summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
blob: 9c2465d25737db7caa64cecec6f1709288ff21f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//

#include "CodegenEnv.h"
#include "CodegenUtils.h"
#include "LoopEmitter.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>

using namespace mlir;
using namespace mlir::sparse_tensor;

//===----------------------------------------------------------------------===//
// Declarations
//===----------------------------------------------------------------------===//

namespace {

/// Iteration graph sorting.
enum class SortMask : unsigned {
  // The individual mask bits.
  kIncludeDenseOutput = 0x1, // b001
  kIncludeDenseInput = 0x2,  // b010
  kIncludeUndef = 0x4,       // b100
  // The subsets of mask bits.
  kIncludeAll = 0x7,   // b111
  kIncludeDense = 0x3, // b011
  kSparseOnly = 0x0,   // b000
};

inline static bool includesAny(SortMask mask1, SortMask mask2) {
  return static_cast<unsigned>(mask1) & static_cast<unsigned>(mask2);
}

inline static bool includesDenseInput(SortMask mask) {
  return includesAny(mask, SortMask::kIncludeDenseInput);
}

inline static bool includesDenseOutput(SortMask mask) {
  return includesAny(mask, SortMask::kIncludeDenseOutput);
}

inline static bool includesDense(SortMask mask) {
  return includesAny(mask, SortMask::kIncludeDense);
}

inline static bool includesUndef(SortMask mask) {
  return includesAny(mask, SortMask::kIncludeUndef);
}

/// A helper class that visits an affine expression and tries to find an
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
/// the desired iterator type.
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
public:
  explicit AffineDimFinder(linalg::GenericOp op)
      : iterTypes(op.getIteratorTypes()) {}

  // Overrides method from AffineExprVisitor.
  void visitDimExpr(AffineDimExpr expr) {
    if (pickedDim == nullptr ||
        pickIterType ==
            cast<linalg::IteratorTypeAttr>(iterTypes[expr.getPosition()])
                .getValue()) {
      pickedDim = expr;
    }
  }

  /// Set the desired iterator type that we want to pick.
  void setPickedIterType(utils::IteratorType iterType) {
    pickIterType = iterType;
  }

  /// Get the desired AffineDimExpr.
  AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }

private:
  /// The picked AffineDimExpr after visit.  This must be stored as
  /// `AffineExpr` rather than `AffineDimExpr`, because the latter
  /// doesn't have a default ctor.
  AffineExpr pickedDim;
  /// The iterator type that we want.
  utils::IteratorType pickIterType;
  /// The mapping between dim=>iterator type.
  ArrayAttr iterTypes;
};

// Flattens an affine expression into a list of AffineDimExprs.
struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
  // Overrides method from AffineExprVisitor.
  void visitDimExpr(AffineDimExpr expr) { dims.push_back(expr); }
  SmallVector<AffineDimExpr> dims;
};

} // namespace

//===----------------------------------------------------------------------===//
// Sparse compiler analysis methods.
//===----------------------------------------------------------------------===//

// TODO: the "idx"-vs-"ldx" naming convention is not self-explanatory,
// and those letters are too easy to confuse visually.  We should switch
// to a more self-explanatory naming convention like "curLoop"-vs-"prevLoop"
// (assuming that's the actual meaning behind the "idx"-vs-"ldx" convention).

/// Determines if affine expression is invariant.
static bool isInvariantAffine(AffineExpr a, ArrayRef<LoopId> loopStack,
                              LoopId ldx, bool &isAtLoop) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    const LoopId i = a.cast<AffineDimExpr>().getPosition();
    if (i == ldx) {
      isAtLoop = true;
      // Must be invariant if we are at the given loop.
      return true;
    }
    bool isInvariant = false;
    for (LoopId l : loopStack) {
      isInvariant = (l == i);
      if (isInvariant)
        break;
    }
    return isInvariant;
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return isInvariantAffine(binOp.getLHS(), loopStack, ldx, isAtLoop) &&
           isInvariantAffine(binOp.getRHS(), loopStack, ldx, isAtLoop);
  }
  default: {
    assert(a.isa<AffineConstantExpr>());
    return true;
  }
  }
}

/// Determines if affine expression is invariant.
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, LoopId ldx,
                              bool &isAtLoop) {
  return isInvariantAffine(a, env.getCurrentLoopStack(), ldx, isAtLoop);
}

/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
//
// FIXME: does the above actually mean "dimensions", or should it say
// "level ordering"?  The same dim/lvl confusion applies to all the code
// and comments in the definition below.
static AffineMap permute(CodegenEnv &env, AffineMap m) {
  assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
             env.topSortSize() &&
         "size mismatch");
  // Construct the inverse of `m`; to avoid the asymptotic complexity
  // of calling `m.getPermutedPosition` repeatedly.
  //
  // The variable `perm` must use `unsigned` rather than `Dimension`/`Level`,
  // because that's what `AffineMap::getPermutationMap` requires.
  // TODO: however, `perm` should be renamed to make clear what exactly
  // it's storing a permutation of.
  SmallVector<unsigned> perm;
  const unsigned numResults = m.getNumResults();
  BitVector worklist(numResults, true);
  LoopOrd loopDepth = 1;

  // Construct the permutation.
  while (worklist.any() && loopDepth <= env.topSortSize()) {
    const unsigned preSize = perm.size();
    for (unsigned dim : worklist.set_bits()) {
      bool isAtLoop = false;
      if (m.getResult(dim).isa<AffineConstantExpr>() ||
          (isInvariantAffine(m.getResult(dim), env.getLoopStackUpTo(loopDepth),
                             env.topSortAt(loopDepth - 1), isAtLoop) &&
           isAtLoop)) {
        // If the matching affine is constant expression or just become
        // invariant. We can visit the dimension now without breaking the
        // topSort constraint.
        perm.push_back(dim);
      }
    }

    // Removes resolved dimension.
    for (unsigned i = preSize, e = perm.size(); i < e; i++)
      worklist.reset(perm[i]);

    // Try entering the next loop in the stack.
    loopDepth++;
  }

  assert(perm.size() == numResults);
  return AffineMap::getPermutationMap(perm, env.op().getContext());
}

/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects compound affine
/// expressions in sparse dimensions.
/// filterIdx stores the current filter loop idx should be used for the next
/// compound affine sparse level, and it will be incremented by one when
/// used.
static bool findAffine(Merger &merger, TensorId tid, Level lvl, AffineExpr a,
                       DimLevelType dlt, LoopId &filterLdx,
                       bool setLvlFormat = true) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    const LoopId idx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
    if (!isUndefDLT(merger.getLvlType(tid, idx)))
      return false; // used more than once

    if (setLvlFormat)
      merger.setLevelAndType(tid, idx, lvl, dlt);
    return true;
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul:
  case AffineExprKind::Constant: {
    if (!isDenseDLT(dlt) && setLvlFormat) {
      assert(isUndefDLT(merger.getLvlType(tid, filterLdx)));
      // Use a filter loop for sparse affine expression.
      merger.setLevelAndType(tid, filterLdx, lvl, dlt);
      ++filterLdx;
    }

    if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
      // We do not set dim level format for affine expresssion like d0 + d1 on
      // either loop index at d0 or d1.
      // We continue the recursion merely to check whether current affine is
      // admissible or not.
      return findAffine(merger, tid, lvl, binOp.getLHS(), dlt, filterLdx,
                        false) &&
             findAffine(merger, tid, lvl, binOp.getRHS(), dlt, filterLdx,
                        false);
    }
    // Falls through when it is a constant Affine
    return true;
  }
  default:
    return false;
  }
}

/// Helper method to inspect affine expressions for index variable reduction
/// based codegen. It finds the dependent index set for all tensor levels in the
/// current expression we are generating.
///
/// For example, when handling A[i+j][j+k], we build the two way mapping in
/// merger between (tensor, level) pairs and their dependent index variable set:
/// A_0 <=> [i, j] and A_1 <=> [j, k]
///
/// It rejects cases (returns false)
/// 1st, when the same index is used more than once, e.g., A[i+j][i]
/// 2nd, when multiplication is used in the non-trivial index expression.
/// 3rd, when a constant operand is used in the non-trivial index expression.
///
/// TODO: constant should be easy to handle.
static bool findDepIdxSet(Merger &merger, TensorId tensor, Level lvl,
                          AffineExpr a, DimLevelType dlt,
                          bool isSubExp = false) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    const LoopId ldx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
    if (!isUndefDLT(merger.getLvlType(tensor, ldx)))
      return false; // used more than once, e.g., A[i][i]

    // TODO: Generalizes the following two cases. A[i] (with trivial index
    // expression) can be treated as a special affine index expression. We do
    // not necessarily need to differentiate them.
    if (!isSubExp)
      merger.setLevelAndType(tensor, ldx, lvl, dlt);

    if (isSubExp) {
      // The current loops appears in more than one affine expressions on the
      // same tensor. We can not handle this case. e.g., A[i+j][i+k], `i` is
      // used twice.
      if (merger.hasDependentLvl(ldx, tensor)) {
        // TODO: This can be supported by coiterate slices if the loop idx is
        // appeared on affine index for different tensor, or take slice on
        // mulitple dimensions when it is on the same tensor.
        // E.g.,
        // `d0 + d1` for indexing t0[lvl0] and `d0 + d2` for indexing t1[lvl0]
        // d0_1 = getNextSliceOffset t0 along lvl0
        // d0_2 = getNextSliceOffset t1 along lvl0
        // if d0_1 == d0_2 then d0 = d0_1 = d0_1
        // else increase min(d0_1, d0_2).
        return false;
      }
      merger.setLoopDependentTensorLevel(ldx, tensor, lvl, dlt);
    }
    return true;
  }
  case AffineExprKind::Constant:
  case AffineExprKind::Mul:
    // TODO: Support Mul and Constant AffineExp for slice-based codegen
    return false;
  case AffineExprKind::Add: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return findDepIdxSet(merger, tensor, lvl, binOp.getLHS(), dlt, true) &&
           findDepIdxSet(merger, tensor, lvl, binOp.getRHS(), dlt, true);
  }
  default:
    return false;
  }
}

/// Get the total number of compound affine expressions in the
/// `getMatchingIndexingMap` for the given tensor.  For the following inputs:
///
/// map = (d0, d1, d2) => (d0 + d1, d2)
/// lvlTypes = ["compressed", "compressed"]
///
/// Returns 1 (because the first level is compressed and its corresponding
/// indexing-expression is `d0 + d1`)
static unsigned getNumNonTrivialIdxExpOnSparseLvls(AffineMap map,
                                                   Value tensor) {
  // The `tensor` is not guaranted to have `RankedTensorType`, therefore
  // we can't use `getRankedTensorType`/`getSparseTensorType` here.
  // However, we don't need to handle `StorageSpecifierType`, so we
  // can use `SparseTensorType` once we guard against non-tensors.
  const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
  if (!rtp)
    return 0;
  const SparseTensorType stt(rtp);

  // FIXME: There's some dim/lvl confusion here.  The previous version of
  // the code asserted that there are `lvlRank`-many expressions, but then
  // the `exprs[d]` expression assumes there are in fact `dimRank`-many
  // expressions.  Even though `ArrayRef::operator[]` will check for OOB,
  // the mismatch between the assertion and the usage belies that this code
  // cannot support non-permutations.
  //
  // Elsewhere in this file the maps returned by
  // `linalg::GenericOp::getMatchingIndexingMap` are inconsistent about
  // whether they're expected to have `lvlRank`-many or `dimRank`-many
  // expressions (cf., `genSubscript` vs `findSparseAnnotations`);
  // so those are no help in determining which is actually intended.
  //
  // For now we work around this problem by asserting the two ranks agree.
  const Dimension dimRank = stt.getDimRank();
  const Level lvlRank = stt.getLvlRank();
  assert(dimRank == lvlRank && "Non-permutations not currently supported");
  const auto exprs = map.getResults();
  assert(static_cast<Dimension>(exprs.size()) == dimRank &&
         "AffineMap does not have dimension-rank many results");
  (void)dimRank;
  unsigned num = 0;
  for (Level l = 0; l < lvlRank; l++) {
    // FIXME: `toOrigDim` is deprecated.
    const Dimension d = toOrigDim(stt.getEncoding(), l);
    if (!exprs[d].isa<AffineDimExpr>() && !stt.isDenseLvl(l))
      num++;
  }
  return num;
}

/// Get the total number of sparse levels with compound affine
/// expressions, summed over all operands of the `GenericOp`.
static unsigned getNumNonTrivialIdxExpOnSparseLvls(linalg::GenericOp op) {
  unsigned num = 0;
  for (OpOperand &t : op->getOpOperands())
    num += getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(&t),
                                              t.get());
  return num;
}

static bool hasNonTrivialAffineOnSparseOut(linalg::GenericOp op) {
  OpOperand *out = op.getDpsInitOperand(0);
  if (getSparseTensorType(out->get()).isAllDense())
    return false;
  return getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(out),
                                            out->get());
}

/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissible. Returns false if
/// no annotations are found or inadmissible constructs occur.
/// We currently support two different ways to handle non-trivial index
/// expression on sparse tensors, and they accept different affine expressions.
/// When using filter-loop-based approach, it accept (almost) arbitrary affine
/// index expression on sparse tensor but it is much less efficient, and will be
/// gradually removed from the codebase.
/// When using dependent index reducton-based approach, it currently only
/// supports affine addition index expression.
static bool findSparseAnnotations(CodegenEnv &env, bool idxReducBased) {
  bool annotated = false;
  // `filterLdx` may be mutated by `findAffine`.
  LoopId filterLdx = env.merger().getStartingFilterLoopId();
  for (OpOperand &t : env.op()->getOpOperands()) {
    const TensorId tid = env.makeTensorId(t.getOperandNumber());
    const auto map = env.op().getMatchingIndexingMap(&t);
    const auto enc = getSparseTensorEncoding(t.get().getType());
    if (enc)
      annotated = true;

    const Level lvlRank = map.getNumResults();
    assert(!enc || lvlRank == enc.getLvlRank());
    assert(static_cast<Level>(env.op().getRank(&t)) == lvlRank);

    // We only need to do index reduction if there is at least one non-trivial
    // index expression on sparse levels.
    // If all non-trivial index expression is on dense levels, we can
    // efficiently rely on the random access to locate the element.
    bool needIdxReduc =
        enc && getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) != 0;
    // If then current tensor being inspected requires affine index, it need
    // to be sliced.
    for (Level l = 0; l < lvlRank; l++) {
      // FIXME: `toOrigDim` is deprecated.
      const AffineExpr a = map.getResult(toOrigDim(enc, l));
      const DimLevelType dlt = enc.getLvlType(l);
      if (idxReducBased && needIdxReduc) {
        if (!findDepIdxSet(env.merger(), tid, l, a, dlt))
          return false; // inadmissible affine expression
      } else {
        if (!findAffine(env.merger(), tid, l, a, dlt, filterLdx))
          return false; // inadmissible affine expression
      }
    }
  }
  assert(filterLdx == env.merger().getNumLoops());
  return annotated;
}

/// A helper to compute a topological sort. O(n^2) time complexity
/// as we use adj matrix for the graph.
/// The sorted result will put the first Reduction iterator to the
/// latest possible `LoopOrd`.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static bool topSortOptimal(CodegenEnv &env,
                           ArrayRef<utils::IteratorType> iteratorTypes,
                           std::vector<unsigned> &inDegree,
                           std::vector<std::vector<bool>> &adjM) {
  std::vector<LoopId> redIt;    // reduce iterator with 0 degree
  std::vector<LoopId> parIt;    // parallel iterator with 0 degree
  std::vector<LoopId> filterIt; // filter loop with 0 degree
  const LoopId numLoops = env.merger().getNumLoops();
  for (LoopId i = 0; i < numLoops; i++) {
    if (inDegree[i] == 0) {
      if (env.merger().isFilterLoop(i))
        filterIt.push_back(i);
      else if (linalg::isReductionIterator(iteratorTypes[i]))
        redIt.push_back(i);
      else
        parIt.push_back(i);
    }
  }

  while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
    // We always choose in order of filter loop -> parallel loop -> reduction
    // loop because
    // 1. Putting reduction loop early might make the loop sequence
    // inadmissible.
    // 2. Filter loops should be put as early as possible for better
    // performance, since only one (if any) iteration will carry the
    // computation. E.g., for (1 to N)
    //  for (1 to M)
    //    for (1 to K)
    //      if (xxx)
    //        O(X) computation  => O(NMK+NMX) time complexity
    //
    // By putting the filter loop one level up, we got
    //
    // for (1 to N)
    //  for (1 to K)
    //    if (xxx)
    //      for (1 to M)
    //        O(X) computation  => O(NK+NMX) time complexity
    auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
    auto src = it.back();
    env.topSortPushBack(src);
    it.pop_back();
    // Update in-degree, and push 0-degree node into worklist.
    for (LoopId dst = 0; dst < numLoops; dst++) {
      if (adjM[src][dst] && --inDegree[dst] == 0) {
        if (env.merger().isFilterLoop(dst))
          filterIt.push_back(dst);
        else if (linalg::isReductionIterator(iteratorTypes[dst]))
          redIt.push_back(dst);
        else
          parIt.push_back(dst);
      }
    }
  }
  return env.topSortSize() == numLoops;
}

/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
/// The affine expression `a` is empty iff `fidx` have a value, leading to
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
/// The affine expression `b` is empty iff `tidx` have a value, leading to
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
                               std::vector<unsigned> &inDegree, AffineExpr a,
                               AffineExpr b, std::optional<LoopId> fidx,
                               std::optional<LoopId> tidx) {
  if (!a && !b) {
    // Recursion leaf.
    assert(fidx && tidx);
    const LoopId f = *fidx, t = *tidx;
    if (!adjM[f][t]) {
      adjM[f][t] = true;
      inDegree[t]++;
    }
    return;
  }
  // Picks an affine expression and expand (recurse into) it.
  const auto toExpand = a ? a : b;
  switch (toExpand.getKind()) {
  case AffineExprKind::DimId: {
    const std::optional<LoopId> idx{
        toExpand.cast<AffineDimExpr>().getPosition()};
    if (toExpand == a)
      addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
    else // toExpand == b
      addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
    break;
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    auto binOp = toExpand.cast<AffineBinaryOpExpr>();
    if (toExpand == a) {
      addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
      addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
    } else {
      addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
      addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
    }
    break;
  }
  default:
    break;
  }
}

static void tryRelaxAffineConstraints(linalg::GenericOp op,
                                      std::optional<LoopId> &fldx,
                                      AffineExpr &fa,
                                      std::optional<LoopId> &tldx,
                                      AffineExpr &ta) {
  // We use a heuristic here to only pick one dim expression from each
  // compound affine expression to establish the order between two dense
  // dimensions.
  if (!tldx) {
    AffineDimFinder finder(op);
    // NOTE: The ordering can only be loosen when the destination level is
    // dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
    // require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
    // no ordering like d0->d2->d1).
    // TODO: this is obviously a sub optimal solution.
    if (!fldx && !fa.isa<AffineConstantExpr>()) {
      // Heuristic: we prefer parallel loop for lhs to reduce the chance
      // we add reduce < parallel ordering.
      finder.setPickedIterType(utils::IteratorType::parallel);
      finder.walkPostOrder(fa);
      fa = finder.getDimExpr();
      fldx = finder.getDimExpr().getPosition();
    }
    if (!ta.isa<AffineConstantExpr>()) {
      // Heuristic: we prefer reduction loop for rhs to reduce the chance
      // adding reduce < parallel ordering.
      finder.setPickedIterType(utils::IteratorType::reduction);
      finder.walkPostOrder(ta);
      ta = finder.getDimExpr();
      tldx = finder.getDimExpr().getPosition();
    }
  }
}

static void addFilterLoopBasedConstraints(CodegenEnv &env, OpOperand &t,
                                          OpOperand *skip, SortMask mask,
                                          std::vector<std::vector<bool>> &adjM,
                                          std::vector<unsigned> &inDegree) {
  // Get map, encoding, and tensor-identifier.
  const auto map = env.op().getMatchingIndexingMap(&t);
  const auto enc = getSparseTensorEncoding(t.get().getType());
  const TensorId tid = env.makeTensorId(t.getOperandNumber());

  // Each tensor expression and optional dimension ordering (row-major
  // by default) puts an ordering constraint on the loop indices. For
  // example, the tensor expresion A_ijk forces the ordering i < j < k
  // on the loop indices if no explicit dimension ordering is given.
  const Level lvlRank = map.getNumResults();
  assert(!enc || lvlRank == enc.getLvlRank());
  for (Level lvl = 0; lvl < lvlRank; lvl++) {
    // FIXME: `toOrigDim` is deprecated.
    AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
    std::optional<LoopId> tldx = env.merger().getLoopId(tid, lvl);
    // Filter loops should be constructed after all the dependent loops,
    // i.e., d0 + d1 < filter_loop(d0 + d1)
    if (tldx && env.merger().isFilterLoop(*tldx)) {
      assert(!ta.isa<AffineDimExpr>() && !isDenseDLT(enc.getLvlTypes()[lvl]));
      addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt, tldx);
      // Now that the ordering of affine expression is captured by filter
      // loop idx, we only need to ensure the affine ordering against filter
      // loop. Thus, we reset the affine express to nil here to mark it as
      // resolved.
      ta = AffineExpr();
    }

    // Skip tensor during cycle resolution, though order between filter loop
    // and dependent loops need to be guaranteed unconditionally.
    if (&t == skip)
      continue;

    if (lvl > 0) {
      // FIXME: `toOrigDim` is deprecated.
      AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
      std::optional<LoopId> fldx = env.merger().getLoopId(tid, lvl - 1);

      // Applying order constraints on every pair of dimExpr between two
      // compound affine expressions can sometime too strict:
      // E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
      // It is totally fine to have loop sequence d0->d2->d1->d3 instead of
      // requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
      // We also relax the affine constraint when use slice-based algorithm
      // as there is no filter loop for affine index on sparse dimension.
      // TODO: do we really need the condition?
      if (!includesDense(mask))
        tryRelaxAffineConstraints(env.op(), fldx, fa, tldx, ta);

      // (d0 + d1) < (d2 + d3), or
      // filter_loop_d-1 < (d2 + d3), or
      // (d0 + d1) < filter_loop_d, or
      // filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
      // above.
      addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
    }
  }
}

static void addSliceBasedConstraints(CodegenEnv &env, OpOperand &t,
                                     OpOperand *skip, SortMask mask,
                                     std::vector<std::vector<bool>> &adjM,
                                     std::vector<unsigned> &inDegree) {
  // Get map and encoding.
  const auto map = env.op().getMatchingIndexingMap(&t);
  const auto enc = getSparseTensorEncoding(t.get().getType());

  // No special treatment for simple indices.
  if (getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) == 0)
    return addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);

  // Skip tensor during cycle resolution, though order between filter loop
  // and dependent loops need to be guaranteed unconditionally.
  if (&t == skip)
    return;

  AffineDimFinder finder(env.op());
  finder.setPickedIterType(utils::IteratorType::reduction);
  // To compute iteration graph for tensor[d0 + d1 + d3, d4 + d5 + d6],
  // we requires there exist d_x \in {d0, d1, d3} and d_y \in {d4, d5, d6},
  // and d_x > d_y && {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
  const Level lvlRank = map.getNumResults();
  assert(!enc || lvlRank == enc.getLvlRank());
  for (Level lvl = 1; lvl < lvlRank; lvl++) {
    // FIXME: `toOrigDim` is deprecated.
    const AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
    const AffineExpr ta = map.getResult(toOrigDim(enc, lvl));

    // This is a heuristic, we pick an abitrary reduction loop from lhs and
    // rhs and use them as d_x and d_y.
    finder.walkPostOrder(fa);
    const AffineDimExpr fexp = finder.getDimExpr();
    const LoopId fldx = env.makeLoopId(fexp.getPosition());

    finder.walkPostOrder(ta);
    const AffineDimExpr texp = finder.getDimExpr();
    const LoopId tldx = env.makeLoopId(texp.getPosition());

    // d_x > d_y
    if (!adjM[fldx][tldx]) {
      adjM[fldx][tldx] = true;
      inDegree[tldx]++;
    }

    AffineDimCollector fCollector;
    fCollector.walkPostOrder(fa);
    AffineDimCollector tCollector;
    tCollector.walkPostOrder(ta);

    // make sure dx and dy is the last;
    for (auto fd : fCollector.dims) {
      const LoopId f = env.makeLoopId(fd.getPosition());
      if (f == fldx)
        continue;
      if (!adjM[f][fldx]) {
        adjM[f][fldx] = true;
        inDegree[fldx]++;
      }
    }
    for (auto td : tCollector.dims) {
      const LoopId t = env.makeLoopId(td.getPosition());
      if (t == tldx)
        continue;
      if (!adjM[t][tldx]) {
        adjM[t][tldx] = true;
        inDegree[tldx]++;
      }
    }
    // Since we only support affine addition, the order between two dim
    // expression does not really matters.
    // {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
    // This is to ensure that the affine expressions are reduced in sparse
    // tensor level ordering.
    // TODO: this ordering could probably be loosen if we support out-of-order
    // reduction.
    // TODO: the evaluation order need to be ensure to
    // support affine multiplication.
    for (auto fd : fCollector.dims) {
      const LoopId f = env.makeLoopId(fd.getPosition());
      if (f == fldx) // skip d_x
        continue;

      for (auto td : tCollector.dims) {
        const LoopId t = env.makeLoopId(td.getPosition());
        if (t == tldx) // skip d_y
          continue;
        if (!adjM[f][t]) {
          adjM[f][t] = true;
          inDegree[t]++;
        }
      }
    }
  }
}

/// Computes a topologically sorted iteration graph for the linalg operation.
/// Ensures all tensors are visited in natural index order. This is
/// essential for sparse storage formats since these only support access
/// along fixed dimensions. Even for dense storage formats, however, the natural
/// index order yields innermost unit-stride access with better spatial
/// locality.
static bool computeIterationGraph(CodegenEnv &env, SortMask mask,
                                  OpOperand *skip, bool idxReducBased = false) {
  // Set up an n x n from/to adjacency matrix of the iteration graph
  // for the implicit loop indices i_0 .. i_n-1.
  const unsigned numLoops = env.merger().getNumLoops();
  std::vector<std::vector<bool>> adjM(numLoops,
                                      std::vector<bool>(numLoops, false));
  std::vector<unsigned> inDegree(numLoops, 0); // in-degree of each node.
  const auto iteratorTypes = env.op().getIteratorTypesArray();
  // Iterate over the indexing maps of every tensor in the tensor expression.
  for (OpOperand &t : env.op()->getOpOperands()) {
    // Get map and encoding.
    const auto enc = getSparseTensorEncoding(t.get().getType());
    // Skips dense inputs/outputs when not requested.
    const bool isDenseInput = !enc && env.op().isDpsInput(&t);
    const bool isDenseOutput = !enc && !isDenseInput;
    if ((isDenseInput && !includesDenseInput(mask)) ||
        (isDenseOutput && !includesDenseOutput(mask)))
      continue;

    // Push unrelated loops into sparse iteration space, so these
    // will be skipped more often.
    // TODO: Do we really need this?
    if (includesUndef(mask)) {
      const TensorId tid = env.makeTensorId(t.getOperandNumber());
      for (LoopId i = 0; i < numLoops; i++) {
        const auto dltI = env.dlt(tid, i);
        if (isCompressedDLT(dltI) || isCompressedWithHiDLT(dltI) ||
            isSingletonDLT(dltI)) {
          for (LoopId j = 0; j < numLoops; j++)
            if (isUndefDLT(env.dlt(tid, j))) {
              adjM[i][j] = true;
              inDegree[j]++;
            }
        } else {
          assert(isDenseDLT(dltI) || isUndefDLT(dltI));
        }
      }
    }
    // Push unrelated loops into sparse iteration space, so these
    // will be skipped more often.
    if (idxReducBased)
      addSliceBasedConstraints(env, t, skip, mask, adjM, inDegree);
    else
      addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
  }
  // Topologically sort the iteration graph to determine loop order.
  // Report failure for a cyclic iteration graph.
  env.topSortClear(numLoops);
  return topSortOptimal(env, iteratorTypes, inDegree, adjM);
}

//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//

/// Local bufferization of all dense and sparse data structures.
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  assert(op.getNumOperands() == op.getNumDpsInputs() + 1);

  env.emitter().initializeLoopEmit(
      builder, loc,
      /// Generates buffer for the output tensor.
      /// Note that all sparse kernels assume that when all elements are written
      /// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
      /// to all zeroes and only nonzeroes values are computed and written out.
      /// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
      /// for the updates and no assumption on the original contents of the
      /// output buffer is necessary.
      [&op](OpBuilder &builder, Location loc, Value memref,
            Value tensor) -> Value {
        // Must not be a sparse tensor.
        assert(!getSparseTensorEncoding(tensor.getType()));
        // Two output tensor references should point to the same object.
        OpOperand *lhs = op.getDpsInitOperand(0);
        assert(lhs->get() == tensor);
        // An output tensor can simply materialize from the buffer of the tensor
        // that appears in the outs() clause. For updates, this has the
        // advantage that only the nonzero value are involved in the
        // computation, keeping the operation O(nnz). In all other cases, we are
        // forced to zero out the buffer to enforce the assumption above, which
        // may negatively impact running complexity (viz. O(n^2 + nnz) vs.
        // O(nnz) for matrices).
        // TODO: use better analysis to avoid zeroing out the buffer?
        bool isInit = op.isInitTensor(lhs);
        Value init = memref;
        if (!isInit) {
          Value zero = constantZero(builder, loc,
                                    getElementTypeOrSelf(tensor.getType()));
          builder.create<linalg::FillOp>(loc, ValueRange{zero},
                                         ValueRange{init});
        }
        return init;
      });
}

/// Generates index for load/store on sparse tensor.
// FIXME: It's not entirely clear what "index" means here (i.e., is it
// a "coordinate", or "Ldx", or what).  So the function should be renamed
// and/or the documentation expanded in order to clarify.
static Value genIndex(CodegenEnv &env, OpOperand *t) {
  const auto map = env.op().getMatchingIndexingMap(t);
  const auto stt = getSparseTensorType(t->get());
  const Level lvlRank = stt.getLvlRank();
  assert(static_cast<Level>(map.getNumResults()) == lvlRank);
  // FIXME: `toOrigDim` is deprecated.
  // FIXME: above we asserted that there are `lvlRank` many results,
  // but this is assuming there are in fact `dimRank` many results instead.
  const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), lvlRank - 1));
  assert(a.getKind() == AffineExprKind::DimId);
  const LoopId idx = env.makeLoopId(a.cast<AffineDimExpr>().getPosition());
  return env.getLoopVar(idx);
}

/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
                          SmallVectorImpl<Value> &args) {
  const Location loc = env.op().getLoc();
  const TensorId tid = env.makeTensorId(t->getOperandNumber());
  const auto map = env.op().getMatchingIndexingMap(t);
  const auto stt = getSparseTensorType(t->get());
  if (stt.hasEncoding()) {
    // For sparse tensors we only push the last-level's position onto `args`.
    const auto pos = env.emitter().getPosits()[tid].back();
    assert(pos);
    args.push_back(pos);
  } else {
    // For dense tensors we push all level's coordinates onto `args`.
    const Level lvlRank = stt.getLvlRank();
    assert(static_cast<Level>(map.getNumResults()) == lvlRank);
    for (Level l = 0; l < lvlRank; l++) {
      const auto lvlExpr = map.getResult(l);
      const auto lvlCrd = env.emitter().genAffine(builder, loc, lvlExpr);
      args.push_back(lvlCrd);
    }
  }
  return env.emitter().getValBuffer()[tid];
}

/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
                              OpOperand *t) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  // Direct lexicographic coordinate order, tensor loads as zero.
  if (!env.isExpand()) {
    Type tp = getElementTypeOrSelf(t->get().getType());
    return constantZero(builder, loc, tp);
  }
  // Load from expanded access pattern.
  Value index = genIndex(env, t);
  return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
}

/// Generates insertion code to implement dynamic tensor load for reduction.
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
                                    OpOperand *t) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  Value identity = env.getCustomRedId();
  // Direct lexicographic coordinate order, tensor loads as identity.
  if (!env.isExpand())
    return identity;
  // Load from expanded access pattern if filled, identity otherwise.
  Value values = env.getExpandValues();
  Value filled = env.getExpandFilled();
  Value index = genIndex(env, t);
  Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
  Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
  return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
}

/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
                              Value rhs) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  // Direct insertion in lexicographic coordinate order.
  if (!env.isExpand()) {
    const LoopOrd numLoops = op.getRank(t);
    // TODO: rewrite this to use `env.emitter().getLoopIVs(ivs)`
    // instead.  We just need to either assert that `numLoops ==
    // env.emitter().getCurrentDepth()`, or else update the `getLoopIVs`
    // method to take an optional parameter to restrict to a smaller depth.
    SmallVector<Value> ivs;
    ivs.reserve(numLoops);
    for (LoopOrd n = 0; n < numLoops; n++) {
      const auto iv = env.emitter().getLoopIV(n);
      assert(iv);
      ivs.push_back(iv);
    }
    Value chain = env.getInsertionChain();
    if (!env.getValidLexInsert()) {
      env.updateInsertionChain(builder.create<InsertOp>(loc, rhs, chain, ivs));
    } else {
      // Generates runtime check for a valid lex during reduction,
      // to avoid inserting the identity value for empty reductions.
      //   if (validLexInsert) then
      //     insert(rhs) into chain
      //     return updated chain
      //   else
      //     return unmodified chain
      scf::IfOp ifValidLexInsert = builder.create<scf::IfOp>(
          loc, chain.getType(), env.getValidLexInsert(),
          /*else=*/true);
      // True branch.
      builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
      Value res = builder.create<InsertOp>(loc, rhs, chain, ivs);
      builder.create<scf::YieldOp>(loc, res);
      // False branch.
      builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
      builder.create<scf::YieldOp>(loc, chain);
      // Value assignment.
      builder.setInsertionPointAfter(ifValidLexInsert);
      env.updateInsertionChain(ifValidLexInsert.getResult(0));
    }
    return;
  }
  // Generates insertion code along expanded access pattern.
  //   if (!expFilled[i]) then
  //     expFilled[i] = true
  //     expAdded[inserts++] = i
  //   endif
  //   values[i] = rhs
  Value values = env.getExpandValues();
  Value filled = env.getExpandFilled();
  Value added = env.getExpandAdded();
  Value count = env.getExpandCount();
  Value index = genIndex(env, t);
  Value fval = constantI1(builder, loc, false);
  Value tval = constantI1(builder, loc, true);
  // If statement.
  Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
  Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                             isFilled, fval);
  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
                                             /*else=*/true);
  // True branch.
  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
  builder.create<memref::StoreOp>(loc, tval, filled, index);
  builder.create<memref::StoreOp>(loc, index, added, count);
  Value one = constantIndex(builder, loc, 1);
  Value add = builder.create<arith::AddIOp>(loc, count, one);
  builder.create<scf::YieldOp>(loc, add);
  // False branch.
  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
  builder.create<scf::YieldOp>(loc, count);
  builder.setInsertionPointAfter(ifOp);
  // Value assignment.
  env.updateExpandCount(ifOp.getResult(0));
  builder.create<memref::StoreOp>(loc, rhs, values, index);
}

/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
  // Test if the load was hoisted to a higher loop nest.
  Value val = env.exp(exp).val;
  if (val)
    return val;

  // Load during insertion.
  linalg::GenericOp op = env.op();
  OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
  if (env.isSparseOutput(t)) {
    if (env.isCustomReduc())
      return genInsertionLoadReduce(env, builder, t);
    return genInsertionLoad(env, builder, t);
  }
  // Actual load.
  SmallVector<Value> args;
  Value ptr = genSubscript(env, builder, t, args);
  return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}

/// Generates a store on a dense or sparse tensor.
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, ExprId exp,
                           Value rhs) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  // Test if this is a scalarized reduction.
  if (env.isReduc()) {
    env.updateReduc(rhs);
    return;
  }
  // Store during insertion.
  OpOperand *t = op.getDpsInitOperand(0);
  if (env.isSparseOutput(t)) {
    if (!rhs) {
      // Only unary and binary are allowed to return uninitialized rhs
      // to indicate missing output.
      assert(env.exp(exp).kind == TensorExp::Kind::kUnary ||
             env.exp(exp).kind == TensorExp::Kind::kBinary);
    } else if (env.exp(exp).kind == TensorExp::Kind::kSelect) {
      // Select operation insertion.
      Value chain = env.getInsertionChain();
      scf::IfOp ifOp =
          builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
      builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
      // Existing value was preserved to be used here.
      assert(env.exp(exp).val);
      Value v0 = env.exp(exp).val;
      genInsertionStore(env, builder, t, v0);
      env.merger().clearExprValue(exp);
      // Yield modified insertion chain along true branch.
      Value mchain = env.getInsertionChain();
      builder.create<scf::YieldOp>(op.getLoc(), mchain);
      // Yield original insertion chain along false branch.
      builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
      builder.create<scf::YieldOp>(loc, chain);
      // Done with if statement.
      env.updateInsertionChain(ifOp->getResult(0));
      builder.setInsertionPointAfter(ifOp);
    } else {
      genInsertionStore(env, builder, t, rhs);
    }
    return;
  }
  // Actual store.
  SmallVector<Value> args;
  Value ptr = genSubscript(env, builder, t, args);
  builder.create<memref::StoreOp>(loc, rhs, ptr, args);
}

/// Generates an invariant value.
inline static Value genInvariantValue(CodegenEnv &env, ExprId exp) {
  return env.exp(exp).val;
}

/// Semi-ring branches are simply inlined by the sparse compiler. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
                          Value e, LoopId ldx) {
  if (Operation *def = e.getDefiningOp()) {
    if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
      return env.getLoopVar(env.makeLoopId(indexOp.getDim()));
    if (def->getBlock() == block) {
      for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) {
        rewriter.updateRootInPlace(def, [&]() {
          def->setOperand(
              i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
        });
      }
    }
  }
  return e;
}

/// Recursively generates tensor expression.
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, ExprId e,
                    LoopId ldx) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();

  if (e == ::mlir::sparse_tensor::detail::kInvalidId)
    return Value();
  const TensorExp &exp = env.exp(e);
  const auto kind = exp.kind;
  if (kind == TensorExp::Kind::kTensor)
    return genTensorLoad(env, rewriter, e);
  if (kind == TensorExp::Kind::kInvariant)
    return genInvariantValue(env, e);
  if (kind == TensorExp::Kind::kLoopVar)
    return env.getLoopVar(exp.loop);

  if (kind == TensorExp::Kind::kReduce)
    env.startCustomReduc(e); // enter custom

  Value v0 = genExp(env, rewriter, exp.children.e0, ldx);
  Value v1 = genExp(env, rewriter, exp.children.e1, ldx);
  Value ee = env.merger().buildExp(rewriter, loc, e, v0, v1);
  if (ee &&
      (kind == TensorExp::Kind::kUnary || kind == TensorExp::Kind::kBinary ||
       kind == TensorExp::Kind::kBinaryBranch ||
       kind == TensorExp::Kind::kReduce || kind == TensorExp::Kind::kSelect))
    ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);

  if (kind == TensorExp::Kind::kReduce)
    env.endCustomReduc(); // exit custom

  if (kind == TensorExp::Kind::kSelect)
    env.merger().setExprValue(e, v0); // Preserve value for later use.

  return ee;
}

/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(CodegenEnv &env, OpBuilder &builder, ExprId exp,
                          LoopId ldx, bool atStart) {
  if (exp == ::mlir::sparse_tensor::detail::kInvalidId)
    return;
  if (env.exp(exp).kind == TensorExp::Kind::kTensor) {
    // Inspect tensor indices.
    bool isAtLoop = ldx == ::mlir::sparse_tensor::detail::kInvalidId;
    linalg::GenericOp op = env.op();
    OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
    const auto map = op.getMatchingIndexingMap(&t);
    const auto stt = getSparseTensorType(t.get());
    const Level lvlRank = stt.getLvlRank();
    assert(static_cast<Level>(map.getNumResults()) == lvlRank);
    for (Level l = 0; l < lvlRank; l++) {
      // FIXME: `toOrigDim` is deprecated.
      // FIXME: above we asserted that there are `lvlRank` many results,
      // but this is assuming there are in fact `dimRank` many results instead.
      const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), l));
      const auto sldx =
          env.merger().getLoopId(env.makeTensorId(t.getOperandNumber()), l);
      if (sldx && env.merger().isFilterLoop(*sldx)) {
        if (!env.getLoopVar(*sldx))
          // The filter loops has not been constructed.
          return;
        if (*sldx == ldx)
          isAtLoop = true;
      } else if (!isInvariantAffine(env, a, ldx, isAtLoop))
        return; // still in play
    }
    // All exhausted at this level (isAtLoop denotes exactly at this LoopId).
    if (!isAtLoop)
      return;
    OpOperand *lhs = op.getDpsInitOperand(0);
    if (lhs == &t) {
      // Start or end a scalarized reduction.
      if (atStart) {
        Value load = env.isCustomReduc() ? env.getCustomRedId()
                                         : genTensorLoad(env, builder, exp);
        env.startReduc(exp, load);
        if (env.hasSparseOutput())
          env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
      } else {
        genTensorStore(env, builder, exp, env.endReduc());
        env.clearValidLexInsert();
      }
    } else {
      // Start or end loop invariant hoisting of a tensor load.
      if (atStart)
        env.merger().setExprValue(exp, genTensorLoad(env, builder, exp));
      else
        env.merger().clearExprValue(exp);
    }
  } else if (env.exp(exp).kind != TensorExp::Kind::kInvariant &&
             env.exp(exp).kind != TensorExp::Kind::kLoopVar) {
    // Traverse into the binary operations. Note that we only hoist
    // tensor loads, since subsequent MLIR/LLVM passes know how to
    // deal with all other kinds of derived loop invariants.
    if (env.exp(exp).kind == TensorExp::Kind::kReduce)
      env.startCustomReduc(exp); // enter custom
    const ExprId e0 = env.exp(exp).children.e0;
    const ExprId e1 = env.exp(exp).children.e1;
    genInvariants(env, builder, e0, ldx, atStart);
    genInvariants(env, builder, e1, ldx, atStart);
    if (env.exp(exp).kind == TensorExp::Kind::kReduce)
      env.endCustomReduc(); // exit custom
  }
}

/// Generates an expanded access pattern in innermost dimension.
static void genExpand(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
                      bool atStart) {
  linalg::GenericOp op = env.op();
  OpOperand *lhs = op.getDpsInitOperand(0);
  if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
    return; // not needed at this level
  assert(!env.isReduc());
  // Generate start or end of an expanded access pattern. Note that because
  // an expension does not rely on the ongoing contents of the sparse storage
  // scheme, we can use the original tensor as incoming SSA value (which
  // simplifies codegen a bit). If expansion on the actual contents is ever
  // needed, we will need to use the SSA value in the insertion chain instead.
  Value tensor = lhs->get();
  Location loc = op.getLoc();
  if (atStart) {
    auto dynShape = {ShapedType::kDynamic};
    Type etp = cast<ShapedType>(tensor.getType()).getElementType();
    Type t1 = MemRefType::get(dynShape, etp);
    Type t2 = MemRefType::get(dynShape, builder.getI1Type());
    Type t3 = MemRefType::get(dynShape, builder.getIndexType());
    Type t4 = builder.getIndexType();
    auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
    assert(r.getNumResults() == 4);
    env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
                    r.getResult(3));
  } else {
    SmallVector<Value> indices;
    for (LoopOrd i = 0; i < at; i++)
      indices.push_back(env.emitter().getLoopIV(i));
    Value values = env.getExpandValues();
    Value filled = env.getExpandFilled();
    Value added = env.getExpandAdded();
    Value count = env.getExpandCount();
    Value chain = env.getInsertionChain();
    Value compress = builder.create<CompressOp>(loc, values, filled, added,
                                                count, chain, indices);
    env.updateInsertionChain(compress);
    env.endExpand();
  }
}

/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
  // Reject parallelization of sparse output.
  if (env.hasSparseOutput())
    return false;
  // Parallel loops on tensor expansion can cause data races.
  if (env.isExpand())
    return false;
  // Inspect strategy.
  switch (env.options().parallelizationStrategy) {
  case SparseParallelizationStrategy::kNone:
    return false;
  case SparseParallelizationStrategy::kDenseOuterLoop:
    return isOuter && !isSparse;
  case SparseParallelizationStrategy::kAnyStorageOuterLoop:
    return isOuter;
  case SparseParallelizationStrategy::kDenseAnyLoop:
    return !isSparse;
  case SparseParallelizationStrategy::kAnyStorageAnyLoop:
    return true;
  }
  llvm_unreachable("unexpected parallelization strategy");
}

/// Generates a for-loop on a single index.
static Operation *genFor(CodegenEnv &env, OpBuilder &builder, bool isOuter,
                         bool isInner, LoopId ldx,
                         ArrayRef<TensorLevel> tidLvls) {
  linalg::GenericOp op = env.op();
  Location loc = op.getLoc();
  auto iteratorTypes = op.getIteratorTypesArray();
  bool isSparse = llvm::any_of(tidLvls, [ldx, &env](TensorLevel tidLvl) {
    // Queries the DLT based on the tensor id and loop idx, as requested by
    // `CodegenEnv::dlt(TensorId, LoopIdx)`. The returned DLT from CodegenEnv
    // should be consistent with the DLT indexed by <TensorId, Level>.
    const auto dlt = env.dlt(env.unpackTensorLevel(tidLvl).first, ldx);
    return isCompressedDLT(dlt) || isSingletonDLT(dlt);
  });

  bool isParallel = isParallelFor(env, isOuter, isSparse);

  Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
    if (env.merger().isFilterLoop(ldx)) {
      const auto [tid, lvl] = env.unpackTensorLevel(tidLvls.front());
      // tids/lvls must only have one value because filter loops only
      // corresponding to the one and only sparse tensor level.
      assert(isSparse && tidLvls.size() == 1);
      OpOperand *t = &op->getOpOperand(tid);
      auto enc = getSparseTensorEncoding(t->get().getType());
      // Retrieves the affine expression for the filter loop.
      // FIXME: `toOrigDim` is deprecated.
      AffineExpr a =
          op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, lvl));
      return env.emitter().enterFilterLoopOverTensorAtLvl(builder, loc, tid,
                                                          lvl, a, reduc);
    }
    return env.emitter().enterLoopOverTensorAtLvl(builder, loc, tidLvls, reduc,
                                                  isParallel);
  });
  assert(loop);
  return loop;
}

/// Emit a while-loop for co-iteration over multiple indices.
static Operation *genWhile(CodegenEnv &env, OpBuilder &builder, LoopId idx,
                           bool needsUniv, ArrayRef<TensorLevel> tidLvls) {
  Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
    // Construct the while-loop with a parameter for each
    // index.
    return env.emitter().enterCoIterationOverTensorsAtLvls(
        builder, env.op().getLoc(), tidLvls, needsUniv, reduc);
  });
  assert(loop);
  return loop;
}

/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
                          bool needsUniv, ArrayRef<TensorLevel> tidLvls,
                          bool isFor) {
  const LoopId idx = env.topSortAt(at);
  if (isFor) {
    bool isOuter = at == 0;
    bool isInner = at == env.topSortSize() - 1;
    return genFor(env, builder, isOuter, isInner, idx, tidLvls);
  }
  return genWhile(env, builder, idx, needsUniv, tidLvls);
}

/// Generates the induction structure for a while-loop.
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, LoopId idx,
                            bool needsUniv, scf::WhileOp whileOp) {
  Location loc = env.op().getLoc();
  // Finalize each else branch of all if statements.
  if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
    while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
               builder.getInsertionBlock()->getParentOp())) {
      // Break on IfOp for slicing filtering.
      if (ifOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ==
          StringAttr::get(ifOp->getContext(), "slice"))
        break;

      unsigned y = 0;
      SmallVector<Value> yields;
      if (env.isReduc()) {
        yields.push_back(env.getReduc());
        env.updateReduc(ifOp.getResult(y++));
        if (env.getValidLexInsert()) {
          yields.push_back(env.getValidLexInsert());
          env.setValidLexInsert(ifOp.getResult(y++));
        }
      }
      if (env.isExpand()) {
        yields.push_back(env.getExpandCount());
        env.updateExpandCount(ifOp->getResult(y++));
      }
      if (env.getInsertionChain()) {
        yields.push_back(env.getInsertionChain());
        env.updateInsertionChain(ifOp->getResult(y++));
      }
      assert(y == yields.size());
      builder.create<scf::YieldOp>(loc, yields);
      builder.setInsertionPointAfter(ifOp);
    }
  }
  builder.setInsertionPointToEnd(&whileOp.getAfter().front());
}

/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
                       LatPointId p) {
  Location loc = env.op().getLoc();
  SmallVector<Type> types;
  Value cond;
  env.merger().foreachTensorLoopId(
      p, /*simple=*/true,
      [&](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
          DimLevelType dlt, bool /*unused*/) {
        assert(ldx == env.merger().loop(b));
        Value clause;
        if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
            isCompressedWithHiDLT(dlt)) {
          assert(lvl.has_value());
          const Value crd = env.emitter().getCoords()[tid][*lvl];
          const Value lvar = env.getLoopVar(ldx);
          clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                                 crd, lvar);
        } else {
          assert(isDenseDLT(dlt) || isUndefDLT(dlt));
          clause = constantI1(builder, loc, true);
        }
        cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
      });
  if (env.isReduc()) {
    types.push_back(env.getReduc().getType());
    if (env.getValidLexInsert())
      types.push_back(env.getValidLexInsert().getType());
  }
  if (env.isExpand())
    types.push_back(builder.getIndexType());
  if (env.getInsertionChain())
    types.push_back(env.getInsertionChain().getType());
  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
  return ifOp;
}

/// Generates end of true branch of if-statement within a while-loop.
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
                  Operation *loop, Value redInput, Value cntInput,
                  Value insInput) {
  SmallVector<Value> operands;
  if (env.isReduc()) {
    operands.push_back(env.getReduc());
    env.updateReduc(redInput);
    if (env.getValidLexInsert())
      // Any overlapping indices during a reduction creates a valid lex insert.
      operands.push_back(constantI1(builder, env.op().getLoc(), true));
  }
  if (env.isExpand()) {
    operands.push_back(env.getExpandCount());
    env.updateExpandCount(cntInput);
  }
  if (env.getInsertionChain()) {
    operands.push_back(env.getInsertionChain());
    env.updateInsertionChain(insInput);
  }
  if (!operands.empty())
    builder.create<scf::YieldOp>(env.op().getLoc(), operands);
  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}

//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//

/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, ExprId exp,
                         LoopOrd at, LoopId idx, LoopId ldx, LatSetId lts) {
  assert(!env.getLoopVar(idx));
  // Emit invariants at this loop sequence level.
  genInvariants(env, builder, exp, ldx, /*atStart=*/true);
  // Emit access pattern expansion for sparse tensor output.
  genExpand(env, builder, at, /*atStart=*/true);
  // Emit further intitialization at this loop sequence level.
  const LatPointId l0 = env.set(lts)[0];
  bool needsUniv = false;

  SmallVector<TensorLevel> tidLvls;
  env.merger().foreachTensorLoopId(l0, [&](TensorLoopId b, TensorId tid,
                                           std::optional<Level> lvl,
                                           DimLevelType dlt, bool isIdxReduc) {
    assert(env.merger().loop(b) == idx);
    if (isDenseDLT(dlt) || isUndefDLT(dlt))
      needsUniv = true;
    if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
        isCompressedWithHiDLT(dlt) || isIdxReduc) {
      // Only when this is a index reduction loop, can the dlt be undefined.
      assert(!isUndefDLT(dlt) || isIdxReduc);
      // sparse/singleton levels, or a dense/sparse index reduction loop.
      tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
    }
  });

  env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tidLvls);

  // Maintain the universal index only if it is actually
  // consumed by a subsequent lattice point.
  if (needsUniv) {
    for (const LatPointId li : env.set(lts).drop_front())
      if (!env.merger().hasAnySparse(env.lat(li).simple))
        return true;
  }
  return false;
}

static void genConstantDenseAddressFromLevel(CodegenEnv &env,
                                             OpBuilder &builder, TensorId tid,
                                             Level startLvl) {
  // TODO: Handle affine expression on output tensor.
  linalg::GenericOp op = env.op();
  assert(tid < op.getNumDpsInputs());
  OpOperand *input = op.getDpsInputOperands()[tid];
  const auto lvlExprs = op.getMatchingIndexingMap(input).getResults();
  const auto enc = getSparseTensorEncoding(input->get().getType());
  if (enc) {
    const Location loc = op.getLoc();
    const TensorId tid = env.makeTensorId(input->getOperandNumber());
    const Level lvlRank = enc.getLvlRank();
    assert(lvlExprs.size() == static_cast<size_t>(lvlRank));
    // FIXME: there is dim/lvl confusion here
    for (Level l = startLvl; l < lvlRank; l++) {
      // FIXME: `toOrigDim` is deprecated.
      AffineExpr lvlExpr = lvlExprs[toOrigDim(enc, l)];
      if (enc.isDenseLvl(l) && lvlExpr.isa<AffineConstantExpr>())
        env.emitter().genDenseAffineAddress(
            builder, loc, env.makeTensorLevel(tid, l), lvlExpr);
      else
        return; // break on first non-dense non-constant level
    }
  }
}

static void genInitConstantDenseAddress(CodegenEnv &env,
                                        RewriterBase &rewriter) {
  // We can generate address for constant affine expression before any loops
  // starting from the first level as they do not depend on any thing.
  // E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
  // levels can be determined before loops.
  for (TensorId tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
    genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
}

/// Return true if the lattices bit can be iterated by a for loop.
static bool translateBitsToTidLvlPairs(
    CodegenEnv &env, LatPointId li, LoopId ldx,
    SmallVectorImpl<TensorLevel> &tidLvls,
    SmallVectorImpl<std::pair<TensorLevel, AffineExpr>> &affineTidLvls) {
  const BitVector &simple = env.lat(li).simple;
  const TensorId outTid = env.merger().getOutTensorID();
  const std::optional<Level> outLvl = env.merger().getLvl(outTid, ldx);

  unsigned numloopCond = 0;
  bool hasNonUnique = false;
  env.merger().foreachTensorLoopId(
      li, [&, ldx](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
                   DimLevelType dlt, bool isIdxReduc) {
        if (simple[b]) {
          if (isIdxReduc) {
            tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
            numloopCond++;
            return;
          }
          if (isUndefDLT(dlt)) {
            // An undefined dlt in the lattices, we probably mean to
            // iterate based on the level of output tensor.  E.g., this
            // could be a synthetic tensor (for invariants and sparse
            // output tensor).
            // out[i][j] = invariant; or a broadcast
            // out[i][j] = in[i] (j is undef for input)
            tid = outTid;
            lvl = outLvl;
            // Skips invalid lvl (e.g., when this is a zero ranked tensor).
            if (!lvl)
              return;
          }
          hasNonUnique = !isUniqueDLT(dlt) || hasNonUnique;
          tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
          numloopCond++;
        } else if (isDenseDLT(dlt) || isIdxReduc) {
          tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
        } else {
          assert(isUndefDLT(dlt));
          linalg::GenericOp op = env.op();
          if (tid >= op.getNumDpsInputs())
            // We only handle affine expression on input tensors (for now).
            return;
          OpOperand *operand = &op->getOpOperand(tid);
          const auto stt = getSparseTensorType(operand->get());
          // Non-annotated dense tensors requires no special handling.
          if (!stt.hasEncoding())
            return;

          ArrayRef<AffineExpr> affines =
              op.getMatchingIndexingMap(operand).getResults();
          const Level lvlRank = stt.getLvlRank();
          assert(affines.size() == static_cast<size_t>(lvlRank));
          for (Level l = 0; l < lvlRank; l++) {
            // FIXME: `toOrigDim` is deprecated.
            AffineExpr exp = affines[toOrigDim(stt.getEncoding(), l)];
            // Skip simple affine expression and non-dense levels (which
            // have their own filter loop).
            if (exp.isa<AffineDimExpr>() || !stt.isDenseLvl(l))
              continue;

            // Constant affine expression are handled in genLoop
            if (!exp.isa<AffineConstantExpr>()) {
              bool isAtLoop = false;
              if (isInvariantAffine(env, exp, ldx, isAtLoop) && isAtLoop) {
                // If the compound affine is invariant and we are right at the
                // level. We need to generate the address according to the
                // affine expression. This is also the best place we can do it
                // to avoid putting it inside inner loops.
                // NOTE: It assumes that the levels of the input tensor are
                // initialized in order (and it is also currently guaranteed by
                // computeIterationGraph), another more admissible approach
                // might be accepting out-of-order access between consecutive
                // dense levels.
                affineTidLvls.emplace_back(env.makeTensorLevel(tid, l), exp);
              }
            }
          }
        }
      });

  if (isDenseDLT(env.dlt(outTid, ldx))) {
    // Note that we generate dense indices of the output tensor
    // unconditionally, since they may not appear in the lattice, but may be
    // needed for linearized env.
    tidLvls.push_back(env.makeTensorLevel(outTid, *outLvl));
  }

  assert(numloopCond > 0);
  // If we just need to one loop conditions and the conditions is not imposed on
  // non-unique level, the loop can be generated by a for loop.
  return numloopCond == 1 && !hasNonUnique;
}

/// Starts a single loop in current sequence.
static std::pair<Operation *, bool> startLoop(CodegenEnv &env,
                                              OpBuilder &builder, LoopOrd at,
                                              LatPointId li, bool needsUniv) {
  // The set of tensors + lvls to generate loops on
  SmallVector<TensorLevel> tidLvls;
  // The set of dense tensors with non-trivial affine expression that just
  // becomes invariant and the address shall now be generated at the current
  // level.
  SmallVector<std::pair<TensorLevel, AffineExpr>> affineTidLvls;
  bool isSingleCond = translateBitsToTidLvlPairs(env, li, env.topSortAt(at),
                                                 tidLvls, affineTidLvls);

  // Emit the for/while-loop control.
  Operation *loop = genLoop(env, builder, at, needsUniv, tidLvls, isSingleCond);
  Location loc = env.op().getLoc();
  for (auto [tidLvl, exp] : affineTidLvls) {
    env.emitter().genDenseAffineAddress(builder, loc, tidLvl, exp);
  }

  // Until now, we have entered every <tid, lvl> pair in {cond, extra,
  // affine}Tids/Lvls. The addresses of the upcoming levels which are dependent
  // on constant affines expression may now be determined.
  auto allTidLvls =
      llvm::concat<TensorLevel>(tidLvls, llvm::make_first_range(affineTidLvls));
  for (auto [tid, lvl] : env.unpackTensorLevelRange(allTidLvls)) {
    if (tid != env.merger().getOutTensorID())
      genConstantDenseAddressFromLevel(env, builder, tid, lvl + 1);
  }

  return std::make_pair(loop, isSingleCond);
}

/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
                    LoopId idx, LatPointId li, bool needsUniv,
                    bool isSingleCond) {

  if (isSingleCond) {
    // Either a for-loop or a while-loop that iterates over a slice.
    // Any iteration creates a valid lex insert.
    if (env.isReduc() && env.getValidLexInsert())
      env.setValidLexInsert(constantI1(rewriter, env.op().getLoc(), true));
  } else if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
    // End a while-loop.
    finalizeWhileOp(env, rewriter, idx, needsUniv, whileOp);
  } else {
    needsUniv = false;
  }

  env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
    env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
    return std::nullopt;
  });

  return needsUniv;
}

/// Ends a loop sequence at given level.
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
                       unsigned at, unsigned idx, unsigned ldx) {
  assert(!env.getLoopVar(idx));
  env.emitter().exitCurrentLoopSeq(builder, env.op().getLoc());
  // Unmark bookkeeping of invariants and loop index.
  genInvariants(env, builder, exp, ldx, /*atStart=*/false);
  // Finalize access pattern expansion for sparse tensor output.
  genExpand(env, builder, at, /*atStart=*/false);
}

/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, ExprId exp,
                    LoopOrd at) {
  // At each leaf, assign remaining tensor (sub)expression to output tensor.
  if (at == env.topSortSize()) {
    const LoopId ldx = env.topSortAt(at - 1);
    Value rhs = genExp(env, rewriter, exp, ldx);
    genTensorStore(env, rewriter, exp, rhs);
    return;
  }

  // Construct iteration lattices for current loop index, with L0 at top.
  const LoopId idx = env.topSortAt(at);
  const LoopId ldx = at == 0 ? ::mlir::sparse_tensor::detail::kInvalidId
                             : env.topSortAt(at - 1);
  const LatSetId lts =
      env.merger().optimizeSet(env.merger().buildLattices(exp, idx));

  // Start a loop sequence.
  bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);

  // Emit a loop for every lattice point L0 >= Li in this loop sequence.
  //
  // NOTE: We cannot change this to `for (const LatPointId li : env.set(lts))`
  // because the loop body causes data-movement which invalidates
  // the iterator.
  const unsigned lsize = env.set(lts).size();
  for (unsigned i = 0; i < lsize; i++) {
    const LatPointId li = env.set(lts)[i];
    // Start a loop.
    auto [loop, isSingleCond] = startLoop(env, rewriter, at, li, needsUniv);

    // Visit all lattices points with Li >= Lj to generate the
    // loop-body, possibly with if statements for coiteration.
    Value redInput = env.getReduc();
    Value cntInput = env.getExpandCount();
    Value insInput = env.getInsertionChain();
    // NOTE: We cannot change this to `for (const LatPointId lj : env.set(lts))`
    // because the loop body causes data-movement which invalidates the
    // iterator.
    for (unsigned j = 0; j < lsize; j++) {
      const LatPointId lj = env.set(lts)[j];
      const ExprId ej = env.lat(lj).exp;
      if (li == lj || env.merger().latGT(li, lj)) {
        // Recurse into body of each branch.
        if (!isSingleCond) {
          scf::IfOp ifOp = genIf(env, rewriter, idx, lj);
          genStmt(env, rewriter, ej, at + 1);
          endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput);
        } else {
          genStmt(env, rewriter, ej, at + 1);
        }
      }
    }

    // End a loop.
    needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv, isSingleCond);
  }

  // End a loop sequence.
  endLoopSeq(env, rewriter, exp, at, idx, ldx);
}

/// Converts the result computed by the sparse kernel into the required form.
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
  linalg::GenericOp op = env.op();
  OpOperand *lhs = op.getDpsInitOperand(0);
  Value tensor = lhs->get();
  Type resType = tensor.getType();
  if (getSparseTensorEncoding(resType)) {
    // The sparse tensor rematerializes from the original sparse tensor's
    // underlying sparse storage format. For an insertion chain, the
    // tensor materializes from the chain with 'hasInserts' enabled.
    bool hasInserts = false;
    if (Value chain = env.getInsertionChain()) {
      hasInserts = true;
      tensor = chain;
    }
    rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
  } else {
    // To rematerialize an non-annotated tensor, simply load it
    // from the bufferized value.
    Value val = env.emitter().getValBuffer().back(); // value array
    rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
  }
}

//===----------------------------------------------------------------------===//
// Sparse compiler rewriting methods.
//===----------------------------------------------------------------------===//

namespace {

/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
  GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
      : OpRewritePattern<linalg::GenericOp>(context), options(o) {}

  LogicalResult matchAndRewrite(linalg::GenericOp op,
                                PatternRewriter &rewriter) const override {
    // Only accept single output operations without affine index on sparse
    // output.
    if (op.getNumDpsInits() != 1 || hasNonTrivialAffineOnSparseOut(op))
      return failure();

    // Sets up a code generation environment.
    const unsigned numTensors = op->getNumOperands();
    const unsigned numLoops = op.getNumLoops();
    const unsigned numFilterLoops = getNumNonTrivialIdxExpOnSparseLvls(op);
    // TODO: we should probably always use slice-based codegen whenever
    // possible, we can even intermix slice-based and filter-loop based codegen.
    bool idxReducBased = options.enableIndexReduction && numFilterLoops != 0;

    // If we have indexing map like (d0) -> (0, d0), there might be more
    // levels then loops because of the constant index, that means we can not
    // use numLoops as the upper bound for ranks of all tensors.
    // TODO: Constant indices are currently not support on sparse tensor, but
    // are allowed in non-annotated dense tensor. Support it, it would be
    // required for sparse tensor slice rank reducing too.
    Level maxLvlRank = 0;
    for (auto operand : op.getOperands()) {
      if (auto rtp = dyn_cast<RankedTensorType>(operand.getType())) {
        maxLvlRank = std::max(maxLvlRank, SparseTensorType(rtp).getLvlRank());
      }
    }

    // If we uses slice based algorithm for affine index, we do not need filter
    // loop.
    CodegenEnv env(op, options, numTensors, numLoops,
                   /*numFilterLoops=*/idxReducBased ? 0 : numFilterLoops,
                   maxLvlRank);

    // Detects sparse annotations and translates the per-level sparsity
    // information for all tensors to loop indices in the kernel.
    if (!findSparseAnnotations(env, idxReducBased))
      return failure();

    // Constructs the tensor expressions tree from `op`, returns failure if the
    // tree can not be built or the tensor expression is inadmissible.
    if (failed(env.initTensorExp()))
      return failure();

    // Computes a topologically sorted iteration graph to ensure tensors
    // are visited in natural index order. Gradually relaxes the considered
    // constraints until an acyclic iteration graph results, such that sparse
    // code generation can proceed. As a last resort, an attempt is made
    // to resolve cycles by inserting a conversion.
    bool isAdmissible = false;
    bool hasCycle = true;

    // An const list of all masks that we used for interation graph
    // computation. Must be ordered from more strict to less strict.
    // Ideally (though might not be guaranteed), the eariler a constraint mask
    // can be satisfied, the faster the generated kernel will be.
    const auto allMasks = {
        SortMask::kIncludeAll,        SortMask::kIncludeDense,
        SortMask::kIncludeDenseInput, SortMask::kIncludeDenseOutput,
        SortMask::kIncludeUndef,      SortMask::kSparseOnly};
    for (const SortMask mask : allMasks) {
      if (computeIterationGraph(env, mask, nullptr, idxReducBased)) {
        hasCycle = false;
        if (env.isAdmissibleTopoOrder()) {
          isAdmissible = true;
          break;
        }
        // else try a set of less strict constraints.
      }
    }
    if (hasCycle) {
      return idxReducBased
                 ? failure() // TODO: should cycle be resolved differently?
                 : resolveCycle(env, rewriter); // one last shot
    }

    if (!isAdmissible)
      return failure(); // inadmissible expression, reject

    // Recursively generates code if admissible.
    env.startEmit();
    genBuffers(env, rewriter);
    // TODO: Constant affine expression should be handled differently when using
    // slice-based codegen, it does not matter now becasue we already reject the
    // constant expression at a earlier stage.
    genInitConstantDenseAddress(env, rewriter);
    genStmt(env, rewriter, env.getExprId(), 0);
    genResult(env, rewriter);
    return success();
  }

private:
  // Last resort cycle resolution.
  LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
    // Compute topological sort while leaving out every
    // sparse input tensor in succession until an acylic
    // iteration graph results.
    for (OpOperand *t : env.op().getDpsInputOperands()) {
      const TensorId tid = env.makeTensorId(t->getOperandNumber());
      Value tval = t->get();
      auto srcEnc = getSparseTensorEncoding(tval.getType());
      if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
        continue;
      // Found an input tensor that resolves the cycle by inserting a
      // conversion into a sparse tensor that adheres to the iteration
      // graph order. Also releases the temporary sparse tensor.
      //
      // TODO: investigate fusing the conversion with computation,
      //       especially if it is a direct yield!
      //
      auto srcTp = getRankedTensorType(tval);
      auto dstEnc = SparseTensorEncodingAttr::get(
          getContext(), srcEnc.getLvlTypes(),
          permute(env, env.op().getMatchingIndexingMap(t)), // new order
          srcEnc.getHigherOrdering(), srcEnc.getPosWidth(),
          srcEnc.getCrdWidth());
      auto dstTp = RankedTensorType::get(srcTp.getShape(),
                                         srcTp.getElementType(), dstEnc);
      auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
      rewriter.updateRootInPlace(env.op(),
                                 [&]() { env.op()->setOperand(tid, convert); });
      rewriter.setInsertionPointAfter(env.op());
      rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
      return success();
    }
    // Cannot be resolved with a single conversion.
    // TODO: convert more than one?
    return failure();
  }

  /// Options to control sparse code generation.
  SparsificationOptions options;
};

} // namespace

/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
    RewritePatternSet &patterns, const SparsificationOptions &options) {
  patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}