i);
Value indexSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getIndexVec(), elementOffsets, *targetShape, strides);
Value maskSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getMask(), elementOffsets, *targetShape, strides);
Value passThruSubVec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, gatherOp.getPassThru(), elementOffsets, *targetShape, strides);
auto slicedGather = rewriter.create<vector::GatherOp>(
loc, targetType, gatherOp.getBase(), gatherOp.getIndices(),
indexSubVec, maskSubVec, passThruSubVec);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, slicedGather, result, elementOffsets, strides);
}
rewriter.replaceOp(gatherOp, result);
return success();
}
private:
vector::UnrollVectorOptions options;
};
} // namespace
void mlir::vector::populateVectorUnrollPatterns(
RewritePatternSet &patterns, const UnrollVectorOptions &options,
PatternBenefit benefit) {
patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
UnrollContractionPattern, UnrollElementwisePattern,
UnrollReductionPattern, UnrollMultiReductionPattern,
UnrollTransposePattern, UnrollGatherPattern>(
patterns.getContext(), options, benefit);
}
|