1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
//===- LowerVectorMultiReduction.cpp - Lower `vector.multi_reduction` op --===//
//
/// Part of the LLVM Project, under the Apache License v2.0 with LLVM
/// Exceptions. See https://llvm.org/LICENSE.txt for license information.
/// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.multi_reduction' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-multi-reduction"
using namespace mlir;
namespace {
/// This file implements the following transformations as composable atomic
/// patterns.
/// Converts vector.multi_reduction into inner-most/outer-most reduction form
/// by using vector.transpose
class InnerOuterDimReductionConversion
: public OpRewritePattern<vector::MultiDimReductionOp> {
public:
using OpRewritePattern::OpRewritePattern;
explicit InnerOuterDimReductionConversion(
MLIRContext *context, vector::VectorMultiReductionLowering options,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
useInnerDimsForReduction(
options == vector::VectorMultiReductionLowering::InnerReduction) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto src = multiReductionOp.getSource();
auto loc = multiReductionOp.getLoc();
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Separate reduction and parallel dims
auto reductionDimsRange =
multiReductionOp.getReductionDims().getAsValueRange<IntegerAttr>();
auto reductionDims = llvm::to_vector<4>(llvm::map_range(
reductionDimsRange, [](const APInt &a) { return a.getZExtValue(); }));
llvm::SmallDenseSet<int64_t> reductionDimsSet(reductionDims.begin(),
reductionDims.end());
int64_t reductionSize = reductionDims.size();
SmallVector<int64_t, 4> parallelDims;
for (int64_t i = 0; i < srcRank; ++i)
if (!reductionDimsSet.contains(i))
parallelDims.push_back(i);
// Add transpose only if inner-most/outer-most dimensions are not parallel
// and there are parallel dims.
if (parallelDims.empty())
return failure();
if (useInnerDimsForReduction &&
(parallelDims ==
llvm::to_vector<4>(llvm::seq<int64_t>(0, parallelDims.size()))))
return failure();
if (!useInnerDimsForReduction &&
(parallelDims == llvm::to_vector<4>(llvm::seq<int64_t>(
reductionDims.size(),
parallelDims.size() + reductionDims.size()))))
return failure();
SmallVector<int64_t, 4> indices;
if (useInnerDimsForReduction) {
indices.append(parallelDims.begin(), parallelDims.end());
indices.append(reductionDims.begin(), reductionDims.end());
} else {
indices.append(reductionDims.begin(), reductionDims.end());
indices.append(parallelDims.begin(), parallelDims.end());
}
// If masked, transpose the original mask.
Value transposedMask;
if (maskableOp.isMasked()) {
transposedMask = rewriter.create<vector::TransposeOp>(
loc, maskableOp.getMaskingOp().getMask(), indices);
}
// Transpose reduction source.
auto transposeOp = rewriter.create<vector::TransposeOp>(loc, src, indices);
SmallVector<bool> reductionMask(srcRank, false);
for (int i = 0; i < reductionSize; ++i) {
if (useInnerDimsForReduction)
reductionMask[srcRank - i - 1] = true;
else
reductionMask[i] = true;
}
Operation *newMultiRedOp = rewriter.create<vector::MultiDimReductionOp>(
multiReductionOp.getLoc(), transposeOp.getResult(),
multiReductionOp.getAcc(), reductionMask, multiReductionOp.getKind());
newMultiRedOp =
mlir::vector::maskOperation(rewriter, newMultiRedOp, transposedMask);
rewriter.replaceOp(rootOp, newMultiRedOp->getResult(0));
return success();
}
private:
const bool useInnerDimsForReduction;
};
/// Reduces the rank of vector.multi_reduction nd -> 2d given all reduction
/// dimensions are either inner most or outer most.
class ReduceMultiDimReductionRank
: public OpRewritePattern<vector::MultiDimReductionOp> {
public:
using OpRewritePattern::OpRewritePattern;
explicit ReduceMultiDimReductionRank(
MLIRContext *context, vector::VectorMultiReductionLowering options,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
useInnerDimsForReduction(
options == vector::VectorMultiReductionLowering::InnerReduction) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
auto srcShape = multiReductionOp.getSourceVectorType().getShape();
auto loc = multiReductionOp.getLoc();
// If rank less than 2, nothing to do.
if (srcRank < 2)
return failure();
// If already rank-2 ["parallel", "reduce"] or ["reduce", "parallel"] bail.
SmallVector<bool> reductionMask = multiReductionOp.getReductionMask();
if (srcRank == 2 && reductionMask.front() != reductionMask.back())
return failure();
// 1. Separate reduction and parallel dims.
SmallVector<int64_t, 4> parallelDims, parallelShapes;
SmallVector<int64_t, 4> reductionDims, reductionShapes;
for (const auto &it : llvm::enumerate(reductionMask)) {
int64_t i = it.index();
bool isReduction = it.value();
if (isReduction) {
reductionDims.push_back(i);
reductionShapes.push_back(srcShape[i]);
} else {
parallelDims.push_back(i);
parallelShapes.push_back(srcShape[i]);
}
}
// 2. Compute flattened parallel and reduction sizes.
int flattenedParallelDim = 0;
int flattenedReductionDim = 0;
if (!parallelShapes.empty()) {
flattenedParallelDim = 1;
for (auto d : parallelShapes)
flattenedParallelDim *= d;
}
if (!reductionShapes.empty()) {
flattenedReductionDim = 1;
for (auto d : reductionShapes)
flattenedReductionDim *= d;
}
// We must at least have some parallel or some reduction.
assert((flattenedParallelDim || flattenedReductionDim) &&
"expected at least one parallel or reduction dim");
// 3. Fail if reduction/parallel dims are not contiguous.
// Check parallelDims are exactly [0 .. size).
int64_t counter = 0;
if (useInnerDimsForReduction &&
llvm::any_of(parallelDims, [&](int64_t i) { return i != counter++; }))
return failure();
// Check parallelDims are exactly {reductionDims.size()} + [0 .. size).
counter = reductionDims.size();
if (!useInnerDimsForReduction &&
llvm::any_of(parallelDims, [&](int64_t i) { return i != counter++; }))
return failure();
// 4. Shape cast to collapse consecutive parallel (resp. reduction dim) into
// a single parallel (resp. reduction) dim.
SmallVector<bool, 2> mask;
SmallVector<int64_t, 2> vectorShape;
if (flattenedParallelDim) {
mask.push_back(false);
vectorShape.push_back(flattenedParallelDim);
}
if (flattenedReductionDim) {
mask.push_back(true);
vectorShape.push_back(flattenedReductionDim);
}
if (!useInnerDimsForReduction && vectorShape.size() == 2) {
std::swap(mask.front(), mask.back());
std::swap(vectorShape.front(), vectorShape.back());
}
Value newVectorMask;
if (maskableOp.isMasked()) {
Value vectorMask = maskableOp.getMaskingOp().getMask();
auto maskCastedType = VectorType::get(
vectorShape,
llvm::cast<VectorType>(vectorMask.getType()).getElementType());
newVectorMask =
rewriter.create<vector::ShapeCastOp>(loc, maskCastedType, vectorMask);
}
auto castedType = VectorType::get(
vectorShape, multiReductionOp.getSourceVectorType().getElementType());
Value cast = rewriter.create<vector::ShapeCastOp>(
loc, castedType, multiReductionOp.getSource());
Value acc = multiReductionOp.getAcc();
if (flattenedParallelDim) {
auto accType = VectorType::get(
{flattenedParallelDim},
multiReductionOp.getSourceVectorType().getElementType());
acc = rewriter.create<vector::ShapeCastOp>(loc, accType, acc);
}
// 6. Creates the flattened form of vector.multi_reduction with inner/outer
// most dim as reduction.
Operation *newMultiDimRedOp = rewriter.create<vector::MultiDimReductionOp>(
loc, cast, acc, mask, multiReductionOp.getKind());
newMultiDimRedOp =
mlir::vector::maskOperation(rewriter, newMultiDimRedOp, newVectorMask);
// 7. If there are no parallel shapes, the result is a scalar.
// TODO: support 0-d vectors when available.
if (parallelShapes.empty()) {
rewriter.replaceOp(rootOp, newMultiDimRedOp->getResult(0));
return success();
}
// 8. Creates shape cast for the output n-D -> 2-D.
VectorType outputCastedType = VectorType::get(
parallelShapes,
multiReductionOp.getSourceVectorType().getElementType());
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
rootOp, outputCastedType, newMultiDimRedOp->getResult(0));
return success();
}
private:
const bool useInnerDimsForReduction;
};
/// Unrolls vector.multi_reduction with outermost reductions
/// and combines results
struct TwoDimMultiReductionToElementWise
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
if (maskableOp.isMasked())
// TODO: Support masking.
return failure();
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Rank-2 ["parallel", "reduce"] or bail.
if (srcRank != 2)
return failure();
if (multiReductionOp.isReducedDim(1) || !multiReductionOp.isReducedDim(0))
return failure();
auto loc = multiReductionOp.getLoc();
ArrayRef<int64_t> srcShape =
multiReductionOp.getSourceVectorType().getShape();
Type elementType = getElementTypeOrSelf(multiReductionOp.getDestType());
if (!elementType.isIntOrIndexOrFloat())
return failure();
Value result = multiReductionOp.getAcc();
for (int64_t i = 0; i < srcShape[0]; i++) {
auto operand = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getSource(), i);
result = makeArithReduction(rewriter, loc, multiReductionOp.getKind(),
operand, result);
}
rewriter.replaceOp(multiReductionOp, result);
return success();
}
};
/// Converts 2d vector.multi_reduction with inner most reduction dimension into
/// a sequence of vector.reduction ops.
struct TwoDimMultiReductionToReduction
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
if (srcRank != 2)
return failure();
if (multiReductionOp.isReducedDim(0) || !multiReductionOp.isReducedDim(1))
return failure();
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto loc = multiReductionOp.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, multiReductionOp.getDestType(),
rewriter.getZeroAttr(multiReductionOp.getDestType()));
int outerDim = multiReductionOp.getSourceVectorType().getShape()[0];
for (int i = 0; i < outerDim; ++i) {
auto v = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getSource(), ArrayRef<int64_t>{i});
auto acc = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getAcc(), ArrayRef<int64_t>{i});
Operation *reductionOp = rewriter.create<vector::ReductionOp>(
loc, multiReductionOp.getKind(), v, acc);
// If masked, slice the mask and mask the new reduction operation.
if (maskableOp.isMasked()) {
Value mask = rewriter.create<vector::ExtractOp>(
loc, maskableOp.getMaskingOp().getMask(), ArrayRef<int64_t>{i});
reductionOp = mlir::vector::maskOperation(rewriter, reductionOp, mask);
}
result = rewriter.create<vector::InsertElementOp>(
loc, reductionOp->getResult(0), result,
rewriter.create<arith::ConstantIndexOp>(loc, i));
}
rewriter.replaceOp(rootOp, result);
return success();
}
};
/// Converts 1d vector.multi_reduction with a single reduction dimension to a 2d
/// form with both a single parallel and reduction dimension.
/// This is achieved with a simple vector.shape_cast that inserts a leading 1.
/// The case with a single parallel dimension is a noop and folds away
/// separately.
struct OneDimMultiReductionToTwoDim
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Rank-1 or bail.
if (srcRank != 1)
return failure();
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
Value mask;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
mask = maskableOp.getMaskingOp().getMask();
} else {
rootOp = multiReductionOp;
}
auto loc = multiReductionOp.getLoc();
auto srcVectorType = multiReductionOp.getSourceVectorType();
auto srcShape = srcVectorType.getShape();
auto castedType = VectorType::get(ArrayRef<int64_t>{1, srcShape.back()},
srcVectorType.getElementType());
auto accType =
VectorType::get(ArrayRef<int64_t>{1}, srcVectorType.getElementType());
assert(!llvm::isa<VectorType>(multiReductionOp.getDestType()) &&
"multi_reduction with a single dimension expects a scalar result");
// If the unique dim is reduced and we insert a parallel in front, we need a
// {false, true} mask.
SmallVector<bool, 2> reductionMask{false, true};
/// vector.extract(vector.multi_reduce(vector.shape_cast(v, 1xk)), 0)
Value cast = rewriter.create<vector::ShapeCastOp>(
loc, castedType, multiReductionOp.getSource());
Value castAcc = rewriter.create<vector::BroadcastOp>(
loc, accType, multiReductionOp.getAcc());
Value castMask;
if (maskableOp.isMasked()) {
auto maskType = llvm::cast<ShapedType>(mask.getType());
auto castMaskType =
VectorType::get(ArrayRef<int64_t>{1, maskType.getShape().back()},
maskType.getElementType());
castMask = rewriter.create<vector::BroadcastOp>(loc, castMaskType, mask);
}
Operation *newOp = rewriter.create<vector::MultiDimReductionOp>(
loc, cast, castAcc, reductionMask, multiReductionOp.getKind());
newOp = vector::maskOperation(rewriter, newOp, castMask);
rewriter.replaceOpWithNewOp<vector::ExtractOp>(rootOp, newOp->getResult(0),
ArrayRef<int64_t>{0});
return success();
}
};
} // namespace
void mlir::vector::populateVectorMultiReductionLoweringPatterns(
RewritePatternSet &patterns, VectorMultiReductionLowering options,
PatternBenefit benefit) {
patterns.add<InnerOuterDimReductionConversion, ReduceMultiDimReductionRank>(
patterns.getContext(), options, benefit);
patterns.add<OneDimMultiReductionToTwoDim>(patterns.getContext(), benefit);
if (options == VectorMultiReductionLowering ::InnerReduction)
patterns.add<TwoDimMultiReductionToReduction>(patterns.getContext(),
benefit);
else
patterns.add<TwoDimMultiReductionToElementWise>(patterns.getContext(),
benefit);
}
|