1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
|
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return std::nullopt;
}
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvlMap().getDimPosition(lvl);
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
if (const auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Populates the array with the dimension-shape of the given
/// `SparseTensorType`, where dynamic sizes are represented by zero.
static void fillDimShape(OpBuilder &builder, Location loc, SparseTensorType stt,
SmallVectorImpl<Value> &out) {
out.clear();
out.reserve(stt.getDimRank());
for (const DynSize sh : stt.getDimShape()) {
const auto s = ShapedType::isDynamic(sh) ? 0 : sh;
out.push_back(constantIndex(builder, loc, s));
}
}
/// Returns an array with the dimension-shape of the given `SparseTensorType`,
/// where dynamic sizes are represented by zero.
static SmallVector<Value> getDimShape(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> out;
fillDimShape(builder, loc, stt, out);
return out;
}
/// Populates the given sizes array for concatenation from type (for static
/// sizes) and from an already-converted opaque pointer source (for dynamic
/// sizes).
static void concatDimSizesFromInputs(OpBuilder &builder, Location loc,
SparseTensorType dstTp, ValueRange srcs,
Dimension dim,
SmallVectorImpl<Value> &dimSizes) {
assert(dim < dstTp.getDimRank() && "Dimension is out of bounds");
dimSizes.clear();
// We first fills the sizes from an input tensor, and then
// compute the size of the concatenation dimension if necessary.
const auto srcTp = getSparseTensorType(srcs[0]);
if (srcTp.hasEncoding())
// Reuses sizes from an arbitrary input tensor is fine.
fillDimSizes(builder, loc, srcTp, srcs[0], dimSizes);
else
sizesFromSrc(builder, dimSizes, loc, srcs[0]);
if (const auto sz = dstTp.getStaticDimSize(dim)) {
// Faithfully take the static size.
dimSizes[dim] = constantIndex(builder, loc, *sz);
} else {
// Else, dynamically compute the size.
for (const auto src : srcs.drop_front()) {
const auto srcTp = getSparseTensorType(src);
Value srcSz = createOrFoldDimCall(builder, loc, srcTp, src, dim);
dimSizes[dim] = builder.create<arith::AddIOp>(loc, dimSizes[dim], srcSz);
}
}
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto dlt : stt.getEncoding().getLvlTypes())
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need to make modifications to client code whenever that
/// API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters,
/// but does not initialize them.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
/// This method does not set the action and pointer arguments, since
/// those are handled by `genNewCall` instead.
NewCallParams &genBuffers(SparseTensorType stt, ValueRange dimSizes);
/// (Re)sets the C++ template type parameters, and returns `this`
/// for method chaining. This is already done as part of `genBuffers`,
/// but is factored out so that it can also be called independently
/// whenever subsequent `genNewCall` calls want to reuse the same
/// buffers but different type parameters.
//
// TODO: This is only ever used by sparse2sparse-viaCOO `ConvertOp`;
// is there a better way to handle that than this one-off setter method?
NewCallParams &setTemplateTypes(SparseTensorType stt) {
const auto enc = stt.getEncoding();
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Gets the dimension-to-level mapping.
//
// TODO: This is only ever used for passing into `genAddEltCall`;
// is there a better way to encapsulate that pattern (both to avoid
// this one-off getter, and to avoid potential mixups)?
Value getDim2LvlMap() const {
assert(isInitialized() && "Must initialize before getDim2LvlMap");
return params[kParamDim2Lvl];
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::NullOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamLvl2Dim = 3;
static constexpr unsigned kParamDim2Lvl = 4;
static constexpr unsigned kParamPosTp = 5;
static constexpr unsigned kParamCrdTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
// TODO: see the note at `_mlir_ciface_newSparseTensor` about how
// the meaning of the various arguments (e.g., "sizes" vs "shapes")
// is inconsistent between the different actions.
NewCallParams &NewCallParams::genBuffers(SparseTensorType stt,
ValueRange dimSizes) {
const Level lvlRank = stt.getLvlRank();
const Dimension dimRank = stt.getDimRank();
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Dimension-sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
assert(dimSizes.size() == static_cast<size_t>(dimRank) &&
"Dimension-rank mismatch");
params[kParamDimSizes] = allocaBuffer(builder, loc, dimSizes);
// The level-sizes array must be passed as well, since for arbitrary
// dim2lvl mappings it cannot be trivially reconstructed at runtime.
// For now however, since we're still assuming permutations, we will
// initialize this parameter alongside the `dim2lvl` and `lvl2dim`
// parameters below. We preinitialize `lvlSizes` for code symmetry.
SmallVector<Value> lvlSizes(lvlRank);
// The dimension-to-level mapping and its inverse. We must preinitialize
// `dim2lvl` so that the true branch below can perform random-access
// `operator[]` assignment. We preinitialize `lvl2dim` for code symmetry.
SmallVector<Value> dim2lvl(dimRank);
SmallVector<Value> lvl2dim(lvlRank);
if (!stt.isIdentity()) {
const auto dimOrder = stt.getDimToLvlMap();
assert(dimOrder.isPermutation());
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
const Dimension d = dimOrder.getDimPosition(l);
dim2lvl[d] = constantIndex(builder, loc, l);
lvl2dim[l] = constantIndex(builder, loc, d);
lvlSizes[l] = dimSizes[d];
}
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
for (Level l = 0; l < lvlRank; l++) {
dim2lvl[l] = lvl2dim[l] = constantIndex(builder, loc, l);
lvlSizes[l] = dimSizes[l];
}
}
params[kParamLvlSizes] = allocaBuffer(builder, loc, lvlSizes);
params[kParamLvl2Dim] = allocaBuffer(builder, loc, lvl2dim);
params[kParamDim2Lvl] = stt.isIdentity()
? params[kParamLvl2Dim]
: allocaBuffer(builder, loc, dim2lvl);
// Secondary and primary types encoding.
setTemplateTypes(stt);
// Finally, make note that initialization is complete.
assert(isInitialized() && "Initialization failed");
// And return `this` for method chaining.
return *this;
}
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
ValueRange ptr) {
SmallString<15> name{"sparseValues",
primaryTypeFunctionSuffix(tp.getElementType())};
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to release/delete a `SparseTensorCOO`.
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
Value coo) {
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
}
/// Generates a call to release/delete a `SparseTensorIterator`.
static void genDelIteratorCall(OpBuilder &builder, Location loc, Type elemTp,
Value iter) {
SmallString<26> name{"delSparseTensorIterator",
primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, iter, EmitCInterface::Off);
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
Value lvlCOO, Value valPtr, Value dimCoords,
Value dim2lvl) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{lvlCOO, valPtr, dimCoords, dim2lvl};
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `coords` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the return value is false.
///
/// The `coords` argument uses the same coordinate-space as the `iter`
/// (which can be either dim- or lvl-coords, depending on context).
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
Value coords, Value elemPtr) {
Type elemTp = cast<ShapedType>(elemPtr.getType()).getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, coords, elemPtr};
Type i1 = builder.getI1Type();
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// Loads the value stored in `elemPtr`, and stores it at the coordinates
/// `cvs` into a dense tensor created by `allocDenseTensor`.
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
ValueRange cvs) {
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, cvs);
}
/// Determine if the runtime library supports direct conversion to the
/// given target `dimTypes`.
static bool canUseDirectConversion(ArrayRef<DimLevelType> dimTypes) {
bool alreadyCompressed = false;
for (const auto dlt : dimTypes) {
if (isCompressedDLT(dlt)) {
if (alreadyCompressed)
return false; // Multiple compressed dimensions not yet supported.
alreadyCompressed = true;
} else if (isDenseDLT(dlt)) {
if (alreadyCompressed)
return false; // Dense after Compressed not yet supported.
} else if (isSingletonDLT(dlt)) {
// Direct conversion doesn't have any particular problems with
// singleton after compressed.
} else { // TODO: investigate
return false;
}
}
return true;
}
/// Helper method to translate coordinates during a reshaping operation.
/// TODO: provide as general utility to MLIR at large?
static void reshapeCoords(Location loc, OpBuilder &builder,
ArrayRef<ReassociationIndices> reassociation,
ValueRange srcSizes, Value srcCoords,
ValueRange dstSizes, Value dstCoords) {
const auto srcCvs = loadAll(builder, loc, srcSizes.size(), srcCoords);
SmallVector<Value> dstCvs;
reshapeCvs(builder, loc, reassociation, srcSizes, srcCvs, dstSizes, dstCvs);
assert(dstCvs.size() == dstSizes.size());
storeAll(builder, loc, dstCoords, dstCvs);
}
/// Generate code for a general sparse to sparse reshaping operation.
/// Note that unlike dense reshaping (which can be done with a "cheap"
/// change of view), sparse reshaping is currently done with actual
/// data shuffling.
///
/// TODO: proportional to nnz, but still a lot of data movement
/// https://github.com/llvm/llvm-project/issues/56477
///
/// iter = src->toCOO();
/// coo = newSparseCOO()
/// while (elem = iter->getNext()) {
/// coo->add(reshape(elem.coords), elem.value)
/// }
/// s = newSparseTensor(coo)
template <typename ReshapeOp>
static LogicalResult
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
Location loc = op.getLoc();
const auto srcTp = getSparseTensorType(op.getSrc());
const auto dstTp = getSparseTensorType(op.getResult());
if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
return failure();
Type elemTp = srcTp.getElementType();
assert(elemTp == dstTp.getElementType() &&
"reshape should not change element type");
// Start an iterator over the source tensor (in coordinate order).
SmallVector<Value> srcDimSizes =
getDimSizes(rewriter, loc, srcTp, adaptor.getSrc());
NewCallParams params(rewriter, loc);
Value iter = params.genBuffers(srcTp.withoutOrdering(), srcDimSizes)
.genNewCall(Action::kToIterator, adaptor.getSrc());
// Start a new COO for the destination tensor.
SmallVector<Value> dstDimSizes;
if (dstTp.hasStaticDimShape())
// Static "shapes" are in fact "sizes".
fillDimShape(rewriter, loc, dstTp, dstDimSizes);
else
genReshapeDstShape(rewriter, loc, dstDimSizes, srcDimSizes,
dstTp.getDimShape(), op.getReassociationIndices());
const Value coo =
params.genBuffers(dstTp, dstDimSizes).genNewCall(Action::kEmptyCOO);
const Value dstPerm = params.getDim2LvlMap();
// Construct a while loop over the iterator.
const Type iTp = rewriter.getIndexType();
const Value srcDimCoords = genAlloca(rewriter, loc, srcTp.getDimRank(), iTp);
const Value dstDimCoords = genAlloca(rewriter, loc, dstTp.getDimRank(), iTp);
const Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Translate coordinates from source to target and insert. Note that we do
// not need to store the value in elemPtr, as the value is still there.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
// We probably don't need these assertions, but better safe than sorry.
assert(srcTp.getDimRank() == srcDimSizes.size());
assert(dstTp.getDimRank() == dstDimSizes.size());
reshapeCoords(loc, rewriter, op.getReassociationIndices(), srcDimSizes,
srcDimCoords, dstDimSizes, dstDimCoords);
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstDimCoords, dstPerm);
rewriter.create<scf::YieldOp>(loc);
// Final call to construct sparse tensor storage and free temporary resources.
rewriter.setInsertionPointAfter(whileOp);
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOp(op, dst);
return success();
}
// Generates a while loop that iterates over the COO list extracted
// from `t`, using `bodyBuilder` to build the loop body.
// while (elem = coo->getNext()) {
// bodyBuilder
// }
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
// TODO: rename to `genSparseIterationLoop`?
static void genSparseCOOIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
assert(stt.hasEncoding() &&
"Generating Sparse Tensor COO Loop on a Dense Tensor!");
const Dimension dimRank = stt.getDimRank();
const Type elemTp = stt.getElementType();
// Start an iterator over the tensor (in coordinate order).
const auto noPerm = stt.withoutOrdering();
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, noPerm, t);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(noPerm, dimSizes)
.genNewCall(Action::kToIterator, t);
// Construct a while loop over the iterator.
const Type iTp = rewriter.getIndexType();
Value srcDimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcDimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
const bool hasDenseDim =
llvm::any_of(stt.getEncoding().getLvlTypes(), isDenseDLT);
if (hasDenseDim) {
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
Value isZero = genIsNonzero(rewriter, loc, elemV);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, isZero, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Callback here to build loop body.
bodyBuilder(rewriter, loc, srcDimCoords, elemPtr);
// Exit the scope from the IfOp.
if (hasDenseDim)
rewriter.setInsertionPointToEnd(after);
rewriter.create<scf::YieldOp>(loc);
// Finish generating loop.
rewriter.setInsertionPointAfter(whileOp);
// Free memory for iterator.
genDelIteratorCall(rewriter, loc, elemTp, iter);
}
// Generate loop that iterates over a dense tensor.
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// bodyBuilder(v, [i1, ..., ik])
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genDenseTensorIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
SparseTensorType stt,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
assert(!stt.hasEncoding() &&
"Generating Dense Tensor Loop on a Sparse Tensor!");
const Dimension dimRank = stt.getDimRank();
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
// Fill out loop iteration information.
for (Dimension d = 0; d < dimRank; d++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, d));
st.push_back(one);
}
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
// Invoke callback to build the body of the loop.
bodyBuilder(builder, loc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing dimension-sizes.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> dim = op.getConstantIndex();
if (!dim)
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(
op, createOrFoldDimCall(rewriter, op->getLoc(), stt, src, *dim));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for a reshape operator.
template <typename ReshapeOp>
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
public:
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return genSparse2SparseReshape(op, adaptor, rewriter);
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
const Dimension dimRank = stt.getDimRank();
const Level lvlRank = stt.getLvlRank();
// Construct the dimShape.
SmallVector<Value> dimShapeValues = getDimShape(rewriter, loc, stt);
Value dimShapeBuffer = allocaBuffer(rewriter, loc, dimShapeValues);
// Allocate `SparseTensorReader` and perform all initial setup that
// does not depend on lvlSizes (nor dim2lvl, lvl2dim, etc).
Type opaqueTp = getOpaquePointerType(rewriter);
Value valTp =
constantPrimaryTypeEncoding(rewriter, loc, stt.getElementType());
Value reader =
createFuncCall(rewriter, loc, "createCheckedSparseTensorReader",
opaqueTp,
{adaptor.getOperands()[0], dimShapeBuffer, valTp},
EmitCInterface::On)
.getResult(0);
// Construct the lvlSizes. If the dimShape is static, then it's
// identical to dimSizes: so we can compute lvlSizes entirely at
// compile-time. If dimShape is dynamic, then we'll need to generate
// code for computing lvlSizes from the `reader`'s actual dimSizes.
//
// TODO: For now we're still assuming `dim2lvl` is a permutation.
// But since we're computing lvlSizes here (rather than in the runtime),
// we can easily generalize that simply by adjusting this code.
//
// FIXME: reduce redundancy vs `NewCallParams::genBuffers`.
Value dimSizesBuffer;
if (stt.hasDynamicDimShape()) {
Type indexTp = rewriter.getIndexType();
auto memTp = MemRefType::get({ShapedType::kDynamic}, indexTp);
dimSizesBuffer =
createFuncCall(rewriter, loc, "getSparseTensorReaderDimSizes", memTp,
reader, EmitCInterface::On)
.getResult(0);
}
Value lvlSizesBuffer;
Value lvl2dimBuffer;
Value dim2lvlBuffer;
if (!stt.isIdentity()) {
const auto dimOrder = stt.getDimToLvlMap();
assert(dimOrder.isPermutation() && "Got non-permutation");
// We preinitialize `dim2lvlValues` since we need random-access writing.
// And we preinitialize the others for stylistic consistency.
SmallVector<Value> lvlSizeValues(lvlRank);
SmallVector<Value> lvl2dimValues(lvlRank);
SmallVector<Value> dim2lvlValues(dimRank);
for (Level l = 0; l < lvlRank; l++) {
// The `d`th source variable occurs in the `l`th result position.
Dimension d = dimOrder.getDimPosition(l);
Value lvl = constantIndex(rewriter, loc, l);
Value dim = constantIndex(rewriter, loc, d);
dim2lvlValues[d] = lvl;
lvl2dimValues[l] = dim;
lvlSizeValues[l] =
stt.isDynamicDim(d)
? rewriter.create<memref::LoadOp>(loc, dimSizesBuffer, dim)
: dimShapeValues[d];
}
lvlSizesBuffer = allocaBuffer(rewriter, loc, lvlSizeValues);
lvl2dimBuffer = allocaBuffer(rewriter, loc, lvl2dimValues);
dim2lvlBuffer = allocaBuffer(rewriter, loc, dim2lvlValues);
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
SmallVector<Value> iotaValues;
iotaValues.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
iotaValues.push_back(constantIndex(rewriter, loc, l));
lvlSizesBuffer = dimSizesBuffer ? dimSizesBuffer : dimShapeBuffer;
dim2lvlBuffer = lvl2dimBuffer = allocaBuffer(rewriter, loc, iotaValues);
}
// Use the `reader` to parse the file.
SmallVector<Value, 8> params{
reader,
lvlSizesBuffer,
genLvlTypesBuffer(rewriter, loc, stt),
lvl2dimBuffer,
dim2lvlBuffer,
constantPosTypeEncoding(rewriter, loc, stt.getEncoding()),
constantCrdTypeEncoding(rewriter, loc, stt.getEncoding()),
valTp};
Value tensor = createFuncCall(rewriter, loc, "newSparseTensorFromReader",
opaqueTp, params, EmitCInterface::On)
.getResult(0);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; ++d) {
dimSizes.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizes)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorConvertConverter(MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(context), options(o) {}
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getSource());
const auto dstTp = getSparseTensorType(op);
if (!srcTp.hasEncoding() && !dstTp.hasEncoding())
return failure();
const Dimension dimRank = srcTp.getDimRank();
const Type elemTp = srcTp.getElementType();
const Value src = adaptor.getOperands()[0];
if (srcTp.hasEncoding() && dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
const auto dstEnc = dstTp.getEncoding();
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (dstEnc == srcEnc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
bool useDirectConversion;
switch (options.sparseToSparseStrategy) {
case SparseToSparseConversionStrategy::kViaCOO:
useDirectConversion = false;
break;
case SparseToSparseConversionStrategy::kDirect:
useDirectConversion = true;
assert(canUseDirectConversion(dstEnc.getLvlTypes()) &&
"Unsupported target for direct sparse-to-sparse conversion");
break;
case SparseToSparseConversionStrategy::kAuto:
useDirectConversion = canUseDirectConversion(dstEnc.getLvlTypes());
break;
}
if (useDirectConversion) {
rewriter.replaceOp(
op, params.genBuffers(srcTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kSparseToSparse, src));
} else { // use via-COO conversion.
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
const auto mixedEnc = SparseTensorEncodingAttr::get(
op->getContext(), dstEnc.getLvlTypes(), dstEnc.getDimOrdering(),
dstEnc.getHigherOrdering(), srcEnc.getPosWidth(),
srcEnc.getCrdWidth());
// TODO: This is the only place where `kToCOO` (or `kToIterator`)
// is called with a non-identity permutation. Is there any clean
// way to push the permutation over to the `kFromCOO` side instead?
Value coo = params.genBuffers(srcTp.withEncoding(mixedEnc), dimSizes)
.genNewCall(Action::kToCOO, src);
Value dst = params.setTemplateTypes(srcTp.withEncoding(dstEnc))
.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
}
return success();
}
if (srcTp.hasEncoding() && !dstTp.hasEncoding()) {
const auto srcEnc = srcTp.getEncoding();
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = new SparseTensorIterator(src);
// while (elem = iter->getNext()) {
// dst[elem.coords] = elem.value;
// }
// delete iter;
//
// Fabricate a no-permutation encoding for NewCallParams
// The position/coordinate types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
const auto dstEnc = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<DimLevelType>(dimRank, DimLevelType::Dense), AffineMap(),
AffineMap(), srcEnc.getPosWidth(), srcEnc.getCrdWidth());
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value iter = NewCallParams(rewriter, loc)
.genBuffers(dstTp.withEncoding(dstEnc), dimSizes)
.genNewCall(Action::kToIterator, src);
const Type iTp = rewriter.getIndexType();
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Block *insertionBlock = rewriter.getInsertionBlock();
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
Value dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
const SmallVector<Value> noArgs;
const SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, dimCoords, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
const auto dcvs = loadAll(rewriter, loc, dimRank, dimCoords);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, dcvs);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
genDelIteratorCall(rewriter, loc, elemTp, iter);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
// Deallocate the buffer.
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
rewriter.setInsertionPoint(insertionBlock->getTerminator());
deallocDenseTensor(rewriter, loc, dst);
}
return success();
}
assert(!srcTp.hasEncoding() && dstTp.hasEncoding());
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = coordinates[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
SmallVector<Value> dimSizes;
sizesFromSrc(rewriter, dimSizes, loc, src);
NewCallParams params(rewriter, loc);
Value coo =
params.genBuffers(dstTp, dimSizes).genNewCall(Action::kEmptyCOO);
const Type iTp = rewriter.getIndexType();
Value dimCoords = genAlloca(rewriter, loc, dimRank, iTp);
Value perm = params.getDim2LvlMap();
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
genDenseTensorOrSparseConstantIterLoop(
rewriter, loc, src, dimRank,
[&](OpBuilder &builder, Location loc, Value val, ValueRange dcvs) {
assert(dcvs.size() == static_cast<size_t>(dimRank));
storeAll(builder, loc, dimCoords, dcvs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, coo, elemPtr, dimCoords, perm);
});
// Final call to construct sparse tensor storage.
Value dst = params.genNewCall(Action::kFromCOO, coo);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
return success();
}
private:
/// Options to control sparse code generation.
SparseTensorConversionOptions options;
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for position accesses.
class SparseTensorToPositionsConverter
: public OpConversionPattern<ToPositionsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resTp = op.getType();
Type posTp = cast<ShapedType>(resTp).getElementType();
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
Value lvl = constantIndex(rewriter, op->getLoc(), op.getLevel());
replaceOpWithFuncCall(rewriter, op, name, resTp, {adaptor.getTensor(), lvl},
EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for coordinate accesses.
class SparseTensorToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// TODO: use `SparseTensorType::getCrdType` instead.
Type resType = op.getType();
const Type crdTp = cast<ShapedType>(resType).getElementType();
SmallString<19> name{"sparseCoordinates",
overheadTypeFunctionSuffix(crdTp)};
Location loc = op->getLoc();
Value lvl = constantIndex(rewriter, loc, op.getLevel());
// The function returns a MemRef without a layout.
MemRefType callRetType = get1DMemRefType(crdTp, false);
SmallVector<Value> operands{adaptor.getTensor(), lvl};
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, callRetType,
operands, EmitCInterface::On);
Value callRet =
rewriter.create<func::CallOp>(loc, callRetType, fn, operands)
.getResult(0);
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (resType != callRetType)
callRet = rewriter.create<memref::CastOp>(loc, resType, callRet);
rewriter.replaceOp(op, callRet);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resType = cast<ShapedType>(op.getType());
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
adaptor.getOperands()));
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Query values array size for the actually stored values size.
Type eltType = cast<ShapedType>(op.getTensor().getType()).getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
constantIndex(rewriter, loc, 0));
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getTensor());
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
auto vref = genAllocaScalar(rewriter, loc, elemTp);
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{adaptor.getTensor(), lvlCoords, vref}, EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and coordinates.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, lvlCoords, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the concatenate operator.
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// The conversion works as follow:
// (1). When output is sparse and not all dims are dense, and mix of inputs:
// a_sparse = concat (b_dense, c_sparse, ....)
// =>
// coo_for_a = newSparseCOO(shapeOf(a))
// for i, j, k // dense input
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
//
// for elem in sparse_input
// coo->add(adjustForOffset(elem.coords), elem.value)
// ...
// a = newSparseTensor(coo_for_a)
// return a
//
// (2). When output is dense or annotated all dense, and mix of inputs:
// a_dense = concat (b_dense, c_sparse, ....)
// =>
// a = malloc(shapeOf(a)) or newSparseAllDense(shapeOf(a))
// for i, j, k // dense input
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
//
// for elem in sparse_input
// a[ adjustForOffset(elem.coords) ] = elem.value
// return a
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op);
const auto dstEnc = dstTp.getEncoding();
const Type elemTp = dstTp.getElementType();
const Dimension concatDim = op.getDimension();
const Dimension dimRank = dstTp.getDimRank();
Value dst; // destination tensor
Value dstPerm; // destination tensor permutation (if sparse out)
// A pointer to the value being inserted (if dense => sparse)
Value elemPtr;
// Memory that holds the dim-coords for destination tensor (if sparse out)
Value dstDimCoords;
// The offset applied to the dimension to be concated (starting from 0)
Value offset = constantIndex(rewriter, loc, 0);
SmallVector<Value> dimSizes;
concatDimSizesFromInputs(rewriter, loc, dstTp, op.getInputs(), concatDim,
dimSizes);
NewCallParams params(rewriter, loc);
const bool allDense = dstTp.hasEncoding() && dstTp.isAllDense();
Value dstTensor;
if (dstTp.hasEncoding()) {
// Start a new COO or an initialized annotated all dense sparse tensor.
dst = params.genBuffers(dstTp, dimSizes)
.genNewCall(allDense ? Action::kEmpty : Action::kEmptyCOO);
dstDimCoords = genAlloca(rewriter, loc, dimRank, rewriter.getIndexType());
if (allDense) {
dstTensor = dst;
// Get the values buffer for the sparse tensor and reshape it to the
// corresponding dense tensor shape.
dst = genValuesCall(rewriter, loc,
MemRefType::get({ShapedType::kDynamic}, elemTp),
{dst});
// Pass the `dstDimCoords` buffer for `reshapeValuesToLevels`
// to reuse for storing level-sizes (yes, "level-sizes").
// This is safe to do because `dstTp` is a dense-tensor type,
// and therefore lvlRank == dimRank.
dst = reshapeValuesToLevels(rewriter, loc, dstEnc, dimSizes, dst,
dstDimCoords);
} else {
dstPerm = params.getDim2LvlMap();
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
}
} else {
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
dst = allocDenseTensor(rewriter, loc, dstTp, dimSizes);
}
const Level lvlRank = dstTp.getLvlRank();
const auto dcvs2lcvs = [&](ValueRange dcvs) -> SmallVector<Value> {
SmallVector<Value> lcvs;
lcvs.reserve(lvlRank);
for (Level l = 0; l < lvlRank; l++)
// FIXME: `toOrigDim` is deprecated
lcvs.push_back(dcvs[toOrigDim(dstEnc, l)]);
return lcvs;
};
for (const auto &it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
const auto srcTp = getSparseTensorType(orignalOp);
if (srcTp.hasEncoding()) {
genSparseCOOIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, Value dimCoords,
Value elemPtr) -> void {
const auto dcvs =
loadAll(builder, loc, dimRank, dimCoords, concatDim, offset);
if (dstTp.hasEncoding() && !allDense) {
// Case: sparse => sparse, except for annotated all dense.
storeAll(builder, loc, dstDimCoords, dcvs);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
dstPerm);
} else {
// Case: sparse => dense, or annotated all dense.
const auto lcvs = allDense ? dcvs2lcvs(dcvs) : dcvs;
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, lcvs);
}
});
} else {
genDenseTensorIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, ValueRange dcvs) -> void {
if (dstTp.hasEncoding() && !allDense) {
// Case: dense => sparse, except for annotated all dense.
assert(dcvs.size() == static_cast<size_t>(dimRank));
storeAll(builder, loc, dstDimCoords, dcvs, concatDim, offset);
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstDimCoords,
dstPerm);
} else {
// Case: dense => dense, or annotated all dense.
Value val = genValueForDense(builder, loc, adaptedOp, dcvs);
// Despite the name, this isn't actually level-cvs until
// after the `dcvs2lcvs` call.
SmallVector<Value> lcvs(dcvs);
// Apply offset.
lcvs[concatDim] =
builder.create<arith::AddIOp>(loc, lcvs[concatDim], offset);
if (allDense)
lcvs = dcvs2lcvs(lcvs);
builder.create<memref::StoreOp>(loc, val, dst, lcvs);
}
});
}
// Accumulate offset.
// TODO: avoid calling sparseDimSize multiple times by caching the result!
Value curDim =
createOrFoldDimCall(rewriter, loc, srcTp, adaptedOp, concatDim);
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
}
if (!dstTp.hasEncoding()) {
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(
op, dstTp.getRankedTensorType(), dst);
} else if (allDense) {
rewriter.replaceOp(op, dstTensor);
} else {
// In sparse output case, the destination holds the COO.
Value coo = dst;
dst = params.genNewCall(Action::kFromCOO, coo);
// Release resources.
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
}
return success();
}
};
/// Sparse conversion rule for the output operator.
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(OutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
// Convert to default permuted COO.
Value src = adaptor.getOperands()[0];
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
Value coo = NewCallParams(rewriter, loc)
.genBuffers(srcTp.withoutOrdering(), dimSizes)
.genNewCall(Action::kToCOO, src);
// Then output the tensor to external file with coordinates in the
// externally visible lexicographic coordinate order. A sort is
// required if the source was not in that order yet (note that the
// sort can be dropped altogether if external format does not care
// about the order at all, but here we assume it does).
const Value sort = constantI1(rewriter, loc, !srcTp.isIdentity());
SmallVector<Value, 3> outParams{coo, adaptor.getOperands()[1], sort};
const Type elemTp = srcTp.getElementType();
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {}, outParams, EmitCInterface::Off);
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
const SparseTensorConversionOptions &options) {
patterns
.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseReshapeConverter<tensor::ExpandShapeOp>,
SparseReshapeConverter<tensor::CollapseShapeOp>,
SparseTensorConcatConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorToPositionsConverter,
SparseTensorToCoordinatesConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorOutConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);
}
|