1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with optimizing transfer_read and
// transfer_write ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "vector-transfer-opt"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
/// Return the ancestor op in the region or nullptr if the region is not
/// an ancestor of the op.
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
for (; op != nullptr && op->getParentRegion() != region;
op = op->getParentOp())
;
return op;
}
namespace {
class TransferOptimization {
public:
TransferOptimization(RewriterBase &rewriter, Operation *op)
: rewriter(rewriter), dominators(op), postDominators(op) {}
void deadStoreOp(vector::TransferWriteOp);
void storeToLoadForwarding(vector::TransferReadOp);
void removeDeadOp() {
for (Operation *op : opToErase)
rewriter.eraseOp(op);
opToErase.clear();
}
private:
RewriterBase &rewriter;
bool isReachable(Operation *start, Operation *dest);
DominanceInfo dominators;
PostDominanceInfo postDominators;
std::vector<Operation *> opToErase;
};
/// Return true if there is a path from start operation to dest operation,
/// otherwise return false. The operations have to be in the same region.
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
assert(start->getParentRegion() == dest->getParentRegion() &&
"This function only works for ops i the same region");
// Simple case where the start op dominate the destination.
if (dominators.dominates(start, dest))
return true;
Block *startBlock = start->getBlock();
Block *destBlock = dest->getBlock();
SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
startBlock->succ_end());
SmallPtrSet<Block *, 32> visited;
while (!worklist.empty()) {
Block *bb = worklist.pop_back_val();
if (!visited.insert(bb).second)
continue;
if (dominators.dominates(bb, destBlock))
return true;
worklist.append(bb->succ_begin(), bb->succ_end());
}
return false;
}
/// For transfer_write to overwrite fully another transfer_write must:
/// 1. Access the same memref with the same indices and vector type.
/// 2. Post-dominate the other transfer_write operation.
/// If several candidates are available, one must be post-dominated by all the
/// others since they are all post-dominating the same transfer_write. We only
/// consider the transfer_write post-dominated by all the other candidates as
/// this will be the first transfer_write executed after the potentially dead
/// transfer_write.
/// If we found such an overwriting transfer_write we know that the original
/// transfer_write is dead if all reads that can be reached from the potentially
/// dead transfer_write are dominated by the overwriting transfer_write.
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
<< "\n");
llvm::SmallVector<Operation *, 8> blockingAccesses;
Operation *firstOverwriteCandidate = nullptr;
Value source = write.getSource();
// Skip subview ops.
while (auto subView = source.getDefiningOp<memref::SubViewOp>())
source = subView.getSource();
llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
source.getUsers().end());
llvm::SmallDenseSet<Operation *, 32> processed;
while (!users.empty()) {
Operation *user = users.pop_back_val();
// If the user has already been processed skip.
if (!processed.insert(user).second)
continue;
if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
users.append(subView->getUsers().begin(), subView->getUsers().end());
continue;
}
if (isMemoryEffectFree(user))
continue;
if (user == write.getOperation())
continue;
if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
// Check candidate that can override the store.
if (write.getSource() == nextWrite.getSource() &&
checkSameValueWAW(nextWrite, write) &&
postDominators.postDominates(nextWrite, write)) {
if (firstOverwriteCandidate == nullptr ||
postDominators.postDominates(firstOverwriteCandidate, nextWrite))
firstOverwriteCandidate = nextWrite;
else
assert(
postDominators.postDominates(nextWrite, firstOverwriteCandidate));
continue;
}
}
if (auto transferOp = dyn_cast<VectorTransferOpInterface>(user)) {
// Don't need to consider disjoint accesses.
if (vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(transferOp.getOperation())))
continue;
}
blockingAccesses.push_back(user);
}
if (firstOverwriteCandidate == nullptr)
return;
Region *topRegion = firstOverwriteCandidate->getParentRegion();
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
assert(writeAncestor &&
"write op should be recursively part of the top region");
for (Operation *access : blockingAccesses) {
Operation *accessAncestor = findAncestorOpInRegion(topRegion, access);
// TODO: if the access and write have the same ancestor we could recurse in
// the region to know if the access is reachable with more precision.
if (accessAncestor == nullptr ||
!isReachable(writeAncestor, accessAncestor))
continue;
if (!dominators.dominates(firstOverwriteCandidate, accessAncestor)) {
LLVM_DEBUG(DBGS() << "Store may not be dead due to op: "
<< *accessAncestor << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
<< " overwritten by: " << *firstOverwriteCandidate << "\n");
opToErase.push_back(write.getOperation());
}
/// A transfer_write candidate to storeToLoad forwarding must:
/// 1. Access the same memref with the same indices and vector type as the
/// transfer_read.
/// 2. Dominate the transfer_read operation.
/// If several candidates are available, one must be dominated by all the others
/// since they are all dominating the same transfer_read. We only consider the
/// transfer_write dominated by all the other candidates as this will be the
/// last transfer_write executed before the transfer_read.
/// If we found such a candidate we can do the forwarding if all the other
/// potentially aliasing ops that may reach the transfer_read are post-dominated
/// by the transfer_write.
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
if (read.hasOutOfBoundsDim())
return;
LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
<< "\n");
SmallVector<Operation *, 8> blockingWrites;
vector::TransferWriteOp lastwrite = nullptr;
Value source = read.getSource();
// Skip subview ops.
while (auto subView = source.getDefiningOp<memref::SubViewOp>())
source = subView.getSource();
llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
source.getUsers().end());
llvm::SmallDenseSet<Operation *, 32> processed;
while (!users.empty()) {
Operation *user = users.pop_back_val();
// If the user has already been processed skip.
if (!processed.insert(user).second)
continue;
if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
users.append(subView->getUsers().begin(), subView->getUsers().end());
continue;
}
if (isMemoryEffectFree(user) || isa<vector::TransferReadOp>(user))
continue;
if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
// If there is a write, but we can prove that it is disjoint we can ignore
// the write.
if (vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
if (write.getSource() == read.getSource() &&
dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
lastwrite = write;
else
assert(dominators.dominates(write, lastwrite));
continue;
}
}
blockingWrites.push_back(user);
}
if (lastwrite == nullptr)
return;
Region *topRegion = lastwrite->getParentRegion();
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
assert(readAncestor &&
"read op should be recursively part of the top region");
for (Operation *write : blockingWrites) {
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
// TODO: if the store and read have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!postDominators.postDominates(lastwrite, write)) {
LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
<< *write << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
<< " to: " << *read.getOperation() << "\n");
read.replaceAllUsesWith(lastwrite.getVector());
opToErase.push_back(read.getOperation());
}
/// Drops unit dimensions from the input MemRefType.
static MemRefType dropUnitDims(MemRefType inputType, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
SmallVector<int64_t> targetShape = llvm::to_vector(
llvm::make_filter_range(sizes, [](int64_t sz) { return sz != 1; }));
Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
targetShape, inputType, offsets, sizes, strides);
return canonicalizeStridedLayout(cast<MemRefType>(rankReducedType));
}
/// Creates a rank-reducing memref.subview op that drops unit dims from its
/// input. Or just returns the input if it was already without unit dims.
static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
mlir::Location loc,
Value input) {
MemRefType inputType = cast<MemRefType>(input.getType());
assert(inputType.hasStaticShape());
SmallVector<int64_t> subViewOffsets(inputType.getRank(), 0);
SmallVector<int64_t> subViewStrides(inputType.getRank(), 1);
ArrayRef<int64_t> subViewSizes = inputType.getShape();
MemRefType resultType =
dropUnitDims(inputType, subViewOffsets, subViewSizes, subViewStrides);
if (canonicalizeStridedLayout(resultType) ==
canonicalizeStridedLayout(inputType))
return input;
return rewriter.create<memref::SubViewOp>(
loc, resultType, input, subViewOffsets, subViewSizes, subViewStrides);
}
/// Returns the number of dims that aren't unit dims.
static int getReducedRank(ArrayRef<int64_t> shape) {
return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
}
/// Returns true if all values are `arith.constant 0 : index`
static bool isZero(Value v) {
auto cst = v.getDefiningOp<arith::ConstantIndexOp>();
return cst && cst.value() == 0;
}
/// Rewrites vector.transfer_read ops where the source has unit dims, by
/// inserting a memref.subview dropping those unit dims.
class TransferReadDropUnitDimsPattern
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
PatternRewriter &rewriter) const override {
auto loc = transferReadOp.getLoc();
Value vector = transferReadOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferReadOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// TODO: support tensor types.
if (!sourceType || !sourceType.hasStaticShape())
return failure();
if (sourceType.getNumElements() != vectorType.getNumElements())
return failure();
// TODO: generalize this pattern, relax the requirements here.
if (transferReadOp.hasOutOfBoundsDim())
return failure();
if (!transferReadOp.getPermutationMap().isMinorIdentity())
return failure();
int reducedRank = getReducedRank(sourceType.getShape());
if (reducedRank == sourceType.getRank())
return failure(); // The source shape can't be further reduced.
if (reducedRank != vectorType.getRank())
return failure(); // This pattern requires the vector shape to match the
// reduced source shape.
if (llvm::any_of(transferReadOp.getIndices(),
[](Value v) { return !isZero(v); }))
return failure();
Value reducedShapeSource =
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> zeros(reducedRank, c0);
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
transferReadOp, vectorType, reducedShapeSource, zeros, identityMap);
return success();
}
};
/// Rewrites vector.transfer_write ops where the "source" (i.e. destination) has
/// unit dims, by inserting a memref.subview dropping those unit dims.
class TransferWriteDropUnitDimsPattern
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
PatternRewriter &rewriter) const override {
auto loc = transferWriteOp.getLoc();
Value vector = transferWriteOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferWriteOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// TODO: support tensor type.
if (!sourceType || !sourceType.hasStaticShape())
return failure();
if (sourceType.getNumElements() != vectorType.getNumElements())
return failure();
// TODO: generalize this pattern, relax the requirements here.
if (transferWriteOp.hasOutOfBoundsDim())
return failure();
if (!transferWriteOp.getPermutationMap().isMinorIdentity())
return failure();
int reducedRank = getReducedRank(sourceType.getShape());
if (reducedRank == sourceType.getRank())
return failure(); // The source shape can't be further reduced.
if (reducedRank != vectorType.getRank())
return failure(); // This pattern requires the vector shape to match the
// reduced source shape.
if (llvm::any_of(transferWriteOp.getIndices(),
[](Value v) { return !isZero(v); }))
return failure();
Value reducedShapeSource =
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> zeros(reducedRank, c0);
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
transferWriteOp, vector, reducedShapeSource, zeros, identityMap);
return success();
}
};
/// Return true if the memref type has its inner dimension matching the given
/// shape. Otherwise return false.
static int64_t hasMatchingInnerContigousShape(MemRefType memrefType,
ArrayRef<int64_t> targetShape) {
auto shape = memrefType.getShape();
SmallVector<int64_t> strides;
int64_t offset;
if (!succeeded(getStridesAndOffset(memrefType, strides, offset)))
return false;
if (strides.back() != 1)
return false;
strides.pop_back();
int64_t flatDim = 1;
for (auto [targetDim, memrefDim, memrefStride] :
llvm::reverse(llvm::zip(targetShape, shape, strides))) {
flatDim *= memrefDim;
if (flatDim != memrefStride || targetDim != memrefDim)
return false;
}
return true;
}
/// Creates a memref.collapse_shape collapsing all inner dimensions of the
/// input starting at `firstDimToCollapse`.
static Value collapseInnerDims(PatternRewriter &rewriter, mlir::Location loc,
Value input, int64_t firstDimToCollapse) {
ShapedType inputType = cast<ShapedType>(input.getType());
if (inputType.getRank() == 1)
return input;
SmallVector<ReassociationIndices> reassociation;
for (int64_t i = 0; i < firstDimToCollapse; ++i)
reassociation.push_back(ReassociationIndices{i});
ReassociationIndices collapsedIndices;
for (int64_t i = firstDimToCollapse; i < inputType.getRank(); ++i)
collapsedIndices.push_back(i);
reassociation.push_back(collapsedIndices);
return rewriter.create<memref::CollapseShapeOp>(loc, input, reassociation);
}
/// Checks that the indices corresponding to dimensions starting at
/// `firstDimToCollapse` are constant 0, and writes to `outIndices`
/// the truncated indices where `firstDimToCollapse` is now the innermost dim.
static LogicalResult
checkAndCollapseInnerZeroIndices(ValueRange indices, int64_t firstDimToCollapse,
SmallVector<Value> &outIndices) {
int64_t rank = indices.size();
if (firstDimToCollapse >= rank)
return failure();
for (int64_t i = firstDimToCollapse; i < rank; ++i) {
arith::ConstantIndexOp cst =
indices[i].getDefiningOp<arith::ConstantIndexOp>();
if (!cst || cst.value() != 0)
return failure();
}
outIndices = indices;
outIndices.resize(firstDimToCollapse + 1);
return success();
}
/// Rewrites contiguous row-major vector.transfer_read ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_read has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
class FlattenContiguousRowMajorTransferReadPattern
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
PatternRewriter &rewriter) const override {
auto loc = transferReadOp.getLoc();
Value vector = transferReadOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferReadOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// Contiguity check is valid on tensors only.
if (!sourceType)
return failure();
if (vectorType.getRank() <= 1)
// Already 0D/1D, nothing to do.
return failure();
if (!hasMatchingInnerContigousShape(
sourceType,
vectorType.getShape().take_back(vectorType.getRank() - 1)))
return failure();
int64_t firstContiguousInnerDim =
sourceType.getRank() - vectorType.getRank();
// TODO: generalize this pattern, relax the requirements here.
if (transferReadOp.hasOutOfBoundsDim())
return failure();
if (!transferReadOp.getPermutationMap().isMinorIdentity())
return failure();
if (transferReadOp.getMask())
return failure();
SmallVector<Value> collapsedIndices;
if (failed(checkAndCollapseInnerZeroIndices(transferReadOp.getIndices(),
firstContiguousInnerDim,
collapsedIndices)))
return failure();
Value collapsedSource =
collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
MemRefType collapsedSourceType =
dyn_cast<MemRefType>(collapsedSource.getType());
int64_t collapsedRank = collapsedSourceType.getRank();
assert(collapsedRank == firstContiguousInnerDim + 1);
SmallVector<AffineExpr, 1> dimExprs{
getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
auto collapsedMap =
AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
vectorType.getElementType());
vector::TransferReadOp flatRead = rewriter.create<vector::TransferReadOp>(
loc, flatVectorType, collapsedSource, collapsedIndices, collapsedMap);
flatRead.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
transferReadOp, cast<VectorType>(vector.getType()), flatRead);
return success();
}
};
/// Rewrites contiguous row-major vector.transfer_write ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_write has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
class FlattenContiguousRowMajorTransferWritePattern
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
PatternRewriter &rewriter) const override {
auto loc = transferWriteOp.getLoc();
Value vector = transferWriteOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferWriteOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// Contiguity check is valid on tensors only.
if (!sourceType)
return failure();
if (vectorType.getRank() <= 1)
// Already 0D/1D, nothing to do.
return failure();
if (!hasMatchingInnerContigousShape(
sourceType,
vectorType.getShape().take_back(vectorType.getRank() - 1)))
return failure();
int64_t firstContiguousInnerDim =
sourceType.getRank() - vectorType.getRank();
// TODO: generalize this pattern, relax the requirements here.
if (transferWriteOp.hasOutOfBoundsDim())
return failure();
if (!transferWriteOp.getPermutationMap().isMinorIdentity())
return failure();
if (transferWriteOp.getMask())
return failure();
SmallVector<Value> collapsedIndices;
if (failed(checkAndCollapseInnerZeroIndices(transferWriteOp.getIndices(),
firstContiguousInnerDim,
collapsedIndices)))
return failure();
Value collapsedSource =
collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
MemRefType collapsedSourceType =
cast<MemRefType>(collapsedSource.getType());
int64_t collapsedRank = collapsedSourceType.getRank();
assert(collapsedRank == firstContiguousInnerDim + 1);
SmallVector<AffineExpr, 1> dimExprs{
getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
auto collapsedMap =
AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
vectorType.getElementType());
Value flatVector =
rewriter.create<vector::ShapeCastOp>(loc, flatVectorType, vector);
vector::TransferWriteOp flatWrite =
rewriter.create<vector::TransferWriteOp>(
loc, flatVector, collapsedSource, collapsedIndices, collapsedMap);
flatWrite.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
rewriter.eraseOp(transferWriteOp);
return success();
}
};
/// Rewrite extractelement(transfer_read) to memref.load.
///
/// Rewrite only if the extractelement op is the single user of the transfer op.
/// E.g., do not rewrite IR such as:
/// %0 = vector.transfer_read ... : vector<1024xf32>
/// %1 = vector.extractelement %0[%a : index] : vector<1024xf32>
/// %2 = vector.extractelement %0[%b : index] : vector<1024xf32>
/// Rewriting such IR (replacing one vector load with multiple scalar loads) may
/// negatively affect performance.
class RewriteScalarExtractElementOfTransferRead
: public OpRewritePattern<vector::ExtractElementOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractElementOp extractOp,
PatternRewriter &rewriter) const override {
auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
if (!xferOp)
return failure();
// xfer result must have a single use. Otherwise, it may be better to
// perform a vector load.
if (!extractOp.getVector().hasOneUse())
return failure();
// Mask not supported.
if (xferOp.getMask())
return failure();
// Map not supported.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Cannot rewrite if the indices may be out of bounds. The starting point is
// always inbounds, so we don't care in case of 0d transfers.
if (xferOp.hasOutOfBoundsDim() && xferOp.getType().getRank() > 0)
return failure();
// Construct scalar load.
SmallVector<Value> newIndices(xferOp.getIndices().begin(),
xferOp.getIndices().end());
if (extractOp.getPosition()) {
AffineExpr sym0, sym1;
bindSymbols(extractOp.getContext(), sym0, sym1);
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, extractOp.getLoc(), sym0 + sym1,
{newIndices[newIndices.size() - 1], extractOp.getPosition()});
if (ofr.is<Value>()) {
newIndices[newIndices.size() - 1] = ofr.get<Value>();
} else {
newIndices[newIndices.size() - 1] =
rewriter.create<arith::ConstantIndexOp>(extractOp.getLoc(),
*getConstantIntValue(ofr));
}
}
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
newIndices);
} else {
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
extractOp, xferOp.getSource(), newIndices);
}
return success();
}
};
/// Rewrite extract(transfer_read) to memref.load.
///
/// Rewrite only if the extractelement op is the single user of the transfer op.
/// E.g., do not rewrite IR such as:
/// %0 = vector.transfer_read ... : vector<1024xf32>
/// %1 = vector.extract %0[0] : vector<1024xf32>
/// %2 = vector.extract %0[5] : vector<1024xf32>
/// Rewriting such IR (replacing one vector load with multiple scalar loads) may
/// negatively affect performance.
class RewriteScalarExtractOfTransferRead
: public OpRewritePattern<vector::ExtractOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
PatternRewriter &rewriter) const override {
// Only match scalar extracts.
if (isa<VectorType>(extractOp.getType()))
return failure();
auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
if (!xferOp)
return failure();
// xfer result must have a single use. Otherwise, it may be better to
// perform a vector load.
if (!extractOp.getVector().hasOneUse())
return failure();
// Mask not supported.
if (xferOp.getMask())
return failure();
// Map not supported.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Cannot rewrite if the indices may be out of bounds. The starting point is
// always inbounds, so we don't care in case of 0d transfers.
if (xferOp.hasOutOfBoundsDim() && xferOp.getType().getRank() > 0)
return failure();
// Construct scalar load.
SmallVector<Value> newIndices(xferOp.getIndices().begin(),
xferOp.getIndices().end());
for (const auto &it : llvm::enumerate(extractOp.getPosition())) {
int64_t offset = cast<IntegerAttr>(it.value()).getInt();
int64_t idx =
newIndices.size() - extractOp.getPosition().size() + it.index();
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, extractOp.getLoc(),
rewriter.getAffineSymbolExpr(0) + offset, {newIndices[idx]});
if (ofr.is<Value>()) {
newIndices[idx] = ofr.get<Value>();
} else {
newIndices[idx] = rewriter.create<arith::ConstantIndexOp>(
extractOp.getLoc(), *getConstantIntValue(ofr));
}
}
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
newIndices);
} else {
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
extractOp, xferOp.getSource(), newIndices);
}
return success();
}
};
/// Rewrite transfer_writes of vectors of size 1 (e.g., vector<1x1xf32>)
/// to memref.store.
class RewriteScalarWrite : public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp,
PatternRewriter &rewriter) const override {
// Must be a scalar write.
auto vecType = xferOp.getVectorType();
if (!llvm::all_of(vecType.getShape(), [](int64_t sz) { return sz == 1; }))
return failure();
// Mask not supported.
if (xferOp.getMask())
return failure();
// Map not supported.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Only float and integer element types are supported.
Value scalar;
if (vecType.getRank() == 0) {
// vector.extract does not support vector<f32> etc., so use
// vector.extractelement instead.
scalar = rewriter.create<vector::ExtractElementOp>(xferOp.getLoc(),
xferOp.getVector());
} else {
SmallVector<int64_t> pos(vecType.getRank(), 0);
scalar = rewriter.create<vector::ExtractOp>(xferOp.getLoc(),
xferOp.getVector(), pos);
}
// Construct a scalar store.
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::StoreOp>(
xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
} else {
rewriter.replaceOpWithNewOp<tensor::InsertOp>(
xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
}
return success();
}
};
} // namespace
void mlir::vector::transferOpflowOpt(RewriterBase &rewriter,
Operation *rootOp) {
TransferOptimization opt(rewriter, rootOp);
// Run store to load forwarding first since it can expose more dead store
// opportunity.
rootOp->walk([&](vector::TransferReadOp read) {
if (isa<MemRefType>(read.getShapedType()))
opt.storeToLoadForwarding(read);
});
opt.removeDeadOp();
rootOp->walk([&](vector::TransferWriteOp write) {
if (isa<MemRefType>(write.getShapedType()))
opt.deadStoreOp(write);
});
opt.removeDeadOp();
}
void mlir::vector::populateScalarVectorTransferLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<RewriteScalarExtractElementOfTransferRead,
RewriteScalarExtractOfTransferRead, RewriteScalarWrite>(
patterns.getContext(), benefit);
}
void mlir::vector::populateVectorTransferDropUnitDimsPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<TransferReadDropUnitDimsPattern, TransferWriteDropUnitDimsPattern>(
patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns);
}
void mlir::vector::populateFlattenVectorTransferPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<FlattenContiguousRowMajorTransferReadPattern,
FlattenContiguousRowMajorTransferWritePattern>(
patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns, benefit);
}
|