summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Vector/Transforms/VectorDropLeadUnitDim.cpp
blob: 8b2444199a501630a5b80357b32f980120cfed39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"

#define DEBUG_TYPE "vector-drop-unit-dim"

using namespace mlir;
using namespace mlir::vector;

// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
  ArrayRef<int64_t> oldShape = oldType.getShape();
  ArrayRef<int64_t> newShape =
      oldShape.drop_while([](int64_t dim) { return dim == 1; });
  // Make sure we have at least 1 dimension per vector type requirements.
  if (newShape.empty())
    newShape = oldShape.take_back();
  return VectorType::get(newShape, oldType.getElementType());
}

/// Return a smallVector of size `rank` containing all zeros.
static SmallVector<int64_t> splatZero(int64_t rank) {
  return SmallVector<int64_t>(rank, 0);
}
namespace {

// Casts away leading one dimensions in vector.extract_strided_slice's vector
// input by inserting vector.broadcast.
struct CastAwayExtractStridedSliceLeadingOneDim
    : public OpRewritePattern<vector::ExtractStridedSliceOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
                                PatternRewriter &rewriter) const override {
    // vector.extract_strided_slice requires the input and output vector to have
    // the same rank. Here we drop leading one dimensions from the input vector
    // type to make sure we don't cause mismatch.
    VectorType oldSrcType = extractOp.getSourceVectorType();
    VectorType newSrcType = trimLeadingOneDims(oldSrcType);

    if (newSrcType.getRank() == oldSrcType.getRank())
      return failure();

    int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();

    VectorType oldDstType = extractOp.getType();
    VectorType newDstType =
        VectorType::get(oldDstType.getShape().drop_front(dropCount),
                        oldDstType.getElementType());

    Location loc = extractOp.getLoc();

    Value newSrcVector = rewriter.create<vector::ExtractOp>(
        loc, extractOp.getVector(), splatZero(dropCount));

    // The offsets/sizes/strides attribute can have a less number of elements
    // than the input vector's rank: it is meant for the leading dimensions.
    auto newOffsets = rewriter.getArrayAttr(
        extractOp.getOffsets().getValue().drop_front(dropCount));
    auto newSizes = rewriter.getArrayAttr(
        extractOp.getSizes().getValue().drop_front(dropCount));
    auto newStrides = rewriter.getArrayAttr(
        extractOp.getStrides().getValue().drop_front(dropCount));

    auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
        loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);

    rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
                                                     newExtractOp);

    return success();
  }
};

// Casts away leading one dimensions in vector.insert_strided_slice's vector
// inputs by inserting vector.broadcast.
struct CastAwayInsertStridedSliceLeadingOneDim
    : public OpRewritePattern<vector::InsertStridedSliceOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
                                PatternRewriter &rewriter) const override {
    VectorType oldSrcType = insertOp.getSourceVectorType();
    VectorType newSrcType = trimLeadingOneDims(oldSrcType);
    VectorType oldDstType = insertOp.getDestVectorType();
    VectorType newDstType = trimLeadingOneDims(oldDstType);

    int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
    int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
    if (srcDropCount == 0 && dstDropCount == 0)
      return failure();

    // Trim leading one dimensions from both operands.
    Location loc = insertOp.getLoc();

    Value newSrcVector = rewriter.create<vector::ExtractOp>(
        loc, insertOp.getSource(), splatZero(srcDropCount));
    Value newDstVector = rewriter.create<vector::ExtractOp>(
        loc, insertOp.getDest(), splatZero(dstDropCount));

    auto newOffsets = rewriter.getArrayAttr(
        insertOp.getOffsets().getValue().take_back(newDstType.getRank()));
    auto newStrides = rewriter.getArrayAttr(
        insertOp.getStrides().getValue().take_back(newSrcType.getRank()));

    auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
        loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);

    rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
                                                     newInsertOp);

    return success();
  }
};

// Casts away leading one dimensions in vector.insert's vector inputs by
// inserting vector.broadcast.
struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::InsertOp insertOp,
                                PatternRewriter &rewriter) const override {
    Type oldSrcType = insertOp.getSourceType();
    Type newSrcType = oldSrcType;
    int64_t oldSrcRank = 0, newSrcRank = 0;
    if (auto type = dyn_cast<VectorType>(oldSrcType)) {
      newSrcType = trimLeadingOneDims(type);
      oldSrcRank = type.getRank();
      newSrcRank = cast<VectorType>(newSrcType).getRank();
    }

    VectorType oldDstType = insertOp.getDestVectorType();
    VectorType newDstType = trimLeadingOneDims(oldDstType);

    int64_t srcDropCount = oldSrcRank - newSrcRank;
    int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
    if (srcDropCount == 0 && dstDropCount == 0)
      return failure();

    // Trim leading one dimensions from both operands.
    Location loc = insertOp.getLoc();

    Value newSrcVector = insertOp.getSource();
    if (oldSrcRank != 0) {
      newSrcVector = rewriter.create<vector::ExtractOp>(
          loc, insertOp.getSource(), splatZero(srcDropCount));
    }
    Value newDstVector = rewriter.create<vector::ExtractOp>(
        loc, insertOp.getDest(), splatZero(dstDropCount));

    // New position rank needs to be computed in two steps: (1) if destination
    // type has leading unit dims, we also trim the position array accordingly,
    // then (2) if source type also has leading unit dims, we need to append
    // zeroes to the position array accordingly.
    unsigned oldPosRank = insertOp.getPosition().getValue().size();
    unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount);
    SmallVector<Attribute> newPositions = llvm::to_vector(
        insertOp.getPosition().getValue().take_back(newPosRank));
    newPositions.resize(newDstType.getRank() - newSrcRank,
                        rewriter.getI64IntegerAttr(0));

    auto newInsertOp = rewriter.create<vector::InsertOp>(
        loc, newDstType, newSrcVector, newDstVector,
        rewriter.getArrayAttr(newPositions));

    rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
                                                     newInsertOp);

    return success();
  }
};

// Turns vector.transfer_read on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_read on vector without leading
// 1 dimensions.
struct CastAwayTransferReadLeadingOneDim
    : public OpRewritePattern<vector::TransferReadOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferReadOp read,
                                PatternRewriter &rewriter) const override {
    // TODO: support 0-d corner case.
    if (read.getTransferRank() == 0)
      return failure();

    if (read.getMask())
      return failure();

    auto shapedType = cast<ShapedType>(read.getSource().getType());
    if (shapedType.getElementType() != read.getVectorType().getElementType())
      return failure();

    VectorType oldType = read.getVectorType();
    VectorType newType = trimLeadingOneDims(oldType);

    if (newType == oldType)
      return failure();

    AffineMap oldMap = read.getPermutationMap();
    ArrayRef<AffineExpr> newResults =
        oldMap.getResults().take_back(newType.getRank());
    AffineMap newMap =
        AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
                       rewriter.getContext());

    ArrayAttr inBoundsAttr;
    if (read.getInBounds())
      inBoundsAttr = rewriter.getArrayAttr(
          read.getInBoundsAttr().getValue().take_back(newType.getRank()));

    auto newRead = rewriter.create<vector::TransferReadOp>(
        read.getLoc(), newType, read.getSource(), read.getIndices(),
        AffineMapAttr::get(newMap), read.getPadding(), /*mask=*/Value(),
        inBoundsAttr);
    rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);

    return success();
  }
};

// Turns vector.transfer_write on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_write on vector without leading
// 1 dimensions.
struct CastAwayTransferWriteLeadingOneDim
    : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferWriteOp write,
                                PatternRewriter &rewriter) const override {
    // TODO: support 0-d corner case.
    if (write.getTransferRank() == 0)
      return failure();

    if (write.getMask())
      return failure();

    auto shapedType = dyn_cast<ShapedType>(write.getSource().getType());
    if (shapedType.getElementType() != write.getVectorType().getElementType())
      return failure();

    VectorType oldType = write.getVectorType();
    VectorType newType = trimLeadingOneDims(oldType);
    if (newType == oldType)
      return failure();
    int64_t dropDim = oldType.getRank() - newType.getRank();

    AffineMap oldMap = write.getPermutationMap();
    ArrayRef<AffineExpr> newResults =
        oldMap.getResults().take_back(newType.getRank());
    AffineMap newMap =
        AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
                       rewriter.getContext());

    ArrayAttr inBoundsAttr;
    if (write.getInBounds())
      inBoundsAttr = rewriter.getArrayAttr(
          write.getInBoundsAttr().getValue().take_back(newType.getRank()));

    auto newVector = rewriter.create<vector::ExtractOp>(
        write.getLoc(), write.getVector(), splatZero(dropDim));
    rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
        write, newVector, write.getSource(), write.getIndices(),
        AffineMapAttr::get(newMap), inBoundsAttr);

    return success();
  }
};

} // namespace

LogicalResult
mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp,
                                               RewriterBase &rewriter) {
  VectorType oldAccType = dyn_cast<VectorType>(contractOp.getAccType());
  if (oldAccType == nullptr)
    return failure();
  if (oldAccType.getRank() < 2)
    return failure();
  if (oldAccType.getShape()[0] != 1)
    return failure();
  // currently we support only dropping one dim but the pattern can be applied
  // greedily to drop more.
  int64_t dropDim = 1;

  auto oldIndexingMaps = contractOp.getIndexingMapsArray();
  SmallVector<AffineMap> newIndexingMaps;

  auto oldIteratorTypes = contractOp.getIteratorTypes();
  SmallVector<Attribute> newIteratorTypes;

  int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0);

  if (!isParallelIterator(oldIteratorTypes[dimToDrop]))
    // only parallel type iterators can be dropped.
    return failure();

  for (const auto &it : llvm::enumerate(oldIteratorTypes)) {
    int64_t currDim = it.index();
    if (currDim == dimToDrop)
      continue;
    newIteratorTypes.push_back(it.value());
  }

  SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(),
                                 contractOp.getAcc()};
  SmallVector<Value> newOperands;

  for (const auto &it : llvm::enumerate(oldIndexingMaps)) {
    // Check if the dim to be dropped exists as a leading dim in the operand
    // if it does then we use vector.extract to drop it.
    bool validExtract = false;
    SmallVector<AffineExpr> results;
    auto map = it.value();
    int64_t orginalZeroDim = it.value().getDimPosition(0);
    if (orginalZeroDim != dimToDrop) {
      // There are two reasons to be in this path, 1. We need to
      // tranpose the operand to make the dim to be dropped
      // leading. 2. The dim to be dropped does not exist and in
      // that case we dont want to add a unit tranpose but we must
      // check all the indices to make sure this is the case.
      bool tranposeNeeded = false;
      SmallVector<int64_t> perm;
      SmallVector<AffineExpr> transposeResults;

      for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
        int64_t currDim = map.getDimPosition(i);
        if (currDim == dimToDrop) {
          tranposeNeeded = true;
          perm.insert(perm.begin(), i);
          auto targetExpr = rewriter.getAffineDimExpr(currDim);
          transposeResults.insert(transposeResults.begin(), targetExpr);
        } else {
          perm.push_back(i);
          auto targetExpr = rewriter.getAffineDimExpr(currDim);
          transposeResults.push_back(targetExpr);
        }
      }
      // Do the tranpose now if needed so that we can drop the
      // correct dim using extract later.
      if (tranposeNeeded) {
        map = AffineMap::get(map.getNumDims(), 0, transposeResults,
                             contractOp.getContext());
        operands[it.index()] = rewriter.create<vector::TransposeOp>(
            contractOp.getLoc(), operands[it.index()], perm);
      }
    }
    // We have taken care to have the dim to be dropped be
    // the leading dim. If its still not leading that means it
    // does not exist in this operand and hence we do not need
    // an extract.
    if (map.getDimPosition(0) == dimToDrop)
      validExtract = true;

    for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
      int64_t currDim = map.getDimPosition(i);
      if (currDim == dimToDrop)
        // This is the dim we are dropping.
        continue;
      auto targetExpr = rewriter.getAffineDimExpr(
          currDim < dimToDrop ? currDim : currDim - 1);
      results.push_back(targetExpr);
    }
    newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results,
                                             contractOp.getContext()));
    // Extract if its a valid extraction, otherwise use the operand
    // without extraction.
    newOperands.push_back(
        validExtract ? rewriter.create<vector::ExtractOp>(contractOp.getLoc(),
                                                          operands[it.index()],
                                                          splatZero(dropDim))
                     : operands[it.index()]);
  }
  auto newContractOp = rewriter.create<vector::ContractionOp>(
      contractOp.getLoc(), newOperands[0], newOperands[1], newOperands[2],
      rewriter.getAffineMapArrayAttr(newIndexingMaps),
      rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind());
  rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
      contractOp, contractOp->getResultTypes()[0], newContractOp);
  return success();
}

namespace {

/// Turns vector.contract on vector with leading 1 dimensions into
/// vector.extract followed by vector.contract on vector without leading
/// 1 dimensions. Also performs tranpose of lhs and rhs operands if required
/// prior to extract.
struct CastAwayContractionLeadingOneDim
    : public OpRewritePattern<vector::ContractionOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
                                PatternRewriter &rewriter) const override {
    return castAwayContractionLeadingOneDim(contractOp, rewriter);
  }
};

class CastAwayElementwiseLeadingOneDim : public RewritePattern {
public:
  CastAwayElementwiseLeadingOneDim(MLIRContext *context,
                                   PatternBenefit benefit = 1)
      : RewritePattern(MatchAnyOpTypeTag(), benefit, context) {}

  LogicalResult matchAndRewrite(Operation *op,
                                PatternRewriter &rewriter) const override {
    if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
      return failure();
    auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0]);
    if (!vecType)
      return failure();
    VectorType newVecType = trimLeadingOneDims(vecType);
    if (newVecType == vecType)
      return failure();
    int64_t dropDim = vecType.getRank() - newVecType.getRank();
    SmallVector<Value, 4> newOperands;
    for (Value operand : op->getOperands()) {
      if (auto opVecType = dyn_cast<VectorType>(operand.getType())) {
        newOperands.push_back(rewriter.create<vector::ExtractOp>(
            op->getLoc(), operand, splatZero(dropDim)));
      } else {
        newOperands.push_back(operand);
      }
    }
    Operation *newOp =
        rewriter.create(op->getLoc(), op->getName().getIdentifier(),
                        newOperands, newVecType, op->getAttrs());
    rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
                                                     newOp->getResult(0));
    return success();
  }
};

} // namespace

void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
    RewritePatternSet &patterns, PatternBenefit benefit) {
  patterns
      .add<CastAwayExtractStridedSliceLeadingOneDim,
           CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim,
           CastAwayTransferReadLeadingOneDim,
           CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim,
           CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit);
  populateShapeCastFoldingPatterns(patterns, benefit);
}