1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
|
//===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites as 1->N patterns.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include <cstdint>
#include <functional>
#include <optional>
#include <type_traits>
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "vector-to-vector"
using namespace mlir;
using namespace mlir::vector;
template <typename IntType>
static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
return llvm::to_vector<4>(llvm::map_range(
arrayAttr.getAsRange<IntegerAttr>(),
[](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
}
// Helper to find an index in an affine map.
static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t idx = map.getDimPosition(i);
if (idx == index)
return i;
}
return std::nullopt;
}
namespace {
/// ShapeCastOpFolder folds cancelling ShapeCastOps away.
//
// Example:
//
// The following MLIR with cancelling ShapeCastOps:
//
// %0 = source : vector<5x4x2xf32>
// %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
// %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
// %3 = user %2 : vector<5x4x2xf32>
//
// Should canonicalize to the following:
//
// %0 = source : vector<5x4x2xf32>
// %1 = user %0 : vector<5x4x2xf32>
//
struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
PatternRewriter &rewriter) const override {
// Check if 'shapeCastOp' has vector source/result type.
auto sourceVectorType =
dyn_cast_or_null<VectorType>(shapeCastOp.getSource().getType());
auto resultVectorType =
dyn_cast_or_null<VectorType>(shapeCastOp.getResult().getType());
if (!sourceVectorType || !resultVectorType)
return failure();
// Check if shape cast op source operand is also a shape cast op.
auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
shapeCastOp.getSource().getDefiningOp());
if (!sourceShapeCastOp)
return failure();
auto operandSourceVectorType =
cast<VectorType>(sourceShapeCastOp.getSource().getType());
auto operandResultVectorType = sourceShapeCastOp.getType();
// Check if shape cast operations invert each other.
if (operandSourceVectorType != resultVectorType ||
operandResultVectorType != sourceVectorType)
return failure();
rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource());
return success();
}
};
/// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
/// Ex:
/// ```
/// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
/// %1 = vector.multi_reduction add, %0 [1]
/// : vector<8x32x16xf32> to vector<8x16xf32>
/// ```
/// Gets converted to:
/// ```
/// %1 = vector.contract {indexing_maps = [
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1)>],
/// iterator_types = ["parallel", "parallel", "reduction"],
/// kind = add} %0, %arg1, %cst_f0
/// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
/// ```
struct MultiReduceToContract
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
PatternRewriter &rewriter) const override {
if (reduceOp.getKind() != vector::CombiningKind::ADD)
return failure();
Operation *mulOp = reduceOp.getSource().getDefiningOp();
if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
return failure();
SmallVector<bool> reductionMask = reduceOp.getReductionMask();
auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
SmallVector<AffineExpr> exprs;
SmallVector<vector::IteratorType> iteratorTypes;
for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
if (!isReduceDim.value()) {
iteratorTypes.push_back(vector::IteratorType::parallel);
exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
} else {
iteratorTypes.push_back(vector::IteratorType::reduction);
}
}
auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
/*symCount=*/0, exprs, reduceOp.getContext());
rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(),
rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
rewriter.getArrayAttr(llvm::to_vector(llvm::map_range(
iteratorTypes, [&](IteratorType t) -> mlir::Attribute {
return IteratorTypeAttr::get(rewriter.getContext(), t);
}))));
return success();
}
};
/// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user.
/// Ex:
/// ```
/// %0 = vector.transpose %arg0, [2, 0, 1]
/// : vector<32x16x8xf32> to vector<8x32x16xf32>
/// %1 = vector.contract {indexing_maps = [
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1)>],
/// iterator_types = ["parallel", "parallel", "reduction"],
/// kind = add} %0, %arg1, %cst_f0
/// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
/// ```
/// Gets converted to:
/// ```
/// %1 = vector.contract {indexing_maps = [
/// affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1)>],
/// iterator_types = ["parallel", "parallel", "reduction"],
/// kind = add} %arg0, %arg1, %cst_f0
/// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
/// ```
struct CombineContractABTranspose final
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap> maps =
llvm::to_vector<4>(contractOp.getIndexingMapsArray());
Value lhs = contractOp.getLhs();
Value rhs = contractOp.getRhs();
size_t index = 0;
bool changed = false;
for (Value *operand : {&lhs, &rhs}) {
AffineMap &map = maps[index++];
auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
if (!transposeOp)
continue;
AffineMap permutationMap = AffineMap::getPermutationMap(
extractVector<unsigned>(transposeOp.getTransp()),
contractOp.getContext());
map = inversePermutation(permutationMap).compose(map);
*operand = transposeOp.getVector();
changed = true;
}
if (!changed)
return failure();
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
contractOp, lhs, rhs, contractOp.getAcc(),
rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
return success();
}
};
/// Merges accumulator and result transposes into contract.
///
/// For example:
/// ```mlir
/// %accT = vector.transpose %acc, [0, 2, 1]
/// : vector<2x8x4xf32> to vector<2x4x8xf32>
/// %contract = vector.contract {
/// indexing_maps = [
/// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>,
/// affine_map<(d0, d1, d2, d3) -> (d3, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
/// ],
/// iterator_types = ["parallel", "parallel", "parallel", "reduction"],
/// kind = #vector.kind<add>
/// } %lhs, %rhs, %accT
/// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32>
/// %0 = vector.transpose %contract, [0, 2, 1]
/// : vector<2x4x8xf32> to vector<2x8x4>
/// ```
/// Becomes:
/// ```mlir
/// %0 = vector.contract {
/// indexing_maps = [
/// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>,
/// affine_map<(d0, d1, d2, d3) -> (d3, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)>
/// ],
/// iterator_types = ["parallel", "parallel", "parallel", "reduction"],
/// kind = #vector.kind<add>
/// } %lhs, %rhs, %acc
/// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32>
/// ```
struct CombineContractResultTranspose final
: public OpRewritePattern<vector::TransposeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransposeOp resTOp,
PatternRewriter &rewriter) const override {
auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>();
if (!contractOp || !contractOp->hasOneUse())
return failure();
auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>();
if (!accTOp)
return failure();
MLIRContext *context = contractOp.getContext();
auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray());
AffineMap contractMap = maps.back();
// Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B.
// To index into A in contract, we need revert(f)(g(C)) -> A.
auto accTMap = AffineMap::getPermutationMap(
extractVector<unsigned>(accTOp.getTransp()), context);
// Contract performs g(C) -> D. Result transpose performs h(D) -> E.
// To index into E in contract, we need h(g(C)) -> E.
auto resTMap = AffineMap::getPermutationMap(
extractVector<unsigned>(resTOp.getTransp()), context);
auto combinedResMap = resTMap.compose(contractMap);
// The accumulator and result share the same indexing map. So they should be
// the same to be able to merge. This means combinedResMap is the same as
// inversePermutation(accTMap).compose(contractMap), which means
if (inversePermutation(accTMap) != resTMap)
return failure();
maps.back() = combinedResMap;
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(),
rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
return success();
}
};
/// Merge BroadcastOp into ContractionOp user.
/// Ex:
/// ```
/// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
/// %1 = vector.contract {indexing_maps = [
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1)>],
/// iterator_types = ["parallel", "parallel", "reduction"],
/// kind = add} %0, %arg1, %cst_f0
/// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
/// ```
/// Gets converted to:
/// ```
/// %1 = vector.contract {indexing_maps = [
/// affine_map<(d0, d1, d2) -> (d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d1)>],
/// iterator_types = ["parallel", "parallel", "reduction"],
/// kind = add} %arg0, %arg1, %cst_f0
/// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
/// ```
struct CombineContractBroadcast
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap> maps =
llvm::to_vector<4>(contractOp.getIndexingMapsArray());
Value lhs = contractOp.getLhs();
Value rhs = contractOp.getRhs();
size_t index = 0;
bool changed = false;
for (Value *operand : {&lhs, &rhs}) {
AffineMap &map = maps[index++];
auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
if (!broadcast)
continue;
// contractionOp can only take vector as operands.
auto srcType = dyn_cast<VectorType>(broadcast.getSourceType());
if (!srcType ||
srcType.getRank() == broadcast.getResultVectorType().getRank())
continue;
int64_t rankDiff =
broadcast.getResultVectorType().getRank() - srcType.getRank();
bool innerDimBroadcast = false;
SmallVector<AffineExpr> originalDims;
for (const auto &dim : llvm::enumerate(srcType.getShape())) {
if (dim.value() != broadcast.getResultVectorType().getDimSize(
rankDiff + dim.index())) {
innerDimBroadcast = true;
break;
}
originalDims.push_back(
rewriter.getAffineDimExpr(dim.index() + rankDiff));
}
// Contract doesn't support inner dimension broadcast. Once this is
// relaxed we can remove this case.
if (innerDimBroadcast)
continue;
// It would be incorrect to fold a broadcast onto a reduction dimension
// of non-unit size.
bool nonUnitDimReductionBroadcast = false;
for (int64_t i = 0; i < rankDiff; ++i) {
if (broadcast.getResultVectorType().getDimSize(i) != 1 &&
isReductionIterator(contractOp.getIteratorTypes()
.getValue()[map.getDimPosition(i)])) {
nonUnitDimReductionBroadcast = true;
break;
}
}
if (nonUnitDimReductionBroadcast)
continue;
AffineMap broadcastMap =
AffineMap::get(broadcast.getResultVectorType().getRank(), 0,
originalDims, contractOp.getContext());
map = broadcastMap.compose(map);
*operand = broadcast.getSource();
changed = true;
}
if (!changed)
return failure();
// Determine which dims are usused, now that the maps have been composed
// with the broadcast maps.
llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps);
// Compress unused dims.
for (auto &m : maps)
m = compressDims(m, unusedDimsBitVector);
// Compute the combined iterators.
SmallVector<Attribute> iterators;
for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) {
if (!unusedDimsBitVector.test(i))
iterators.push_back(contractOp.getIteratorTypes().getValue()[i]);
}
// Check that compressing unused dims isn't removing all reduction dimension
// pairs. For example, if the vector.contract had only one reduction
// iterator and that was a unit-dimension created by a broadcast,
// then we should bail here, otherwise we would create a contract without
// a reduction dimension pair.
bool hasReductionIteratorApplyingOnBothSides = false;
for (unsigned i = 0; i < iterators.size(); ++i) {
if (!isReductionIterator(iterators[i]))
continue;
if (getResultIndex(maps[0], i) && getResultIndex(maps[1], i)) {
hasReductionIteratorApplyingOnBothSides = true;
break;
}
}
if (!hasReductionIteratorApplyingOnBothSides)
return failure();
// If the compressed maps have a dimension that is not used by either LHS or
// RHS then the ContractionOp verifier would fail.
if (getUnusedDimsBitVector({maps[0], maps[1]}).any())
return failure();
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
contractOp, lhs, rhs, contractOp.getAcc(),
rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators));
return success();
}
};
/// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and
/// contraction ops closer, which kicks in CombineContractBroadcast pattern when
/// casting ops are around these operations.
/// Ex:
/// ```
/// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8>
/// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32>
/// ```
/// Gets converted to:
/// ```
/// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32>
/// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32>
/// ```
struct ReorderCastOpsOnBroadcast
: public OpInterfaceRewritePattern<CastOpInterface> {
using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(CastOpInterface op,
PatternRewriter &rewriter) const override {
if (op->getNumOperands() != 1)
return failure();
auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>();
if (!bcastOp)
return failure();
Type castResTy = getElementTypeOrSelf(op->getResult(0));
if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType()))
castResTy = VectorType::get(vecTy.getShape(), castResTy);
auto *castOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
bcastOp.getSource(), castResTy, op->getAttrs());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
op, op->getResult(0).getType(), castOp->getResult(0));
return success();
}
};
/// Reorders elementwise(transpose) to transpose(elementwise). This makes
/// transpose ops and contraction ops closer, which kicks in
/// CombineContractABTranspose pattern when elementwise ops are between these
/// operations. Ex:
/// ```
/// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
/// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
/// %r = arith.addf %at, %bt : vector<2x4xf32>
/// ```
/// Gets converted to:
/// ```
/// %0 = arith.addf %a, %b : vector<4x2xf32>
/// %r = vector.transpose %0, [1, 0] : vector<2x4xf32>
/// ```
struct ReorderElementwiseOpsOnTranspose final
: public OpTraitRewritePattern<OpTrait::Elementwise> {
using OpTraitRewritePattern::OpTraitRewritePattern;
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumResults() != 1 || op->getNumRegions() != 0)
return failure();
// Make sure all operands are transpose/constant ops and collect their
// transposition maps.
SmallVector<ArrayAttr> transposeMaps;
transposeMaps.reserve(op->getNumOperands());
// Record the initial type before transposition. We'll use its shape later.
// Any type will do here as we will check all transpose maps are the same.
VectorType srcType;
for (Value operand : op->getOperands()) {
auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
if (transposeOp) {
transposeMaps.push_back(transposeOp.getTransp());
srcType = transposeOp.getSourceVectorType();
} else if (!matchPattern(operand, m_Constant())) {
return failure();
}
}
if (transposeMaps.empty())
return failure();
// This is an elementwise op, so all transposed operands should have the
// same type. We need to additionally check that all transposes uses the
// same map.
if (!llvm::all_equal(transposeMaps))
return rewriter.notifyMatchFailure(op, "different transpose map");
SmallVector<Value> srcValues;
srcValues.reserve(op->getNumOperands());
// If there are constant operands, we need to insert inverse transposes for
// them. Calculate the inverse order first.
auto order = extractVector<unsigned>(transposeMaps.front());
SmallVector<int64_t> invOrder(order.size());
for (int i = 0, e = order.size(); i < e; ++i)
invOrder[order[i]] = i;
for (Value operand : op->getOperands()) {
auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
if (transposeOp) {
srcValues.push_back(transposeOp.getVector());
} else {
// This is a constant. Create a reverse transpose op for it.
auto vectorType = VectorType::get(
srcType.getShape(),
cast<VectorType>(operand.getType()).getElementType());
srcValues.push_back(rewriter.create<vector::TransposeOp>(
operand.getLoc(), vectorType, operand,
rewriter.getI64ArrayAttr(invOrder)));
}
}
auto vectorType = VectorType::get(
srcType.getShape(),
cast<VectorType>(op->getResultTypes()[0]).getElementType());
Operation *elementwiseOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
vectorType, op->getAttrs());
rewriter.replaceOpWithNewOp<vector::TransposeOp>(
op, op->getResultTypes()[0], elementwiseOp->getResult(0),
transposeMaps.front());
return success();
}
};
// Returns the values in `arrayAttr` as an integer vector.
static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) {
return llvm::to_vector<4>(
llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
[](IntegerAttr attr) { return attr.getInt(); }));
}
// Shuffles vector.bitcast op after vector.extract op.
//
// This transforms IR like:
// %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
// %1 = vector.extract %0[3] : vector<8xf16>
// Into:
// %0 = vector.extract %src[1] : vector<4xf32>
// %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
// %2 = vector.extract %1[1] : vector<2xf16>
struct BubbleDownVectorBitCastForExtract
: public OpRewritePattern<vector::ExtractOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
PatternRewriter &rewriter) const override {
// Only support extracting scalars for now.
if (extractOp.getSourceVectorType().getRank() != 1)
return failure();
auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
if (!castOp)
return failure();
VectorType castSrcType = castOp.getSourceVectorType();
VectorType castDstType = castOp.getResultVectorType();
assert(castSrcType.getRank() == castDstType.getRank());
// Fail to match if we only have one element in the cast op source.
// This is to avoid infinite loop given that this pattern can generate
// such cases.
if (castSrcType.getNumElements() == 1)
return failure();
// Only support casting to a larger number of elements or now.
// E.g., vector<4xf32> -> vector<8xf16>.
if (castSrcType.getNumElements() > castDstType.getNumElements())
return failure();
unsigned expandRatio =
castDstType.getNumElements() / castSrcType.getNumElements();
auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
};
uint64_t index = getFirstIntValue(extractOp.getPosition());
// Get the single scalar (as a vector) in the source value that packs the
// desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
VectorType oneScalarType =
VectorType::get({1}, castSrcType.getElementType());
Value packedValue = rewriter.create<vector::ExtractOp>(
extractOp.getLoc(), oneScalarType, castOp.getSource(),
rewriter.getI64ArrayAttr(index / expandRatio));
// Cast it to a vector with the desired scalar's type.
// E.g. f32 -> vector<2xf16>
VectorType packedType =
VectorType::get({expandRatio}, castDstType.getElementType());
Value castedValue = rewriter.create<vector::BitCastOp>(
extractOp.getLoc(), packedType, packedValue);
// Finally extract the desired scalar.
rewriter.replaceOpWithNewOp<vector::ExtractOp>(
extractOp, extractOp.getType(), castedValue,
rewriter.getI64ArrayAttr(index % expandRatio));
return success();
}
};
// Shuffles vector.bitcast op after vector.extract_strided_slice op.
//
// This transforms IR like:
// %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
// %0 = vector.extract_strided_slice %cast {
// offsets = [4], sizes = [4], strides = [1]
// } : vector<8xf16> to vector<4xf16>
// Into:
// %0 = vector.extract_strided_slice %src {
// offsets = [2], sizes = [2], strides = [1]
// } : vector<4xf32> to vector<2xf32>
// %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
struct BubbleDownBitCastForStridedSliceExtract
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
PatternRewriter &rewriter) const override {
auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
if (!castOp)
return failure();
VectorType castSrcType = castOp.getSourceVectorType();
VectorType castDstType = castOp.getResultVectorType();
assert(castSrcType.getRank() == castDstType.getRank());
int64_t castSrcLastDim = castSrcType.getShape().back();
int64_t castDstLastDim = castDstType.getShape().back();
// Require casting to more elements for now; other cases to be implemented.
if (castSrcLastDim > castDstLastDim)
return failure();
// Only accept all one strides for now.
if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(),
[](const APInt &val) { return !val.isOne(); }))
return failure();
unsigned rank = extractOp.getSourceVectorType().getRank();
assert(castDstLastDim % castSrcLastDim == 0);
int64_t expandRatio = castDstLastDim / castSrcLastDim;
// If we have a less number of offsets than the rank, then implicitly we
// are selecting the full range for the last bitcasted dimension; other
// dimensions aren't affected. Otherwise, we need to scale down the last
// dimension's offset given we are extracting from less elements now.
ArrayAttr newOffsets = extractOp.getOffsets();
if (newOffsets.size() == rank) {
SmallVector<int64_t> offsets = getIntValueVector(newOffsets);
if (offsets.back() % expandRatio != 0)
return failure();
offsets.back() = offsets.back() / expandRatio;
newOffsets = rewriter.getI64ArrayAttr(offsets);
}
// Similarly for sizes.
ArrayAttr newSizes = extractOp.getSizes();
if (newSizes.size() == rank) {
SmallVector<int64_t> sizes = getIntValueVector(newSizes);
if (sizes.back() % expandRatio != 0)
return failure();
sizes.back() = sizes.back() / expandRatio;
newSizes = rewriter.getI64ArrayAttr(sizes);
}
SmallVector<int64_t> dims =
llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape());
dims.back() = dims.back() / expandRatio;
VectorType newExtractType =
VectorType::get(dims, castSrcType.getElementType());
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets,
newSizes, extractOp.getStrides());
rewriter.replaceOpWithNewOp<vector::BitCastOp>(
extractOp, extractOp.getType(), newExtractOp);
return success();
}
};
// Shuffles vector.bitcast op before vector.insert_strided_slice op.
//
// This transforms IR like:
// %0 = vector.insert_strided_slice %src, %dst {
// offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
// %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
// Into:
// %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
// %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
// %2 = vector.insert_strided_slice %src, %dst {
// offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
struct BubbleUpBitCastForStridedSliceInsert
: public OpRewritePattern<vector::BitCastOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
PatternRewriter &rewriter) const override {
VectorType castSrcType = bitcastOp.getSourceVectorType();
VectorType castDstType = bitcastOp.getResultVectorType();
assert(castSrcType.getRank() == castDstType.getRank());
// Skip 0-D vector which will not from InsertStridedSliceOp.
if (castSrcType.getRank() == 0)
return failure();
int64_t castSrcLastDim = castSrcType.getShape().back();
int64_t castDstLastDim = castDstType.getShape().back();
// Require casting to less elements for now; other cases to be implemented.
if (castSrcLastDim < castDstLastDim)
return failure();
assert(castSrcLastDim % castDstLastDim == 0);
int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
auto insertOp =
bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>();
if (!insertOp)
return failure();
// Only accept all one strides for now.
if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(),
[](const APInt &val) { return !val.isOne(); }))
return failure();
unsigned rank = insertOp.getSourceVectorType().getRank();
// Require insert op to have the same rank for the source and destination
// vector; other cases to be implemented.
if (rank != insertOp.getDestVectorType().getRank())
return failure();
// Requires that shape of insert op src is castable to dstType.
unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth();
unsigned destinationWidth =
castDstType.getElementType().getIntOrFloatBitWidth();
unsigned numElements = destinationWidth / sourceWidth;
if (insertOp.getSourceVectorType().getNumElements() % numElements != 0)
return failure();
ArrayAttr newOffsets = insertOp.getOffsets();
assert(newOffsets.size() == rank);
SmallVector<int64_t> offsets = getIntValueVector(newOffsets);
if (offsets.back() % shrinkRatio != 0)
return failure();
offsets.back() = offsets.back() / shrinkRatio;
newOffsets = rewriter.getI64ArrayAttr(offsets);
SmallVector<int64_t> srcDims =
llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
srcDims.back() = srcDims.back() / shrinkRatio;
VectorType newCastSrcType =
VectorType::get(srcDims, castDstType.getElementType());
auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
SmallVector<int64_t> dstDims =
llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
dstDims.back() = dstDims.back() / shrinkRatio;
VectorType newCastDstType =
VectorType::get(dstDims, castDstType.getElementType());
auto newCastDstOp = rewriter.create<vector::BitCastOp>(
bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
insertOp.getStrides());
return success();
}
};
// Breaks down vector.bitcast op
//
// This transforms IR like:
// %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
// Into:
// %cst = vector.splat %c0_f32 : vector<4xf32>
// %1 = vector.extract_strided_slice %0 {
// offsets = [0], sizes = [4], strides = [1]
// } : vector<8xf16> to vector<4xf16>
// %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32>
// %4 = vector.insert_strided_slice %2, %cst {
// offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
// %5 = vector.extract_strided_slice %0 {
// offsets = [4], sizes = [4], strides = [1]
// } : vector<8xf16> to vector<4xf16>
// %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32>
// %7 = vector.insert_strided_slice %6, %cst {
// offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32>
struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> {
using OpRewritePattern::OpRewritePattern;
public:
BreakDownVectorBitCast(MLIRContext *context,
std::function<bool(vector::BitCastOp)> controlFn,
PatternBenefit benefit)
: OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {}
LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
PatternRewriter &rewriter) const override {
if (controlFn && !controlFn(bitcastOp))
return failure();
VectorType castSrcType = bitcastOp.getSourceVectorType();
VectorType castDstType = bitcastOp.getResultVectorType();
assert(castSrcType.getRank() == castDstType.getRank());
// Only support rank 1 case for now.
if (castSrcType.getRank() != 1)
return failure();
int64_t castSrcLastDim = castSrcType.getShape().back();
int64_t castDstLastDim = castDstType.getShape().back();
// Require casting to less elements for now; other cases to be implemented.
if (castSrcLastDim < castDstLastDim)
return failure();
assert(castSrcLastDim % castDstLastDim == 0);
int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
// Nothing to do if it is already bitcasting to a single element.
if (castSrcLastDim == shrinkRatio)
return failure();
Location loc = bitcastOp.getLoc();
Type elemType = castDstType.getElementType();
assert(elemType.isSignlessIntOrIndexOrFloat());
Value zero = rewriter.create<arith::ConstantOp>(
loc, elemType, rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, castDstType, zero);
SmallVector<int64_t> sliceShape{castDstLastDim};
SmallVector<int64_t> strides{1};
VectorType newCastDstType =
VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio},
castDstType.getElementType());
for (int i = 0, e = shrinkRatio; i < e; ++i) {
Value extracted = rewriter.create<ExtractStridedSliceOp>(
loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim},
sliceShape, strides);
Value bitcast =
rewriter.create<BitCastOp>(loc, newCastDstType, extracted);
res = rewriter.create<InsertStridedSliceOp>(
loc, bitcast, res,
ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides);
}
rewriter.replaceOp(bitcastOp, res);
return success();
}
private:
std::function<bool(BitCastOp)> controlFn;
};
// Helper that returns a vector comparison that constructs a mask:
// mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
//
// If `dim == 0` then the result will be a 0-D vector.
//
// NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
// much more compact, IR for this operation, but LLVM eventually
// generates more elaborate instructions for this intrinsic since it
// is very conservative on the boundary conditions.
static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
bool force32BitVectorIndices, int64_t dim,
Value b, Value *off = nullptr) {
auto loc = op->getLoc();
// If we can assume all indices fit in 32-bit, we perform the vector
// comparison in 32-bit to get a higher degree of SIMD parallelism.
// Otherwise we perform the vector comparison using 64-bit indices.
Type idxType =
force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
DenseIntElementsAttr indicesAttr;
if (dim == 0 && force32BitVectorIndices) {
indicesAttr = DenseIntElementsAttr::get(
VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
} else if (dim == 0) {
indicesAttr = DenseIntElementsAttr::get(
VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
} else if (force32BitVectorIndices) {
indicesAttr = rewriter.getI32VectorAttr(
llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
} else {
indicesAttr = rewriter.getI64VectorAttr(
llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
}
Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
// Add in an offset if requested.
if (off) {
Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off);
Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
}
// Construct the vector comparison.
Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b);
Value bounds =
rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
bounds);
}
template <typename ConcreteOp>
struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
public:
explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<ConcreteOp>(context, benefit),
force32BitVectorIndices(enableIndexOpt) {}
LogicalResult matchAndRewrite(ConcreteOp xferOp,
PatternRewriter &rewriter) const override {
if (!xferOp.hasOutOfBoundsDim())
return failure();
if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty())
return failure();
Location loc = xferOp->getLoc();
VectorType vtp = xferOp.getVectorType();
// Create the in-bounds mask with all elements between [0 .. dim - offset)
// set and [dim - offset .. vector_length) unset.
//
// TODO: when the leaf transfer rank is k > 1, we need the last `k`
// dimensions here.
unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1;
Value off = xferOp.getIndices()[lastIndex];
Value dim =
vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex);
Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off);
Value mask = rewriter.create<vector::CreateMaskOp>(
loc,
VectorType::get(vtp.getShape(), rewriter.getI1Type(),
vtp.getNumScalableDims()),
b);
if (xferOp.getMask()) {
// Intersect the in-bounds with the mask specified as an op parameter.
mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask());
}
rewriter.updateRootInPlace(xferOp, [&]() {
xferOp.getMaskMutable().assign(mask);
xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
});
return success();
}
private:
const bool force32BitVectorIndices;
};
/// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
class VectorCreateMaskOpConversion
: public OpRewritePattern<vector::CreateMaskOp> {
public:
explicit VectorCreateMaskOpConversion(MLIRContext *context,
bool enableIndexOpt,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit),
force32BitVectorIndices(enableIndexOpt) {}
LogicalResult matchAndRewrite(vector::CreateMaskOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getType();
if (cast<VectorType>(dstType).isScalable())
return failure();
int64_t rank = dstType.getRank();
if (rank > 1)
return failure();
rewriter.replaceOp(
op, buildVectorComparison(rewriter, op, force32BitVectorIndices,
rank == 0 ? 0 : dstType.getDimSize(0),
op.getOperand(0)));
return success();
}
private:
const bool force32BitVectorIndices;
};
// Drop inner most contiguous unit dimensions from transfer_read operand.
class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (readOp.getTransferRank() == 0)
return failure();
// TODO: support mask.
if (readOp.getMask())
return failure();
auto srcType = dyn_cast<MemRefType>(readOp.getSource().getType());
if (!srcType || !srcType.hasStaticShape())
return failure();
if (!readOp.getPermutationMap().isMinorIdentity())
return failure();
auto targetType = readOp.getVectorType();
if (targetType.getRank() <= 1)
return failure();
SmallVector<int64_t> srcStrides;
int64_t srcOffset;
if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
return failure();
size_t dimsToDrop = 0;
for (size_t i = 1; i < srcStrides.size(); ++i) {
int dim = srcType.getRank() - i - 1;
if (srcStrides[dim] == 1) {
dimsToDrop++;
} else {
break;
}
}
if (dimsToDrop == 0)
return failure();
auto resultTargetVecType =
VectorType::get(targetType.getShape().drop_back(dimsToDrop),
targetType.getElementType());
MemRefType resultMemrefType;
MemRefLayoutAttrInterface layout = srcType.getLayout();
if (isa<AffineMapAttr>(layout) && layout.isIdentity()) {
resultMemrefType = MemRefType::get(
srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
nullptr, srcType.getMemorySpace());
} else {
MemRefLayoutAttrInterface updatedLayout;
if (auto strided = dyn_cast<StridedLayoutAttr>(layout)) {
auto strides =
llvm::to_vector(strided.getStrides().drop_back(dimsToDrop));
updatedLayout = StridedLayoutAttr::get(strided.getContext(),
strided.getOffset(), strides);
} else {
AffineMap map = srcType.getLayout().getAffineMap();
int numSymbols = map.getNumSymbols();
for (size_t i = 0; i < dimsToDrop; ++i) {
int dim = srcType.getRank() - i - 1;
map = map.replace(rewriter.getAffineDimExpr(dim),
rewriter.getAffineConstantExpr(0),
map.getNumDims() - 1, numSymbols);
}
}
resultMemrefType = MemRefType::get(
srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
updatedLayout, srcType.getMemorySpace());
}
auto loc = readOp.getLoc();
SmallVector<int64_t> offsets(srcType.getRank(), 0);
SmallVector<int64_t> strides(srcType.getRank(), 1);
ArrayAttr inBoundsAttr =
readOp.getInBounds()
? rewriter.getArrayAttr(
readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop))
: ArrayAttr();
Value rankedReducedView = rewriter.create<memref::SubViewOp>(
loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(),
strides);
auto permMap = getTransferMinorIdentityMap(
cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType);
Value result = rewriter.create<vector::TransferReadOp>(
loc, resultTargetVecType, rankedReducedView,
readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
readOp.getPadding(),
// TODO: support mask.
/*mask=*/Value(), inBoundsAttr);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
result);
return success();
}
};
/// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul
/// semantics to a contraction suitable for MMT (matrix matrix multiplication
/// with the RHS transposed) lowering.
struct CanonicalizeContractMatmulToMMT final
: OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern::OpRewritePattern;
using FilterConstraintType =
std::function<LogicalResult(vector::ContractionOp op)>;
CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit,
FilterConstraintType constraint)
: OpRewritePattern<vector::ContractionOp>(context, benefit),
filter(std::move(constraint)) {}
LogicalResult matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const override {
if (failed(filter(op)))
return failure();
Location loc = op.getLoc();
Value lhs = op.getLhs();
Value rhs = op.getRhs();
Value res = op.getAcc();
// Set up the parallel/reduction structure in right form.
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m;
AffineExpr n;
AffineExpr k;
bindDims(rewriter.getContext(), m, n, k);
static constexpr std::array<int64_t, 2> perm = {1, 0};
auto iteratorTypes = op.getIteratorTypes().getValue();
SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
if (iteratorTypes.size() != 3 ||
!vector::isParallelIterator(iteratorTypes[0]) ||
!vector::isParallelIterator(iteratorTypes[1]) ||
!vector::isReductionIterator(iteratorTypes[2]))
return rewriter.notifyMatchFailure(op, "contraction is not a gemm");
// The canonical form is "TNT" = A row-major, B col-major, C row-major.
const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}});
if (maps == canonicalForm)
return rewriter.notifyMatchFailure(op, "already in the canonical form");
// Create a vector transpose making sure to emit zero/sign-extend at the
// end.
auto createTranspose = [&rewriter, loc](Value mat) -> Value {
if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) {
Value trans =
rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm);
VectorType newType =
VectorType::get(cast<VectorType>(trans.getType()).getShape(),
cast<VectorType>(mat.getType()).getElementType());
return rewriter.create<arith::ExtSIOp>(loc, newType, trans);
}
if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) {
Value trans =
rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm);
VectorType newType =
VectorType::get(cast<VectorType>(trans.getType()).getShape(),
cast<VectorType>(mat.getType()).getElementType());
return rewriter.create<arith::ExtUIOp>(loc, newType, trans);
}
return rewriter.create<vector::TransposeOp>(loc, mat, perm);
};
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
rhs = createTranspose(rhs);
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
lhs = createTranspose(lhs);
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
rhs = createTranspose(rhs);
lhs = createTranspose(lhs);
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
std::swap(rhs, lhs);
rhs = createTranspose(rhs);
lhs = createTranspose(lhs);
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
std::swap(rhs, lhs);
rhs = createTranspose(rhs);
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
std::swap(lhs, rhs);
lhs = createTranspose(lhs);
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
std::swap(lhs, rhs);
} else {
return rewriter.notifyMatchFailure(op, "unhandled contraction form");
}
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(canonicalForm),
op.getIteratorTypes());
return success();
};
private:
FilterConstraintType filter;
};
} // namespace
void mlir::vector::populateVectorMaskMaterializationPatterns(
RewritePatternSet &patterns, bool force32BitVectorIndices,
PatternBenefit benefit) {
patterns.add<VectorCreateMaskOpConversion,
MaterializeTransferMask<vector::TransferReadOp>,
MaterializeTransferMask<vector::TransferWriteOp>>(
patterns.getContext(), force32BitVectorIndices, benefit);
}
void mlir::vector::populateShapeCastFoldingPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<ShapeCastOpFolder>(patterns.getContext(), benefit);
}
void mlir::vector::populateBubbleVectorBitCastOpPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<BubbleDownVectorBitCastForExtract,
BubbleDownBitCastForStridedSliceExtract,
BubbleUpBitCastForStridedSliceInsert>(patterns.getContext(),
benefit);
}
void mlir::vector::populateBreakDownVectorBitCastOpPatterns(
RewritePatternSet &patterns,
std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) {
patterns.add<BreakDownVectorBitCast>(patterns.getContext(),
std::move(controlFn), benefit);
}
void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT(
RewritePatternSet &patterns,
std::function<LogicalResult(vector::ContractionOp)> constraint,
PatternBenefit benefit) {
patterns.add<CanonicalizeContractMatmulToMMT>(patterns.getContext(), benefit,
std::move(constraint));
}
void mlir::vector::populateVectorReductionToContractPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<MultiReduceToContract, CombineContractBroadcast,
CombineContractABTranspose, CombineContractResultTranspose,
ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnTranspose>(
patterns.getContext(), benefit);
}
void mlir::vector::
populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<DropInnerMostUnitDims>(patterns.getContext(), benefit);
}
//===----------------------------------------------------------------------===//
// TableGen'd enum attribute definitions
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc"
|