summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Utils/StructuredOpsUtils.cpp
blob: a2977901f4751d4edd807e9fcb67a6beec13f3b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
//===- StructuredOpsUtils.cpp - Utilities used by structured ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/ADT/StringSet.h"

#include "mlir/Dialect/Utils/DialectUtilsEnums.cpp.inc"

using namespace mlir;

bool mlir::isRowMajorMatmul(ArrayAttr indexingMaps) {
  if (indexingMaps.size() != 3)
    return false;

  auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
  auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
  auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();

  if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
      map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
      map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
    return false;
  }

  // Extract dimensions for MxK * KxN -> MxN
  AffineExpr m = map2.getResult(0);
  AffineExpr n = map2.getResult(1);
  AffineExpr k = map0.getResult(1);
  auto *context = indexingMaps.getContext();
  auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {m, k}, context));
  auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {k, n}, context));
  auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {m, n}, context));
  auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
  return indexingMaps == maps;
}

bool mlir::isColumnMajorMatmul(ArrayAttr indexingMaps) {
  if (indexingMaps.size() != 3)
    return false;

  auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
  auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
  auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();

  if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
      map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
      map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
    return false;
  }

  // Extract dimensions for KxM * NxK -> NxM
  AffineExpr n = map2.getResult(0);
  AffineExpr m = map2.getResult(1);
  AffineExpr k = map0.getResult(0);
  auto *context = indexingMaps.getContext();
  auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {k, m}, context));
  auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {n, k}, context));
  auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {n, m}, context));
  auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
  return indexingMaps == maps;
}

bool mlir::isRowMajorBatchMatmul(ArrayAttr indexingMaps) {
  if (indexingMaps.size() != 3)
    return false;

  auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
  auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
  auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();

  if (map0.getNumResults() != 3 || map1.getNumResults() != 3 ||
      map2.getNumResults() != 3 || map0.getNumInputs() != 4 ||
      map1.getNumInputs() != 4 || map2.getNumInputs() != 4) {
    return false;
  }

  // Extract dimensions for BxMxK * BxKxN -> BxMxN
  AffineExpr b = map2.getResult(0);
  AffineExpr m = map2.getResult(1);
  AffineExpr n = map2.getResult(2);
  AffineExpr k = map0.getResult(2);
  auto *context = indexingMaps.getContext();
  auto mapA = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, k}, context));
  auto mapB = AffineMapAttr::get(AffineMap::get(4, 0, {b, k, n}, context));
  auto mapC = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, n}, context));
  auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
  return indexingMaps == maps;
}

Operation *mlir::clone(OpBuilder &b, Operation *op, TypeRange newResultTypes,
                       ValueRange newOperands) {
  IRMapping bvm;
  OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
                       op->getAttrs());
  for (Region &r : op->getRegions())
    r.cloneInto(state.addRegion(), bvm);
  return b.create(state);
}

Operation *mlir::cloneWithoutRegions(OpBuilder &b, Operation *op,
                                     TypeRange newResultTypes,
                                     ValueRange newOperands) {
  OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
                       op->getAttrs());
  for (size_t cnt = 0, e = op->getNumRegions(); cnt < e; ++cnt)
    state.addRegion();
  return b.create(state);
}

SmallVector<NamedAttribute>
mlir::getPrunedAttributeList(Operation *op, ArrayRef<StringRef> elidedAttrs) {
  llvm::StringSet<> elidedAttrsSet;
  elidedAttrsSet.insert(elidedAttrs.begin(), elidedAttrs.end());
  SmallVector<NamedAttribute> attrs;
  for (auto attr : op->getAttrs()) {
    if (elidedAttrsSet.count(attr.getName()))
      continue;
    attrs.push_back(attr);
  }
  return attrs;
}