summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
blob: e56aa62a1871ead1cae6b7e51dc37332f7ec42cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
//===- VectorDistribute.cpp - patterns to do vector distribution ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/SetVector.h"
#include <utility>

using namespace mlir;
using namespace mlir::vector;

/// Currently the distribution map is implicit based on the vector shape. In the
/// future it will be part of the op.
/// Example:
/// ```
/// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1x16x2xf32>) {
///   ...
///   vector.yield %3 : vector<32x16x64xf32>
/// }
/// ```
/// Would have an implicit map of:
/// `(d0, d1, d2) -> (d0, d2)`
static AffineMap calculateImplicitMap(VectorType sequentialType,
                                      VectorType distributedType) {
  SmallVector<AffineExpr> perm;
  perm.reserve(1);
  // Check which dimensions of the sequential type are different than the
  // dimensions of the distributed type to know the distributed dimensions. Then
  // associate each distributed dimension to an ID in order.
  for (unsigned i = 0, e = sequentialType.getRank(); i < e; i++) {
    if (sequentialType.getDimSize(i) != distributedType.getDimSize(i))
      perm.push_back(getAffineDimExpr(i, distributedType.getContext()));
  }
  auto map = AffineMap::get(sequentialType.getRank(), 0, perm,
                            distributedType.getContext());
  assert(map.getNumResults() <= 1 &&
         "only support distribution along one dimension for now.");
  return map;
}

namespace {

/// Helper struct to create the load / store operations that permit transit
/// through the parallel / sequential and the sequential / parallel boundaries
/// when performing `rewriteWarpOpToScfFor`.
///
/// The vector distribution dimension is inferred from the vector types.
struct DistributedLoadStoreHelper {
  DistributedLoadStoreHelper(Value sequentialVal, Value distributedVal,
                             Value laneId, Value zero)
      : sequentialVal(sequentialVal), distributedVal(distributedVal),
        laneId(laneId), zero(zero) {
    sequentialVectorType = dyn_cast<VectorType>(sequentialVal.getType());
    distributedVectorType = dyn_cast<VectorType>(distributedVal.getType());
    if (sequentialVectorType && distributedVectorType)
      distributionMap =
          calculateImplicitMap(sequentialVectorType, distributedVectorType);
  }

  Value buildDistributedOffset(RewriterBase &b, Location loc, int64_t index) {
    int64_t distributedSize = distributedVectorType.getDimSize(index);
    AffineExpr tid = getAffineSymbolExpr(0, b.getContext());
    return b.createOrFold<affine::AffineApplyOp>(loc, tid * distributedSize,
                                                 ArrayRef<Value>{laneId});
  }

  /// Create a store during the process of distributing the
  /// `vector.warp_execute_on_thread_0` op.
  /// Vector distribution assumes the following convention regarding the
  /// temporary buffers that are created to transition values. This **must**
  /// be properly specified in the `options.warpAllocationFn`:
  ///   1. scalars of type T transit through a memref<1xT>.
  ///   2. vectors of type V<shapexT> transit through a memref<shapexT>
  Operation *buildStore(RewriterBase &b, Location loc, Value val,
                        Value buffer) {
    assert((val == distributedVal || val == sequentialVal) &&
           "Must store either the preregistered distributed or the "
           "preregistered sequential value.");
    // Scalar case can directly use memref.store.
    if (!isa<VectorType>(val.getType()))
      return b.create<memref::StoreOp>(loc, val, buffer, zero);

    // Vector case must use vector::TransferWriteOp which will later lower to
    //   vector.store of memref.store depending on further lowerings.
    int64_t rank = sequentialVectorType.getRank();
    SmallVector<Value> indices(rank, zero);
    if (val == distributedVal) {
      for (auto dimExpr : distributionMap.getResults()) {
        int64_t index = dimExpr.cast<AffineDimExpr>().getPosition();
        indices[index] = buildDistributedOffset(b, loc, index);
      }
    }
    SmallVector<bool> inBounds(indices.size(), true);
    return b.create<vector::TransferWriteOp>(
        loc, val, buffer, indices,
        ArrayRef<bool>(inBounds.begin(), inBounds.end()));
  }

  /// Create a load during the process of distributing the
  /// `vector.warp_execute_on_thread_0` op.
  /// Vector distribution assumes the following convention regarding the
  /// temporary buffers that are created to transition values. This **must**
  /// be properly specified in the `options.warpAllocationFn`:
  ///   1. scalars of type T transit through a memref<1xT>.
  ///   2. vectors of type V<shapexT> transit through a memref<shapexT>
  ///
  /// When broadcastMode is true, the load is not distributed to account for
  /// the broadcast semantics of the `vector.warp_execute_on_lane_0` op.
  ///
  /// Example:
  ///
  /// ```
  ///   %r = vector.warp_execute_on_lane_0(...) -> (f32) {
  ///     vector.yield %cst : f32
  ///   }
  ///   // Both types are f32. The constant %cst is broadcasted to all lanes.
  /// ```
  /// This behavior described in more detail in the documentation of the op.
  Value buildLoad(RewriterBase &b, Location loc, Type type, Value buffer) {

    // Scalar case can directly use memref.store.
    if (!isa<VectorType>(type))
      return b.create<memref::LoadOp>(loc, buffer, zero);

    // Other cases must be vector atm.
    // Vector case must use vector::TransferReadOp which will later lower to
    //   vector.read of memref.read depending on further lowerings.
    assert((type == distributedVectorType || type == sequentialVectorType) &&
           "Must store either the preregistered distributed or the "
           "preregistered sequential type.");
    SmallVector<Value> indices(sequentialVectorType.getRank(), zero);
    if (type == distributedVectorType) {
      for (auto dimExpr : distributionMap.getResults()) {
        int64_t index = dimExpr.cast<AffineDimExpr>().getPosition();
        indices[index] = buildDistributedOffset(b, loc, index);
      }
    }
    SmallVector<bool> inBounds(indices.size(), true);
    return b.create<vector::TransferReadOp>(
        loc, cast<VectorType>(type), buffer, indices,
        ArrayRef<bool>(inBounds.begin(), inBounds.end()));
  }

  Value sequentialVal, distributedVal, laneId, zero;
  VectorType sequentialVectorType, distributedVectorType;
  AffineMap distributionMap;
};

} // namespace

/// Helper to create a new WarpExecuteOnLane0Op with different signature.
static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndReplaceReturns(
    RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
    ValueRange newYieldedValues, TypeRange newReturnTypes) {
  // Create a new op before the existing one, with the extra operands.
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(warpOp);
  auto newWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
      warpOp.getLoc(), newReturnTypes, warpOp.getLaneid(), warpOp.getWarpSize(),
      warpOp.getArgs(), warpOp.getBody()->getArgumentTypes());

  Region &opBody = warpOp.getBodyRegion();
  Region &newOpBody = newWarpOp.getBodyRegion();
  Block &newOpFirstBlock = newOpBody.front();
  rewriter.inlineRegionBefore(opBody, newOpBody, newOpBody.begin());
  rewriter.eraseBlock(&newOpFirstBlock);
  assert(newWarpOp.getWarpRegion().hasOneBlock() &&
         "expected WarpOp with single block");

  auto yield =
      cast<vector::YieldOp>(newOpBody.getBlocks().begin()->getTerminator());

  rewriter.updateRootInPlace(
      yield, [&]() { yield.getOperandsMutable().assign(newYieldedValues); });
  return newWarpOp;
}

/// Helper to create a new WarpExecuteOnLane0Op region with extra outputs.
/// `indices` return the index of each new output.
static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndAppendReturns(
    RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
    ValueRange newYieldedValues, TypeRange newReturnTypes,
    llvm::SmallVector<size_t> &indices) {
  SmallVector<Type> types(warpOp.getResultTypes().begin(),
                          warpOp.getResultTypes().end());
  auto yield = cast<vector::YieldOp>(
      warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
  llvm::SmallSetVector<Value, 32> yieldValues(yield.getOperands().begin(),
                                              yield.getOperands().end());
  for (auto newRet : llvm::zip(newYieldedValues, newReturnTypes)) {
    if (yieldValues.insert(std::get<0>(newRet))) {
      types.push_back(std::get<1>(newRet));
      indices.push_back(yieldValues.size() - 1);
    } else {
      // If the value already exit the region don't create a new output.
      for (auto [idx, yieldOperand] :
           llvm::enumerate(yieldValues.getArrayRef())) {
        if (yieldOperand == std::get<0>(newRet)) {
          indices.push_back(idx);
          break;
        }
      }
    }
  }
  yieldValues.insert(newYieldedValues.begin(), newYieldedValues.end());
  WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
      rewriter, warpOp, yieldValues.getArrayRef(), types);
  rewriter.replaceOp(warpOp,
                     newWarpOp.getResults().take_front(warpOp.getNumResults()));
  return newWarpOp;
}

/// Helper to know if an op can be hoisted out of the region.
static bool canBeHoisted(Operation *op,
                         function_ref<bool(Value)> definedOutside) {
  return llvm::all_of(op->getOperands(), definedOutside) &&
         isMemoryEffectFree(op) && op->getNumRegions() == 0;
}

/// Return a value yielded by `warpOp` which statifies the filter lamdba
/// condition and is not dead.
static OpOperand *getWarpResult(WarpExecuteOnLane0Op warpOp,
                                const std::function<bool(Operation *)> &fn) {
  auto yield = cast<vector::YieldOp>(
      warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
  for (OpOperand &yieldOperand : yield->getOpOperands()) {
    Value yieldValues = yieldOperand.get();
    Operation *definedOp = yieldValues.getDefiningOp();
    if (definedOp && fn(definedOp)) {
      if (!warpOp.getResult(yieldOperand.getOperandNumber()).use_empty())
        return &yieldOperand;
    }
  }
  return {};
}

// Clones `op` into a new operation that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(RewriterBase &rewriter,
                                              Location loc, Operation *op,
                                              ArrayRef<Value> operands,
                                              ArrayRef<Type> resultTypes) {
  OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
                     op->getAttrs());
  return rewriter.create(res);
}

namespace {

/// Rewrite a WarpExecuteOnLane0Op into a predicated scf.if op where the single
/// thread `laneId` executes the entirety of the computation.
///
/// After the transformation:
///   - the IR within the scf.if op can be thought of as executing sequentially
///     (from the point of view of threads along `laneId`).
///   - the IR outside of the scf.if op can be thought of as executing in
///     parallel (from the point of view of threads along `laneId`).
///
/// Values that need to transit through the parallel / sequential and the
/// sequential / parallel boundaries do so via reads and writes to a temporary
/// memory location.
///
/// The transformation proceeds in multiple steps:
///   1. Create the scf.if op.
///   2. Insert appropriate (alloc, write)-pairs before the scf.if and reads
///      within the scf.if to transit the values captured from above.
///   3. Synchronize before the scf.if to ensure all writes inserted in 2. are
///      consistent within the scf.if.
///   4. Move the body of the WarpExecuteOnLane0Op inside the scf.if.
///   5. Insert appropriate writes within scf.if and reads after the scf.if to
///      transit the values returned by the op.
///   6. Synchronize after the scf.if to ensure all writes inserted in 5. are
///      consistent after the scf.if.
///   7. Perform late cleanups.
///
/// All this assumes the vector distribution occurs along the most minor
/// distributed vector dimension.
struct WarpOpToScfIfPattern : public OpRewritePattern<WarpExecuteOnLane0Op> {
  WarpOpToScfIfPattern(MLIRContext *context,
                       const WarpExecuteOnLane0LoweringOptions &options,
                       PatternBenefit benefit = 1)
      : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
        options(options) {}

  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    assert(warpOp.getBodyRegion().hasOneBlock() &&
           "expected WarpOp with single block");
    Block *warpOpBody = &warpOp.getBodyRegion().front();
    Location loc = warpOp.getLoc();

    // Passed all checks. Start rewriting.
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPoint(warpOp);

    // Step 1: Create scf.if op.
    Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    Value isLane0 = rewriter.create<arith::CmpIOp>(
        loc, arith::CmpIPredicate::eq, warpOp.getLaneid(), c0);
    auto ifOp = rewriter.create<scf::IfOp>(loc, isLane0,
                                           /*withElseRegion=*/false);
    rewriter.eraseOp(ifOp.thenBlock()->getTerminator());

    // Step 2: insert appropriate (alloc, write)-pairs before the scf.if and
    // reads within the scf.if to transit the values captured from above.
    SmallVector<Value> bbArgReplacements;
    for (const auto &it : llvm::enumerate(warpOp.getArgs())) {
      Value sequentialVal = warpOpBody->getArgument(it.index());
      Value distributedVal = it.value();
      DistributedLoadStoreHelper helper(sequentialVal, distributedVal,
                                        warpOp.getLaneid(), c0);

      // Create buffer before the ifOp.
      rewriter.setInsertionPoint(ifOp);
      Value buffer = options.warpAllocationFn(loc, rewriter, warpOp,
                                              sequentialVal.getType());
      // Store distributed vector into buffer, before the ifOp.
      helper.buildStore(rewriter, loc, distributedVal, buffer);
      // Load sequential vector from buffer, inside the ifOp.
      rewriter.setInsertionPointToStart(ifOp.thenBlock());
      bbArgReplacements.push_back(
          helper.buildLoad(rewriter, loc, sequentialVal.getType(), buffer));
    }

    // Step 3. Insert sync after all the stores and before all the loads.
    if (!warpOp.getArgs().empty()) {
      rewriter.setInsertionPoint(ifOp);
      options.warpSyncronizationFn(loc, rewriter, warpOp);
    }

    // Step 4. Move body of warpOp to ifOp.
    rewriter.mergeBlocks(warpOpBody, ifOp.thenBlock(), bbArgReplacements);

    // Step 5. Insert appropriate writes within scf.if and reads after the
    // scf.if to transit the values returned by the op.
    // TODO: at this point, we can reuse the shared memory from previous
    // buffers.
    SmallVector<Value> replacements;
    auto yieldOp = cast<vector::YieldOp>(ifOp.thenBlock()->getTerminator());
    Location yieldLoc = yieldOp.getLoc();
    for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
      Value sequentialVal = it.value();
      Value distributedVal = warpOp->getResult(it.index());
      DistributedLoadStoreHelper helper(sequentialVal, distributedVal,
                                        warpOp.getLaneid(), c0);

      // Create buffer before the ifOp.
      rewriter.setInsertionPoint(ifOp);
      Value buffer = options.warpAllocationFn(loc, rewriter, warpOp,
                                              sequentialVal.getType());

      // Store yielded value into buffer, inside the ifOp, before the
      // terminator.
      rewriter.setInsertionPoint(yieldOp);
      helper.buildStore(rewriter, loc, sequentialVal, buffer);

      // Load distributed value from buffer, after  the warpOp.
      rewriter.setInsertionPointAfter(ifOp);
      // Result type and yielded value type are the same. This is a broadcast.
      // E.g.:
      // %r = vector.warp_execute_on_lane_0(...) -> (f32) {
      //   vector.yield %cst : f32
      // }
      // Both types are f32. The constant %cst is broadcasted to all lanes.
      // This is described in more detail in the documentation of the op.
      replacements.push_back(
          helper.buildLoad(rewriter, loc, distributedVal.getType(), buffer));
    }

    // Step 6. Insert sync after all the stores and before all the loads.
    if (!yieldOp.getOperands().empty()) {
      rewriter.setInsertionPointAfter(ifOp);
      options.warpSyncronizationFn(loc, rewriter, warpOp);
    }

    // Step 7. Delete terminator and add empty scf.yield.
    rewriter.eraseOp(yieldOp);
    rewriter.setInsertionPointToEnd(ifOp.thenBlock());
    rewriter.create<scf::YieldOp>(yieldLoc);

    // Compute replacements for WarpOp results.
    rewriter.replaceOp(warpOp, replacements);

    return success();
  }

private:
  const WarpExecuteOnLane0LoweringOptions &options;
};

/// Clone `writeOp` assumed to be nested under `warpOp` into a new warp execute
/// op with the proper return type.
/// The new write op is updated to write the result of the new warp execute op.
/// The old `writeOp` is deleted.
static vector::TransferWriteOp cloneWriteOp(RewriterBase &rewriter,
                                            WarpExecuteOnLane0Op warpOp,
                                            vector::TransferWriteOp writeOp,
                                            VectorType targetType) {
  assert(writeOp->getParentOp() == warpOp &&
         "write must be nested immediately under warp");
  OpBuilder::InsertionGuard g(rewriter);
  SmallVector<size_t> newRetIndices;
  WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
      rewriter, warpOp, ValueRange{{writeOp.getVector()}},
      TypeRange{targetType}, newRetIndices);
  rewriter.setInsertionPointAfter(newWarpOp);
  auto newWriteOp =
      cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
  rewriter.eraseOp(writeOp);
  newWriteOp.getVectorMutable().assign(newWarpOp.getResult(newRetIndices[0]));
  return newWriteOp;
}

/// Return the distributed vector type based on the original type and the
/// distribution map. The map is expected to have a dimension equal to the
/// original type rank and should be a projection where the results are the
/// distributed dimensions. The number of results should be equal to the number
/// of warp sizes which is currently limited to 1.
/// Example: For a vector<16x32x64> distributed with a map(d0, d1, d2) -> (d1)
/// and a warp size of 16 would distribute the second dimension (associated to
/// d1) and return vector<16x2x64>
static VectorType getDistributedType(VectorType originalType, AffineMap map,
                                     int64_t warpSize) {
  if (map.getNumResults() != 1)
    return VectorType();
  SmallVector<int64_t> targetShape(originalType.getShape().begin(),
                                   originalType.getShape().end());
  for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
    unsigned position = map.getDimPosition(i);
    if (targetShape[position] % warpSize != 0)
      return VectorType();
    targetShape[position] = targetShape[position] / warpSize;
  }
  VectorType targetType =
      VectorType::get(targetShape, originalType.getElementType());
  return targetType;
}

/// Distribute transfer_write ops based on the affine map returned by
/// `distributionMapFn`.
/// Example:
/// ```
/// %0 = vector.warp_execute_on_lane_0(%id){
///   ...
///   vector.transfer_write %v, %A[%c0] : vector<32xf32>, memref<128xf32>
///   vector.yield
/// }
/// ```
/// To
/// ```
/// %r:3 = vector.warp_execute_on_lane_0(%id) -> (vector<1xf32>) {
///   ...
///   vector.yield %v : vector<32xf32>
/// }
/// vector.transfer_write %v, %A[%id] : vector<1xf32>, memref<128xf32>
struct WarpOpTransferWrite : public OpRewritePattern<vector::TransferWriteOp> {
  WarpOpTransferWrite(MLIRContext *ctx, DistributionMapFn fn,
                      PatternBenefit b = 1)
      : OpRewritePattern<vector::TransferWriteOp>(ctx, b),
        distributionMapFn(std::move(fn)) {}

  /// Distribute the TransferWriteOp. Only 1D distributions and vector dims that
  /// are multiples of the distribution ratio are supported at the moment.
  LogicalResult tryDistributeOp(RewriterBase &rewriter,
                                vector::TransferWriteOp writeOp,
                                WarpExecuteOnLane0Op warpOp) const {
    VectorType writtenVectorType = writeOp.getVectorType();

    // 1. If the write is 0-D, we just clone it into a new WarpExecuteOnLane0Op
    // to separate it from the rest.
    if (writtenVectorType.getRank() == 0)
      return failure();

    // 2. Compute the distributed type.
    AffineMap map = distributionMapFn(writeOp.getVector());
    VectorType targetType =
        getDistributedType(writtenVectorType, map, warpOp.getWarpSize());
    if (!targetType)
      return failure();

    // 3. clone the write into a new WarpExecuteOnLane0Op to separate it from
    // the rest.
    vector::TransferWriteOp newWriteOp =
        cloneWriteOp(rewriter, warpOp, writeOp, targetType);

    // 4. Reindex the write using the distribution map.
    auto newWarpOp =
        newWriteOp.getVector().getDefiningOp<WarpExecuteOnLane0Op>();
    rewriter.setInsertionPoint(newWriteOp);
    AffineMap indexMap = map.compose(newWriteOp.getPermutationMap());
    Location loc = newWriteOp.getLoc();
    SmallVector<Value> indices(newWriteOp.getIndices().begin(),
                               newWriteOp.getIndices().end());
    for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
      AffineExpr d0, d1;
      bindDims(newWarpOp.getContext(), d0, d1);
      auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
      if (!indexExpr)
        continue;
      unsigned indexPos = indexExpr.getPosition();
      unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
      auto scale =
          rewriter.getAffineConstantExpr(targetType.getDimSize(vectorPos));
      indices[indexPos] = affine::makeComposedAffineApply(
          rewriter, loc, d0 + scale * d1,
          {indices[indexPos], newWarpOp.getLaneid()});
    }
    newWriteOp.getIndicesMutable().assign(indices);

    return success();
  }

  /// Extract TransferWriteOps of vector<1x> into a separate warp op.
  LogicalResult tryExtractOp(RewriterBase &rewriter,
                             vector::TransferWriteOp writeOp,
                             WarpExecuteOnLane0Op warpOp) const {
    Location loc = writeOp.getLoc();
    VectorType vecType = writeOp.getVectorType();

    // Only sink out vector of 1 element for now to not serialize large vector
    // store. This can later be controlled by user.
    if (vecType.getNumElements() != 1)
      return failure();

    // Do not process warp ops that contain only TransferWriteOps.
    if (llvm::all_of(warpOp.getOps(), [](Operation &op) {
          return isa<vector::TransferWriteOp, vector::YieldOp>(&op);
        }))
      return failure();

    SmallVector<Value> yieldValues = {writeOp.getVector()};
    SmallVector<Type> retTypes = {vecType};
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, yieldValues, retTypes, newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);

    // Create a second warp op that contains only writeOp.
    auto secondWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
        loc, TypeRange(), newWarpOp.getLaneid(), newWarpOp.getWarpSize());
    Block &body = secondWarpOp.getBodyRegion().front();
    rewriter.setInsertionPointToStart(&body);
    auto newWriteOp =
        cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
    newWriteOp.getVectorMutable().assign(newWarpOp.getResult(newRetIndices[0]));
    rewriter.eraseOp(writeOp);
    rewriter.create<vector::YieldOp>(newWarpOp.getLoc());
    return success();
  }

  LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
                                PatternRewriter &rewriter) const override {
    // Ops with mask not supported yet.
    if (writeOp.getMask())
      return failure();

    auto warpOp = dyn_cast<WarpExecuteOnLane0Op>(writeOp->getParentOp());
    if (!warpOp)
      return failure();

    // There must be no op with a side effect after writeOp.
    Operation *nextOp = writeOp.getOperation();
    while ((nextOp = nextOp->getNextNode()))
      if (!isMemoryEffectFree(nextOp))
        return failure();

    if (!llvm::all_of(writeOp->getOperands(), [&](Value value) {
          return writeOp.getVector() == value ||
                 warpOp.isDefinedOutsideOfRegion(value);
        }))
      return failure();

    if (succeeded(tryDistributeOp(rewriter, writeOp, warpOp)))
      return success();

    if (succeeded(tryExtractOp(rewriter, writeOp, warpOp)))
      return success();

    return failure();
  }

private:
  DistributionMapFn distributionMapFn;
};

/// Sink out elementwise op feeding into a warp op yield.
/// ```
/// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
///   ...
///   %3 = arith.addf %1, %2 : vector<32xf32>
///   vector.yield %3 : vector<32xf32>
/// }
/// ```
/// To
/// ```
/// %r:3 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
/// vector<1xf32>, vector<1xf32>) {
///   ...
///   %4 = arith.addf %2, %3 : vector<32xf32>
///   vector.yield %4, %2, %3 : vector<32xf32>, vector<32xf32>,
///   vector<32xf32>
/// }
/// %0 = arith.addf %r#1, %r#2 : vector<1xf32>
struct WarpOpElementwise : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *yieldOperand = getWarpResult(warpOp, [](Operation *op) {
      return OpTrait::hasElementwiseMappableTraits(op);
    });
    if (!yieldOperand)
      return failure();
    Operation *elementWise = yieldOperand->get().getDefiningOp();
    unsigned operandIndex = yieldOperand->getOperandNumber();
    Value distributedVal = warpOp.getResult(operandIndex);
    SmallVector<Value> yieldValues;
    SmallVector<Type> retTypes;
    Location loc = warpOp.getLoc();
    for (OpOperand &operand : elementWise->getOpOperands()) {
      Type targetType;
      if (auto vecType = dyn_cast<VectorType>(distributedVal.getType())) {
        // If the result type is a vector, the operands must also be vectors.
        auto operandType = cast<VectorType>(operand.get().getType());
        targetType =
            VectorType::get(vecType.getShape(), operandType.getElementType());
      } else {
        auto operandType = operand.get().getType();
        assert(!isa<VectorType>(operandType) &&
               "unexpected yield of vector from op with scalar result type");
        targetType = operandType;
      }
      retTypes.push_back(targetType);
      yieldValues.push_back(operand.get());
    }
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, yieldValues, retTypes, newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    SmallVector<Value> newOperands(elementWise->getOperands().begin(),
                                   elementWise->getOperands().end());
    for (unsigned i : llvm::seq(unsigned(0), elementWise->getNumOperands())) {
      newOperands[i] = newWarpOp.getResult(newRetIndices[i]);
    }
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPointAfter(newWarpOp);
    Operation *newOp = cloneOpWithOperandsAndTypes(
        rewriter, loc, elementWise, newOperands,
        {newWarpOp.getResult(operandIndex).getType()});
    rewriter.replaceAllUsesWith(newWarpOp.getResult(operandIndex),
                                newOp->getResult(0));
    return success();
  }
};

/// Sink out splat constant op feeding into a warp op yield.
/// ```
/// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
///   ...
///   %cst = arith.constant dense<2.0> : vector<32xf32>
///   vector.yield %cst : vector<32xf32>
/// }
/// ```
/// To
/// ```
/// vector.warp_execute_on_lane_0(%arg0 {
///   ...
/// }
/// %0 = arith.constant dense<2.0> : vector<1xf32>
struct WarpOpConstant : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *yieldOperand = getWarpResult(
        warpOp, [](Operation *op) { return isa<arith::ConstantOp>(op); });
    if (!yieldOperand)
      return failure();
    auto constantOp = yieldOperand->get().getDefiningOp<arith::ConstantOp>();
    auto dense = dyn_cast<SplatElementsAttr>(constantOp.getValue());
    if (!dense)
      return failure();
    unsigned operandIndex = yieldOperand->getOperandNumber();
    Attribute scalarAttr = dense.getSplatValue<Attribute>();
    auto newAttr = DenseElementsAttr::get(
        cast<ShapedType>(warpOp.getResult(operandIndex).getType()), scalarAttr);
    Location loc = warpOp.getLoc();
    rewriter.setInsertionPointAfter(warpOp);
    Value distConstant = rewriter.create<arith::ConstantOp>(loc, newAttr);
    rewriter.replaceAllUsesWith(warpOp.getResult(operandIndex), distConstant);
    return success();
  }
};

/// Sink out transfer_read op feeding into a warp op yield.
/// ```
/// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
///   ...
//    %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
//    vector<32xf32>
///   vector.yield %2 : vector<32xf32>
/// }
/// ```
/// To
/// ```
/// %dead = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
/// vector<1xf32>, vector<1xf32>) {
///   ...
///   %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
///   vector<32xf32> vector.yield %2 : vector<32xf32>
/// }
/// %0 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, vector<1xf32>
struct WarpOpTransferRead : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::TransferReadOp>(op); });
    if (!operand)
      return failure();
    auto read = operand->get().getDefiningOp<vector::TransferReadOp>();
    // Don't duplicate transfer_read ops when distributing.
    if (!read.getResult().hasOneUse())
      return failure();
    unsigned operandIndex = operand->getOperandNumber();
    Value distributedVal = warpOp.getResult(operandIndex);

    SmallVector<Value, 4> indices(read.getIndices().begin(),
                                  read.getIndices().end());
    auto sequentialType = cast<VectorType>(read.getResult().getType());
    auto distributedType = cast<VectorType>(distributedVal.getType());
    AffineMap map = calculateImplicitMap(sequentialType, distributedType);
    AffineMap indexMap = map.compose(read.getPermutationMap());
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPointAfter(warpOp);
    for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
      AffineExpr d0, d1;
      bindDims(read.getContext(), d0, d1);
      auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
      if (!indexExpr)
        continue;
      unsigned indexPos = indexExpr.getPosition();
      unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
      int64_t scale =
          cast<VectorType>(distributedVal.getType()).getDimSize(vectorPos);
      indices[indexPos] = affine::makeComposedAffineApply(
          rewriter, read.getLoc(), d0 + scale * d1,
          {indices[indexPos], warpOp.getLaneid()});
    }
    Value newRead = rewriter.create<vector::TransferReadOp>(
        read.getLoc(), distributedVal.getType(), read.getSource(), indices,
        read.getPermutationMapAttr(), read.getPadding(), read.getMask(),
        read.getInBoundsAttr());
    rewriter.replaceAllUsesWith(distributedVal, newRead);
    return success();
  }
};

/// Remove any result that has no use along with the matching yieldOp operand.
// TODO: Move this in WarpExecuteOnLane0Op canonicalization.
struct WarpOpDeadResult : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    SmallVector<Type> newResultTypes;
    newResultTypes.reserve(warpOp->getNumResults());
    SmallVector<Value> newYieldValues;
    newYieldValues.reserve(warpOp->getNumResults());
    DenseMap<Value, int64_t> dedupYieldOperandPositionMap;
    DenseMap<OpResult, int64_t> dedupResultPositionMap;
    auto yield = cast<vector::YieldOp>(
        warpOp.getBodyRegion().getBlocks().begin()->getTerminator());

    // Some values may be yielded multiple times and correspond to multiple
    // results. Deduplicating occurs by taking each result with its matching
    // yielded value, and:
    //   1. recording the unique first position at which the value is yielded.
    //   2. recording for the result, the first position at which the dedup'ed
    //      value is yielded.
    //   3. skipping from the new result types / new yielded values any result
    //      that has no use or whose yielded value has already been seen.
    for (OpResult result : warpOp.getResults()) {
      Value yieldOperand = yield.getOperand(result.getResultNumber());
      auto it = dedupYieldOperandPositionMap.insert(
          std::make_pair(yieldOperand, newResultTypes.size()));
      dedupResultPositionMap.insert(std::make_pair(result, it.first->second));
      if (result.use_empty() || !it.second)
        continue;
      newResultTypes.push_back(result.getType());
      newYieldValues.push_back(yieldOperand);
    }
    // No modification, exit early.
    if (yield.getNumOperands() == newYieldValues.size())
      return failure();
    // Move the body of the old warpOp to a new warpOp.
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
        rewriter, warpOp, newYieldValues, newResultTypes);
    // Replace results of the old warpOp by the new, deduplicated results.
    SmallVector<Value> newValues;
    newValues.reserve(warpOp->getNumResults());
    for (OpResult result : warpOp.getResults()) {
      if (result.use_empty())
        newValues.push_back(Value());
      else
        newValues.push_back(
            newWarpOp.getResult(dedupResultPositionMap.lookup(result)));
    }
    rewriter.replaceOp(warpOp, newValues);
    return success();
  }
};

// If an operand is directly yielded out of the region we can forward it
// directly and it doesn't need to go through the region.
struct WarpOpForwardOperand : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    SmallVector<Type> resultTypes;
    SmallVector<Value> yieldValues;
    auto yield = cast<vector::YieldOp>(
        warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
    Value valForwarded;
    unsigned resultIndex;
    for (OpOperand &operand : yield->getOpOperands()) {
      Value result = warpOp.getResult(operand.getOperandNumber());
      if (result.use_empty())
        continue;

      // Assume all the values coming from above are uniform.
      if (!warpOp.getBodyRegion().isAncestor(operand.get().getParentRegion())) {
        if (result.getType() != operand.get().getType())
          continue;
        valForwarded = operand.get();
        resultIndex = operand.getOperandNumber();
        break;
      }
      auto arg = dyn_cast<BlockArgument>(operand.get());
      if (!arg || arg.getOwner()->getParentOp() != warpOp.getOperation())
        continue;
      Value warpOperand = warpOp.getArgs()[arg.getArgNumber()];
      if (result.getType() != warpOperand.getType())
        continue;
      valForwarded = warpOperand;
      resultIndex = operand.getOperandNumber();
      break;
    }
    if (!valForwarded)
      return failure();
    rewriter.replaceAllUsesWith(warpOp.getResult(resultIndex), valForwarded);
    return success();
  }
};

struct WarpOpBroadcast : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::BroadcastOp>(op); });
    if (!operand)
      return failure();
    unsigned int operandNumber = operand->getOperandNumber();
    auto broadcastOp = operand->get().getDefiningOp<vector::BroadcastOp>();
    Location loc = broadcastOp.getLoc();
    auto destVecType =
        cast<VectorType>(warpOp->getResultTypes()[operandNumber]);
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, {broadcastOp.getSource()},
        {broadcastOp.getSource().getType()}, newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    Value broadcasted = rewriter.create<vector::BroadcastOp>(
        loc, destVecType, newWarpOp->getResult(newRetIndices[0]));
    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                broadcasted);
    return success();
  }
};

/// Pattern to move out vector.extract of single element vector. Those don't
/// need to be distributed and can just be propagated outside of the region.
struct WarpOpExtract : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::ExtractOp>(op); });
    if (!operand)
      return failure();
    unsigned int operandNumber = operand->getOperandNumber();
    auto extractOp = operand->get().getDefiningOp<vector::ExtractOp>();
    VectorType extractSrcType = extractOp.getSourceVectorType();
    Location loc = extractOp.getLoc();

    // "vector.extract %v[] : vector<f32>" is an invalid op.
    assert(extractSrcType.getRank() > 0 &&
           "vector.extract does not support rank 0 sources");

    // "vector.extract %v[] : vector<...xf32>" can be canonicalized to %v.
    if (extractOp.getPosition().empty())
      return failure();

    // Rewrite vector.extract with 1d source to vector.extractelement.
    if (extractSrcType.getRank() == 1) {
      assert(extractOp.getPosition().size() == 1 && "expected 1 index");
      int64_t pos = cast<IntegerAttr>(extractOp.getPosition()[0]).getInt();
      rewriter.setInsertionPoint(extractOp);
      rewriter.replaceOpWithNewOp<vector::ExtractElementOp>(
          extractOp, extractOp.getVector(),
          rewriter.create<arith::ConstantIndexOp>(loc, pos));
      return success();
    }

    // All following cases are 2d or higher dimensional source vectors.

    if (warpOp.getResult(operandNumber).getType() == operand->get().getType()) {
      // There is no distribution, this is a broadcast. Simply move the extract
      // out of the warp op.
      // TODO: This could be optimized. E.g., in case of a scalar result, let
      // one lane extract and shuffle the result to all other lanes (same as
      // the 1d case).
      SmallVector<size_t> newRetIndices;
      WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
          rewriter, warpOp, {extractOp.getVector()},
          {extractOp.getSourceVectorType()}, newRetIndices);
      rewriter.setInsertionPointAfter(newWarpOp);
      Value distributedVec = newWarpOp->getResult(newRetIndices[0]);
      // Extract from distributed vector.
      Value newExtract = rewriter.create<vector::ExtractOp>(
          loc, distributedVec, extractOp.getPosition());
      rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                  newExtract);
      return success();
    }

    // Find the distributed dimension. There should be exactly one.
    auto distributedType =
        cast<VectorType>(warpOp.getResult(operandNumber).getType());
    auto yieldedType = cast<VectorType>(operand->get().getType());
    int64_t distributedDim = -1;
    for (int64_t i = 0; i < yieldedType.getRank(); ++i) {
      if (distributedType.getDimSize(i) != yieldedType.getDimSize(i)) {
        // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
        // support distributing multiple dimensions in the future.
        assert(distributedDim == -1 && "found multiple distributed dims");
        distributedDim = i;
      }
    }
    assert(distributedDim != -1 && "could not find distributed dimension");
    (void)distributedDim;

    // Yield source vector from warp op.
    SmallVector<int64_t> newDistributedShape(extractSrcType.getShape().begin(),
                                             extractSrcType.getShape().end());
    for (int i = 0; i < distributedType.getRank(); ++i)
      newDistributedShape[i + extractOp.getPosition().size()] =
          distributedType.getDimSize(i);
    auto newDistributedType =
        VectorType::get(newDistributedShape, distributedType.getElementType());
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, {extractOp.getVector()}, {newDistributedType},
        newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    Value distributedVec = newWarpOp->getResult(newRetIndices[0]);
    // Extract from distributed vector.
    Value newExtract = rewriter.create<vector::ExtractOp>(
        loc, distributedVec, extractOp.getPosition());
    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                newExtract);
    return success();
  }
};

/// Pattern to move out vector.extractelement of 0-D tensors. Those don't
/// need to be distributed and can just be propagated outside of the region.
struct WarpOpExtractElement : public OpRewritePattern<WarpExecuteOnLane0Op> {
  WarpOpExtractElement(MLIRContext *ctx, WarpShuffleFromIdxFn fn,
                       PatternBenefit b = 1)
      : OpRewritePattern<WarpExecuteOnLane0Op>(ctx, b),
        warpShuffleFromIdxFn(std::move(fn)) {}
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(warpOp, [](Operation *op) {
      return isa<vector::ExtractElementOp>(op);
    });
    if (!operand)
      return failure();
    unsigned int operandNumber = operand->getOperandNumber();
    auto extractOp = operand->get().getDefiningOp<vector::ExtractElementOp>();
    VectorType extractSrcType = extractOp.getSourceVectorType();
    bool is0dOrVec1Extract = extractSrcType.getNumElements() == 1;
    Type elType = extractSrcType.getElementType();
    VectorType distributedVecType;
    if (!is0dOrVec1Extract) {
      assert(extractSrcType.getRank() == 1 &&
             "expected that extractelement src rank is 0 or 1");
      if (extractSrcType.getShape()[0] % warpOp.getWarpSize() != 0)
        return failure();
      int64_t elementsPerLane =
          extractSrcType.getShape()[0] / warpOp.getWarpSize();
      distributedVecType = VectorType::get({elementsPerLane}, elType);
    } else {
      distributedVecType = extractSrcType;
    }
    // Yield source vector from warp op.
    Location loc = extractOp.getLoc();
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, {extractOp.getVector()}, {distributedVecType},
        newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    Value distributedVec = newWarpOp->getResult(newRetIndices[0]);

    // 0d extract: The new warp op broadcasts the source vector to all lanes.
    // All lanes extract the scalar.
    if (is0dOrVec1Extract) {
      Value newExtract;
      if (extractSrcType.getRank() == 1) {
        newExtract = rewriter.create<vector::ExtractElementOp>(
            loc, distributedVec,
            rewriter.create<arith::ConstantIndexOp>(loc, 0));

      } else {
        newExtract =
            rewriter.create<vector::ExtractElementOp>(loc, distributedVec);
      }
      rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                  newExtract);
      return success();
    }

    // 1d extract: Distribute the source vector. One lane extracts and shuffles
    // the value to all other lanes.
    int64_t elementsPerLane = distributedVecType.getShape()[0];
    AffineExpr sym0 = getAffineSymbolExpr(0, rewriter.getContext());
    // tid of extracting thread: pos / elementsPerLane
    Value broadcastFromTid = rewriter.create<affine::AffineApplyOp>(
        loc, sym0.ceilDiv(elementsPerLane), extractOp.getPosition());
    // Extract at position: pos % elementsPerLane
    Value pos =
        elementsPerLane == 1
            ? rewriter.create<arith::ConstantIndexOp>(loc, 0).getResult()
            : rewriter
                  .create<affine::AffineApplyOp>(loc, sym0 % elementsPerLane,
                                                 extractOp.getPosition())
                  .getResult();
    Value extracted =
        rewriter.create<vector::ExtractElementOp>(loc, distributedVec, pos);

    // Shuffle the extracted value to all lanes.
    Value shuffled = warpShuffleFromIdxFn(
        loc, rewriter, extracted, broadcastFromTid, newWarpOp.getWarpSize());
    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), shuffled);
    return success();
  }

private:
  WarpShuffleFromIdxFn warpShuffleFromIdxFn;
};

struct WarpOpInsertElement : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;

  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::InsertElementOp>(op); });
    if (!operand)
      return failure();
    unsigned int operandNumber = operand->getOperandNumber();
    auto insertOp = operand->get().getDefiningOp<vector::InsertElementOp>();
    VectorType vecType = insertOp.getDestVectorType();
    VectorType distrType =
        cast<VectorType>(warpOp.getResult(operandNumber).getType());
    bool hasPos = static_cast<bool>(insertOp.getPosition());

    // Yield destination vector, source scalar and position from warp op.
    SmallVector<Value> additionalResults{insertOp.getDest(),
                                         insertOp.getSource()};
    SmallVector<Type> additionalResultTypes{distrType,
                                            insertOp.getSource().getType()};
    if (hasPos) {
      additionalResults.push_back(insertOp.getPosition());
      additionalResultTypes.push_back(insertOp.getPosition().getType());
    }
    Location loc = insertOp.getLoc();
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, additionalResults, additionalResultTypes,
        newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    Value distributedVec = newWarpOp->getResult(newRetIndices[0]);
    Value newSource = newWarpOp->getResult(newRetIndices[1]);
    Value newPos = hasPos ? newWarpOp->getResult(newRetIndices[2]) : Value();
    rewriter.setInsertionPointAfter(newWarpOp);

    if (vecType == distrType) {
      // Broadcast: Simply move the vector.inserelement op out.
      Value newInsert = rewriter.create<vector::InsertElementOp>(
          loc, newSource, distributedVec, newPos);
      rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                  newInsert);
      return success();
    }

    // This is a distribution. Only one lane should insert.
    int64_t elementsPerLane = distrType.getShape()[0];
    AffineExpr sym0 = getAffineSymbolExpr(0, rewriter.getContext());
    // tid of extracting thread: pos / elementsPerLane
    Value insertingLane = rewriter.create<affine::AffineApplyOp>(
        loc, sym0.ceilDiv(elementsPerLane), newPos);
    // Insert position: pos % elementsPerLane
    Value pos =
        elementsPerLane == 1
            ? rewriter.create<arith::ConstantIndexOp>(loc, 0).getResult()
            : rewriter
                  .create<affine::AffineApplyOp>(loc, sym0 % elementsPerLane,
                                                 newPos)
                  .getResult();
    Value isInsertingLane = rewriter.create<arith::CmpIOp>(
        loc, arith::CmpIPredicate::eq, newWarpOp.getLaneid(), insertingLane);
    Value newResult =
        rewriter
            .create<scf::IfOp>(
                loc, isInsertingLane,
                /*thenBuilder=*/
                [&](OpBuilder &builder, Location loc) {
                  Value newInsert = builder.create<vector::InsertElementOp>(
                      loc, newSource, distributedVec, pos);
                  builder.create<scf::YieldOp>(loc, newInsert);
                },
                /*elseBuilder=*/
                [&](OpBuilder &builder, Location loc) {
                  builder.create<scf::YieldOp>(loc, distributedVec);
                })
            .getResult(0);
    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newResult);
    return success();
  }
};

struct WarpOpInsert : public OpRewritePattern<WarpExecuteOnLane0Op> {
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;

  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *operand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::InsertOp>(op); });
    if (!operand)
      return failure();
    unsigned int operandNumber = operand->getOperandNumber();
    auto insertOp = operand->get().getDefiningOp<vector::InsertOp>();
    Location loc = insertOp.getLoc();

    // "vector.insert %v, %v[] : ..." can be canonicalized to %v.
    if (insertOp.getPosition().empty())
      return failure();

    // Rewrite vector.insert with 1d dest to vector.insertelement.
    if (insertOp.getDestVectorType().getRank() == 1) {
      assert(insertOp.getPosition().size() == 1 && "expected 1 index");
      int64_t pos = cast<IntegerAttr>(insertOp.getPosition()[0]).getInt();
      rewriter.setInsertionPoint(insertOp);
      rewriter.replaceOpWithNewOp<vector::InsertElementOp>(
          insertOp, insertOp.getSource(), insertOp.getDest(),
          rewriter.create<arith::ConstantIndexOp>(loc, pos));
      return success();
    }

    if (warpOp.getResult(operandNumber).getType() == operand->get().getType()) {
      // There is no distribution, this is a broadcast. Simply move the insert
      // out of the warp op.
      SmallVector<size_t> newRetIndices;
      WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
          rewriter, warpOp, {insertOp.getSource(), insertOp.getDest()},
          {insertOp.getSourceType(), insertOp.getDestVectorType()},
          newRetIndices);
      rewriter.setInsertionPointAfter(newWarpOp);
      Value distributedSrc = newWarpOp->getResult(newRetIndices[0]);
      Value distributedDest = newWarpOp->getResult(newRetIndices[1]);
      Value newResult = rewriter.create<vector::InsertOp>(
          loc, distributedSrc, distributedDest, insertOp.getPosition());
      rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
                                  newResult);
      return success();
    }

    // Find the distributed dimension. There should be exactly one.
    auto distrDestType =
        cast<VectorType>(warpOp.getResult(operandNumber).getType());
    auto yieldedType = cast<VectorType>(operand->get().getType());
    int64_t distrDestDim = -1;
    for (int64_t i = 0; i < yieldedType.getRank(); ++i) {
      if (distrDestType.getDimSize(i) != yieldedType.getDimSize(i)) {
        // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
        // support distributing multiple dimensions in the future.
        assert(distrDestDim == -1 && "found multiple distributed dims");
        distrDestDim = i;
      }
    }
    assert(distrDestDim != -1 && "could not find distributed dimension");

    // Compute the distributed source vector type.
    VectorType srcVecType = cast<VectorType>(insertOp.getSourceType());
    SmallVector<int64_t> distrSrcShape(srcVecType.getShape().begin(),
                                       srcVecType.getShape().end());
    // E.g.: vector.insert %s, %d [2] : vector<96xf32> into vector<128x96xf32>
    // Case 1: distrDestDim = 1 (dim of size 96). In that case, each lane will
    //         insert a smaller vector<3xf32>.
    // Case 2: distrDestDim = 0 (dim of size 128) => distrSrcDim = -1. In that
    //         case, one lane will insert the source vector<96xf32>. The other
    //         lanes will not do anything.
    int64_t distrSrcDim = distrDestDim - insertOp.getPosition().size();
    if (distrSrcDim >= 0)
      distrSrcShape[distrSrcDim] = distrDestType.getDimSize(distrDestDim);
    auto distrSrcType =
        VectorType::get(distrSrcShape, distrDestType.getElementType());

    // Yield source and dest vectors from warp op.
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, {insertOp.getSource(), insertOp.getDest()},
        {distrSrcType, distrDestType}, newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);
    Value distributedSrc = newWarpOp->getResult(newRetIndices[0]);
    Value distributedDest = newWarpOp->getResult(newRetIndices[1]);

    // Insert into the distributed vector.
    Value newResult;
    if (distrSrcDim >= 0) {
      // Every lane inserts a small piece.
      newResult = rewriter.create<vector::InsertOp>(
          loc, distributedSrc, distributedDest, insertOp.getPosition());
    } else {
      // One lane inserts the entire source vector.
      int64_t elementsPerLane = distrDestType.getDimSize(distrDestDim);
      SmallVector<int64_t> newPos = llvm::to_vector(
          llvm::map_range(insertOp.getPosition(), [](Attribute attr) {
            return cast<IntegerAttr>(attr).getInt();
          }));
      // tid of inserting lane: pos / elementsPerLane
      Value insertingLane = rewriter.create<arith::ConstantIndexOp>(
          loc, newPos[distrDestDim] / elementsPerLane);
      Value isInsertingLane = rewriter.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, newWarpOp.getLaneid(), insertingLane);
      // Insert position: pos % elementsPerLane
      newPos[distrDestDim] %= elementsPerLane;
      auto insertingBuilder = [&](OpBuilder &builder, Location loc) {
        Value newInsert = builder.create<vector::InsertOp>(
            loc, distributedSrc, distributedDest, newPos);
        builder.create<scf::YieldOp>(loc, newInsert);
      };
      auto nonInsertingBuilder = [&](OpBuilder &builder, Location loc) {
        builder.create<scf::YieldOp>(loc, distributedDest);
      };
      newResult = rewriter
                      .create<scf::IfOp>(loc, isInsertingLane,
                                         /*thenBuilder=*/insertingBuilder,
                                         /*elseBuilder=*/nonInsertingBuilder)
                      .getResult(0);
    }

    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newResult);
    return success();
  }
};

/// Sink scf.for region out of WarpExecuteOnLane0Op. This can be done only if
/// the scf.ForOp is the last operation in the region so that it doesn't change
/// the order of execution. This creates a new scf.for region after the
/// WarpExecuteOnLane0Op. The new scf.for region will contain a new
/// WarpExecuteOnLane0Op region. Example:
/// ```
/// %w = vector.warp_execute_on_lane_0(%laneid) -> (vector<4xf32>) {
///   ...
///   %v1 = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%arg4 = %v)
///   -> (vector<128xf32>) {
///     ...
///     scf.yield %r : vector<128xf32>
///   }
///   vector.yield %v1 : vector<128xf32>
/// }
/// ```
/// To:
/// %w0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<4xf32>) {
///   ...
///   vector.yield %v : vector<128xf32>
/// }
/// %w = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%varg = %q0)
///   -> (vector<4xf32>) {
///     %iw = vector.warp_execute_on_lane_0(%laneid)
///     args(%varg : vector<4xf32>) -> (vector<4xf32>) {
///     ^bb0(%arg: vector<128xf32>):
///       ...
///       vector.yield %ir : vector<128xf32>
///     }
///     scf.yield %iw : vector<4xf32>
///  }
/// ```
struct WarpOpScfForOp : public OpRewritePattern<WarpExecuteOnLane0Op> {

  WarpOpScfForOp(MLIRContext *ctx, DistributionMapFn fn, PatternBenefit b = 1)
      : OpRewritePattern<WarpExecuteOnLane0Op>(ctx, b),
        distributionMapFn(std::move(fn)) {}
  using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    auto yield = cast<vector::YieldOp>(
        warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
    // Only pick up forOp if it is the last op in the region.
    Operation *lastNode = yield->getPrevNode();
    auto forOp = dyn_cast_or_null<scf::ForOp>(lastNode);
    if (!forOp)
      return failure();
    // Collect Values that come from the warp op but are outside the forOp.
    // Those Value needs to be returned by the original warpOp and passed to the
    // new op.
    llvm::SmallSetVector<Value, 32> escapingValues;
    SmallVector<Type> inputTypes;
    SmallVector<Type> distTypes;
    mlir::visitUsedValuesDefinedAbove(
        forOp.getBodyRegion(), [&](OpOperand *operand) {
          Operation *parent = operand->get().getParentRegion()->getParentOp();
          if (warpOp->isAncestor(parent)) {
            if (!escapingValues.insert(operand->get()))
              return;
            Type distType = operand->get().getType();
            if (auto vecType = cast<VectorType>(distType)) {
              AffineMap map = distributionMapFn(operand->get());
              distType = getDistributedType(vecType, map, warpOp.getWarpSize());
            }
            inputTypes.push_back(operand->get().getType());
            distTypes.push_back(distType);
          }
        });

    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, escapingValues.getArrayRef(), distTypes,
        newRetIndices);
    yield = cast<vector::YieldOp>(
        newWarpOp.getBodyRegion().getBlocks().begin()->getTerminator());

    SmallVector<Value> newOperands;
    SmallVector<unsigned> resultIdx;
    // Collect all the outputs coming from the forOp.
    for (OpOperand &yieldOperand : yield->getOpOperands()) {
      if (yieldOperand.get().getDefiningOp() != forOp.getOperation())
        continue;
      auto forResult = cast<OpResult>(yieldOperand.get());
      newOperands.push_back(
          newWarpOp.getResult(yieldOperand.getOperandNumber()));
      yieldOperand.set(forOp.getIterOperands()[forResult.getResultNumber()]);
      resultIdx.push_back(yieldOperand.getOperandNumber());
    }

    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPointAfter(newWarpOp);

    // Create a new for op outside the region with a WarpExecuteOnLane0Op region
    // inside.
    auto newForOp = rewriter.create<scf::ForOp>(
        forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
        forOp.getStep(), newOperands);
    rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());

    SmallVector<Value> warpInput(newForOp.getRegionIterArgs().begin(),
                                 newForOp.getRegionIterArgs().end());
    SmallVector<Type> warpInputType(forOp.getResultTypes().begin(),
                                    forOp.getResultTypes().end());
    llvm::SmallDenseMap<Value, int64_t> argIndexMapping;
    for (auto [i, retIdx] : llvm::enumerate(newRetIndices)) {
      warpInput.push_back(newWarpOp.getResult(retIdx));
      argIndexMapping[escapingValues[i]] = warpInputType.size();
      warpInputType.push_back(inputTypes[i]);
    }
    auto innerWarp = rewriter.create<WarpExecuteOnLane0Op>(
        newWarpOp.getLoc(), newForOp.getResultTypes(), newWarpOp.getLaneid(),
        newWarpOp.getWarpSize(), warpInput, warpInputType);

    SmallVector<Value> argMapping;
    argMapping.push_back(newForOp.getInductionVar());
    for (Value args : innerWarp.getBody()->getArguments()) {
      argMapping.push_back(args);
    }
    argMapping.resize(forOp.getBody()->getNumArguments());
    SmallVector<Value> yieldOperands;
    for (Value operand : forOp.getBody()->getTerminator()->getOperands())
      yieldOperands.push_back(operand);
    rewriter.eraseOp(forOp.getBody()->getTerminator());
    rewriter.mergeBlocks(forOp.getBody(), innerWarp.getBody(), argMapping);
    rewriter.setInsertionPoint(innerWarp.getBody(), innerWarp.getBody()->end());
    rewriter.create<vector::YieldOp>(innerWarp.getLoc(), yieldOperands);
    rewriter.setInsertionPointAfter(innerWarp);
    if (!innerWarp.getResults().empty())
      rewriter.create<scf::YieldOp>(forOp.getLoc(), innerWarp.getResults());
    rewriter.eraseOp(forOp);
    // Replace the warpOp result coming from the original ForOp.
    for (const auto &res : llvm::enumerate(resultIdx)) {
      rewriter.replaceAllUsesWith(newWarpOp.getResult(res.value()),
                                  newForOp.getResult(res.index()));
      newForOp->setOperand(res.index() + 3, newWarpOp.getResult(res.value()));
    }
    newForOp.walk([&](Operation *op) {
      for (OpOperand &operand : op->getOpOperands()) {
        auto it = argIndexMapping.find(operand.get());
        if (it == argIndexMapping.end())
          continue;
        operand.set(innerWarp.getBodyRegion().getArgument(it->second));
      }
    });
    return success();
  }

private:
  DistributionMapFn distributionMapFn;
};

/// A pattern that extracts vector.reduction ops from a WarpExecuteOnLane0Op.
/// The vector is reduced in parallel. Currently limited to vector size matching
/// the warpOp size. E.g.:
/// ```
/// %r = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (f32) {
///   %0 = "some_def"() : () -> (vector<32xf32>)
///   %1 = vector.reduction "add", %0 : vector<32xf32> into f32
///   vector_ext.yield %1 : f32
/// }
/// ```
/// is lowered to:
/// ```
/// %0 = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (vector<1xf32>) {
///   %1 = "some_def"() : () -> (vector<32xf32>)
///   vector_ext.yield %1 : vector<32xf32>
/// }
/// %a = vector.extract %0[0] : vector<1xf32>
/// %r = ("warp.reduction %a")
/// ```
struct WarpOpReduction : public OpRewritePattern<WarpExecuteOnLane0Op> {
  WarpOpReduction(MLIRContext *context,
                  DistributedReductionFn distributedReductionFn,
                  PatternBenefit benefit = 1)
      : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
        distributedReductionFn(std::move(distributedReductionFn)) {}

  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
                                PatternRewriter &rewriter) const override {
    OpOperand *yieldOperand = getWarpResult(
        warpOp, [](Operation *op) { return isa<vector::ReductionOp>(op); });
    if (!yieldOperand)
      return failure();

    auto reductionOp =
        cast<vector::ReductionOp>(yieldOperand->get().getDefiningOp());
    auto vectorType = cast<VectorType>(reductionOp.getVector().getType());
    // Only rank 1 vectors supported.
    if (vectorType.getRank() != 1)
      return rewriter.notifyMatchFailure(
          warpOp, "Only rank 1 reductions can be distributed.");
    // Only warp_size-sized vectors supported.
    if (vectorType.getShape()[0] % warpOp.getWarpSize() != 0)
      return rewriter.notifyMatchFailure(
          warpOp, "Reduction vector dimension must match was size.");
    if (!reductionOp.getType().isIntOrFloat())
      return rewriter.notifyMatchFailure(
          warpOp, "Reduction distribution currently only supports floats and "
                  "integer types.");

    int64_t numElements = vectorType.getShape()[0] / warpOp.getWarpSize();
    // Return vector that will be reduced from the WarpExecuteOnLane0Op.
    unsigned operandIndex = yieldOperand->getOperandNumber();
    SmallVector<Value> yieldValues = {reductionOp.getVector()};
    SmallVector<Type> retTypes = {
        VectorType::get({numElements}, reductionOp.getType())};
    if (reductionOp.getAcc()) {
      yieldValues.push_back(reductionOp.getAcc());
      retTypes.push_back(reductionOp.getAcc().getType());
    }
    SmallVector<size_t> newRetIndices;
    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
        rewriter, warpOp, yieldValues, retTypes, newRetIndices);
    rewriter.setInsertionPointAfter(newWarpOp);

    // Obtain data to reduce for a single lane.
    Value laneValVec = newWarpOp.getResult(newRetIndices[0]);
    // Distribute and reduce across threads.
    Value fullReduce =
        distributedReductionFn(reductionOp.getLoc(), rewriter, laneValVec,
                               reductionOp.getKind(), newWarpOp.getWarpSize());
    if (reductionOp.getAcc()) {
      fullReduce = vector::makeArithReduction(
          rewriter, reductionOp.getLoc(), reductionOp.getKind(), fullReduce,
          newWarpOp.getResult(newRetIndices[1]));
    }
    rewriter.replaceAllUsesWith(newWarpOp.getResult(operandIndex), fullReduce);
    return success();
  }

private:
  DistributedReductionFn distributedReductionFn;
};

} // namespace

void mlir::vector::populateWarpExecuteOnLane0OpToScfForPattern(
    RewritePatternSet &patterns,
    const WarpExecuteOnLane0LoweringOptions &options, PatternBenefit benefit) {
  patterns.add<WarpOpToScfIfPattern>(patterns.getContext(), options, benefit);
}

void mlir::vector::populateDistributeTransferWriteOpPatterns(
    RewritePatternSet &patterns, const DistributionMapFn &distributionMapFn,
    PatternBenefit benefit) {
  patterns.add<WarpOpTransferWrite>(patterns.getContext(), distributionMapFn,
                                    benefit);
}

void mlir::vector::populatePropagateWarpVectorDistributionPatterns(
    RewritePatternSet &patterns, const DistributionMapFn &distributionMapFn,
    const WarpShuffleFromIdxFn &warpShuffleFromIdxFn, PatternBenefit benefit) {
  patterns.add<WarpOpElementwise, WarpOpTransferRead, WarpOpDeadResult,
               WarpOpBroadcast, WarpOpExtract, WarpOpForwardOperand,
               WarpOpConstant, WarpOpInsertElement, WarpOpInsert>(
      patterns.getContext(), benefit);
  patterns.add<WarpOpExtractElement>(patterns.getContext(),
                                     warpShuffleFromIdxFn, benefit);
  patterns.add<WarpOpScfForOp>(patterns.getContext(), distributionMapFn,
                               benefit);
}

void mlir::vector::populateDistributeReduction(
    RewritePatternSet &patterns,
    const DistributedReductionFn &distributedReductionFn,
    PatternBenefit benefit) {
  patterns.add<WarpOpReduction>(patterns.getContext(), distributedReductionFn,
                                benefit);
}

void mlir::vector::moveScalarUniformCode(WarpExecuteOnLane0Op warpOp) {
  Block *body = warpOp.getBody();

  // Keep track of the ops we want to hoist.
  llvm::SmallSetVector<Operation *, 8> opsToMove;

  // Helper to check if a value is or will be defined outside of the region.
  auto isDefinedOutsideOfBody = [&](Value value) {
    auto *definingOp = value.getDefiningOp();
    return (definingOp && opsToMove.count(definingOp)) ||
           warpOp.isDefinedOutsideOfRegion(value);
  };

  // Do not use walk here, as we do not want to go into nested regions and hoist
  // operations from there.
  for (auto &op : body->without_terminator()) {
    bool hasVectorResult = llvm::any_of(op.getResults(), [](Value result) {
      return isa<VectorType>(result.getType());
    });
    if (!hasVectorResult && canBeHoisted(&op, isDefinedOutsideOfBody))
      opsToMove.insert(&op);
  }

  // Move all the ops marked as uniform outside of the region.
  for (Operation *op : opsToMove)
    op->moveBefore(warpOp);
}