1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
|
//===- ExpandStridedMetadata.cpp - Simplify this operation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// The pass expands memref operations that modify the metadata of a memref
/// (sizes, offset, strides) into a sequence of easier to analyze constructs.
/// In particular, this pass transforms operations into explicit sequence of
/// operations that model the effect of this operation on the different
/// metadata. This pass uses affine constructs to materialize these effects.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>
namespace mlir {
namespace memref {
#define GEN_PASS_DEF_EXPANDSTRIDEDMETADATA
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
} // namespace memref
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
namespace {
struct StridedMetadata {
Value basePtr;
OpFoldResult offset;
SmallVector<OpFoldResult> sizes;
SmallVector<OpFoldResult> strides;
};
/// From `subview(memref, subOffset, subSizes, subStrides))` compute
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// \endverbatim
///
/// and return {baseBuffer, offset, sizes, strides}
static FailureOr<StridedMetadata>
resolveSubviewStridedMetadata(RewriterBase &rewriter,
memref::SubViewOp subview) {
// Build a plain extract_strided_metadata(memref) from subview(memref).
Location origLoc = subview.getLoc();
Value source = subview.getSource();
auto sourceType = cast<MemRefType>(source.getType());
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
auto [sourceStrides, sourceOffset] = getStridesAndOffset(sourceType);
// Compute the new strides and offset from the base strides and offset:
// newStride#i = baseStride#i * subStride#i
// offset = baseOffset + sum(subOffsets#i * newStrides#i)
SmallVector<OpFoldResult> strides;
SmallVector<OpFoldResult> subStrides = subview.getMixedStrides();
auto origStrides = newExtractStridedMetadata.getStrides();
// Hold the affine symbols and values for the computation of the offset.
SmallVector<OpFoldResult> values(2 * sourceRank + 1);
SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
bindSymbolsList(rewriter.getContext(), MutableArrayRef{symbols});
AffineExpr expr = symbols.front();
values[0] = ShapedType::isDynamic(sourceOffset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(sourceOffset);
SmallVector<OpFoldResult> subOffsets = subview.getMixedOffsets();
AffineExpr s0 = rewriter.getAffineSymbolExpr(0);
AffineExpr s1 = rewriter.getAffineSymbolExpr(1);
for (unsigned i = 0; i < sourceRank; ++i) {
// Compute the stride.
OpFoldResult origStride =
ShapedType::isDynamic(sourceStrides[i])
? origStrides[i]
: OpFoldResult(rewriter.getIndexAttr(sourceStrides[i]));
strides.push_back(makeComposedFoldedAffineApply(
rewriter, origLoc, s0 * s1, {subStrides[i], origStride}));
// Build up the computation of the offset.
unsigned baseIdxForDim = 1 + 2 * i;
unsigned subOffsetForDim = baseIdxForDim;
unsigned origStrideForDim = baseIdxForDim + 1;
expr = expr + symbols[subOffsetForDim] * symbols[origStrideForDim];
values[subOffsetForDim] = subOffsets[i];
values[origStrideForDim] = origStride;
}
// Compute the offset.
OpFoldResult finalOffset =
makeComposedFoldedAffineApply(rewriter, origLoc, expr, values);
// The final result is <baseBuffer, offset, sizes, strides>.
// Thus we need 1 + 1 + subview.getRank() + subview.getRank(), to hold all
// the values.
auto subType = cast<MemRefType>(subview.getType());
unsigned subRank = subType.getRank();
// The sizes of the final type are defined directly by the input sizes of
// the subview.
// Moreover subviews can drop some dimensions, some strides and sizes may
// not end up in the final <base, offset, sizes, strides> value that we are
// replacing.
// Do the filtering here.
SmallVector<OpFoldResult> subSizes = subview.getMixedSizes();
llvm::SmallBitVector droppedDims = subview.getDroppedDims();
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(subRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(subRank);
for (unsigned i = 0; i < sourceRank; ++i) {
if (droppedDims.test(i))
continue;
finalSizes.push_back(subSizes[i]);
finalStrides.push_back(strides[i]);
}
assert(finalSizes.size() == subRank &&
"Should have populated all the values at this point");
return StridedMetadata{newExtractStridedMetadata.getBaseBuffer(), finalOffset,
finalSizes, finalStrides};
}
/// Replace `dst = subview(memref, subOffset, subSizes, subStrides))`
/// With
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// dst = reinterpret_cast baseBuffer, offset, sizes, strides
/// \endverbatim
///
/// In other words, get rid of the subview in that expression and canonicalize
/// on its effects on the offset, the sizes, and the strides using affine.apply.
struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
public:
using OpRewritePattern<memref::SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::SubViewOp subview,
PatternRewriter &rewriter) const override {
FailureOr<StridedMetadata> stridedMetadata =
resolveSubviewStridedMetadata(rewriter, subview);
if (failed(stridedMetadata)) {
return rewriter.notifyMatchFailure(subview,
"failed to resolve subview metadata");
}
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
subview, subview.getType(), stridedMetadata->basePtr,
stridedMetadata->offset, stridedMetadata->sizes,
stridedMetadata->strides);
return success();
}
};
/// Pattern to replace `extract_strided_metadata(subview)`
/// With
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// \verbatim
///
/// with `baseBuffer`, `offset`, `sizes` and `strides` being
/// the replacements for the original `extract_strided_metadata`.
struct ExtractStridedMetadataOpSubviewFolder
: OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto subviewOp = op.getSource().getDefiningOp<memref::SubViewOp>();
if (!subviewOp)
return failure();
FailureOr<StridedMetadata> stridedMetadata =
resolveSubviewStridedMetadata(rewriter, subviewOp);
if (failed(stridedMetadata)) {
return rewriter.notifyMatchFailure(
op, "failed to resolve metadata in terms of source subview op");
}
Location loc = subviewOp.getLoc();
SmallVector<Value> results;
results.reserve(subviewOp.getType().getRank() * 2 + 2);
results.push_back(stridedMetadata->basePtr);
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc,
stridedMetadata->offset));
results.append(
getValueOrCreateConstantIndexOp(rewriter, loc, stridedMetadata->sizes));
results.append(getValueOrCreateConstantIndexOp(rewriter, loc,
stridedMetadata->strides));
rewriter.replaceOp(op, results);
return success();
}
};
/// Compute the expanded sizes of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// sizes#i =
/// baseSizes#groupId / product(expandShapeSizes#j,
/// for j in group excluding reassIdx#i)
/// Where reassIdx#i is the reassociation index at index i in \p groupId.
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getExpandedSizes(memref::ExpandShapeOp expandShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
SmallVector<OpFoldResult> expandedSizes(groupSize);
uint64_t productOfAllStaticSizes = 1;
std::optional<unsigned> dynSizeIdx;
MemRefType expandShapeType = expandShape.getResultType();
// Fill up all the statically known sizes.
for (unsigned i = 0; i < groupSize; ++i) {
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
productOfAllStaticSizes *= dimSize;
expandedSizes[i] = builder.getIndexAttr(dimSize);
}
// Compute the dynamic size using the original size and all the other known
// static sizes:
// expandSize = origSize / productOfAllStaticSizes.
if (dynSizeIdx) {
AffineExpr s0 = builder.getAffineSymbolExpr(0);
expandedSizes[*dynSizeIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0.floorDiv(productOfAllStaticSizes),
origSizes[groupId]);
}
return expandedSizes;
}
/// Compute the expanded strides of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// strides#i =
/// origStrides#reassDim * product(expandShapeSizes#j, for j in
/// reassIdx#i+1..reassIdx#i+group.size-1)
///
/// Where reassIdx#i is the reassociation index for at index i in \p groupId
/// and expandShapeSizes#j is either:
/// - The constant size at dimension j, derived directly from the result type of
/// the expand_shape op, or
/// - An affine expression: baseSizes#reassDim / product of all constant sizes
/// in expandShapeSizes. (Remember expandShapeSizes has at most one dynamic
/// element.)
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides,
unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
MemRefType expandShapeType = expandShape.getResultType();
std::optional<int64_t> dynSizeIdx;
// Fill up the expanded strides, with the information we can deduce from the
// resulting shape.
uint64_t currentStride = 1;
SmallVector<OpFoldResult> expandedStrides(groupSize);
for (int i = groupSize - 1; i >= 0; --i) {
expandedStrides[i] = builder.getIndexAttr(currentStride);
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
currentStride *= dimSize;
}
// Collect the statically known information about the original stride.
Value source = expandShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
auto [strides, offset] = getStridesAndOffset(sourceType);
OpFoldResult origStride = ShapedType::isDynamic(strides[groupId])
? origStrides[groupId]
: builder.getIndexAttr(strides[groupId]);
// Apply the original stride to all the strides.
int64_t doneStrideIdx = 0;
// If we saw a dynamic dimension, we need to fix-up all the strides up to
// that dimension with the dynamic size.
if (dynSizeIdx) {
int64_t productOfAllStaticSizes = currentStride;
assert(ShapedType::isDynamic(sourceType.getDimSize(groupId)) &&
"We shouldn't be able to change dynamicity");
OpFoldResult origSize = origSizes[groupId];
AffineExpr s0 = builder.getAffineSymbolExpr(0);
AffineExpr s1 = builder.getAffineSymbolExpr(1);
for (; doneStrideIdx < *dynSizeIdx; ++doneStrideIdx) {
int64_t baseExpandedStride =
cast<IntegerAttr>(expandedStrides[doneStrideIdx].get<Attribute>())
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(),
(s0 * baseExpandedStride).floorDiv(productOfAllStaticSizes) * s1,
{origSize, origStride});
}
}
// Now apply the origStride to the remaining dimensions.
AffineExpr s0 = builder.getAffineSymbolExpr(0);
for (; doneStrideIdx < groupSize; ++doneStrideIdx) {
int64_t baseExpandedStride =
cast<IntegerAttr>(expandedStrides[doneStrideIdx].get<Attribute>())
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0 * baseExpandedStride, {origStride});
}
return expandedStrides;
}
/// Produce an OpFoldResult object with \p builder at \p loc representing
/// `prod(valueOrConstant#i, for i in {indices})`,
/// where valueOrConstant#i is maybeConstant[i] when \p isDymamic is false,
/// values[i] otherwise.
///
/// \pre for all index in indices: index < values.size()
/// \pre for all index in indices: index < maybeConstants.size()
static OpFoldResult
getProductOfValues(ArrayRef<int64_t> indices, OpBuilder &builder, Location loc,
ArrayRef<int64_t> maybeConstants,
ArrayRef<OpFoldResult> values,
llvm::function_ref<bool(int64_t)> isDynamic) {
AffineExpr productOfValues = builder.getAffineConstantExpr(1);
SmallVector<OpFoldResult> inputValues;
unsigned numberOfSymbols = 0;
unsigned groupSize = indices.size();
for (unsigned i = 0; i < groupSize; ++i) {
productOfValues =
productOfValues * builder.getAffineSymbolExpr(numberOfSymbols++);
unsigned srcIdx = indices[i];
int64_t maybeConstant = maybeConstants[srcIdx];
inputValues.push_back(isDynamic(maybeConstant)
? values[srcIdx]
: builder.getIndexAttr(maybeConstant));
}
return makeComposedFoldedAffineApply(builder, loc, productOfValues,
inputValues);
}
/// Compute the collapsed size of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// Conceptually this helper function computes:
/// `prod(origSizes#i, for i in {ressociationGroup[groupId]})`.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
///
/// TODO: Move this utility function directly within CollapseShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getCollapsedSize(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<OpFoldResult> collapsedSize;
MemRefType collapseShapeType = collapseShape.getResultType();
uint64_t size = collapseShapeType.getDimSize(groupId);
if (!ShapedType::isDynamic(size)) {
collapsedSize.push_back(builder.getIndexAttr(size));
return collapsedSize;
}
// We are dealing with a dynamic size.
// Build the affine expr of the product of the original sizes involved in that
// group.
Value source = collapseShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
collapsedSize.push_back(getProductOfValues(
reassocGroup, builder, collapseShape.getLoc(), sourceType.getShape(),
origSizes, ShapedType::isDynamic));
return collapsedSize;
}
/// Compute the collapsed stride of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// Conceptually this helper function returns the stride of the inner most
/// dimension of that group in the original shape.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
static SmallVector<OpFoldResult>
getCollapsedStride(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
Value source = collapseShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
auto [strides, offset] = getStridesAndOffset(sourceType);
SmallVector<OpFoldResult> groupStrides;
ArrayRef<int64_t> srcShape = sourceType.getShape();
for (int64_t currentDim : reassocGroup) {
// Skip size-of-1 dimensions, since right now their strides may be
// meaningless.
// FIXME: size-of-1 dimensions shouldn't be used in collapse shape, unless
// they are truly contiguous. When they are truly contiguous, we shouldn't
// need to skip them.
if (srcShape[currentDim] == 1)
continue;
int64_t currentStride = strides[currentDim];
groupStrides.push_back(ShapedType::isDynamic(currentStride)
? origStrides[currentDim]
: builder.getIndexAttr(currentStride));
}
if (groupStrides.empty()) {
// We're dealing with a 1x1x...x1 shape. The stride is meaningless,
// but we still have to make the type system happy.
MemRefType collapsedType = collapseShape.getResultType();
auto [collapsedStrides, collapsedOffset] =
getStridesAndOffset(collapsedType);
int64_t finalStride = collapsedStrides[groupId];
if (ShapedType::isDynamic(finalStride)) {
// Look for a dynamic stride. At this point we don't know which one is
// desired, but they are all equally good/bad.
for (int64_t currentDim : reassocGroup) {
assert(srcShape[currentDim] == 1 &&
"We should be dealing with 1x1x...x1");
if (ShapedType::isDynamic(strides[currentDim]))
return {origStrides[currentDim]};
}
llvm_unreachable("We should have found a dynamic stride");
}
return {builder.getIndexAttr(finalStride)};
}
// For the general case, we just want the minimum stride
// since the collapsed dimensions are contiguous.
auto minMap = AffineMap::getMultiDimIdentityMap(groupStrides.size(),
builder.getContext());
return {makeComposedFoldedAffineMin(builder, collapseShape.getLoc(), minMap,
groupStrides)};
}
/// Replace `baseBuffer, offset, sizes, strides =
/// extract_strided_metadata(reshapeLike(memref))`
/// With
///
/// \verbatim
/// baseBuffer, offset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// sizes = getReshapedSizes(reshapeLike)
/// strides = getReshapedStrides(reshapeLike)
/// \endverbatim
///
///
/// Notice that `baseBuffer` and `offset` are unchanged.
///
/// In other words, get rid of the expand_shape in that expression and
/// materialize its effects on the sizes and the strides using affine apply.
template <typename ReassociativeReshapeLikeOp,
SmallVector<OpFoldResult> (*getReshapedSizes)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/, unsigned /*groupId*/),
SmallVector<OpFoldResult> (*getReshapedStrides)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/,
ArrayRef<OpFoldResult> /*origStrides*/, unsigned /*groupId*/)>
struct ReshapeFolder : public OpRewritePattern<ReassociativeReshapeLikeOp> {
public:
using OpRewritePattern<ReassociativeReshapeLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ReassociativeReshapeLikeOp reshape,
PatternRewriter &rewriter) const override {
// Build a plain extract_strided_metadata(memref) from
// extract_strided_metadata(reassociative_reshape_like(memref)).
Location origLoc = reshape.getLoc();
Value source = reshape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
// Collect statically known information.
auto [strides, offset] = getStridesAndOffset(sourceType);
MemRefType reshapeType = reshape.getResultType();
unsigned reshapeRank = reshapeType.getRank();
OpFoldResult offsetOfr =
ShapedType::isDynamic(offset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(offset);
// Get the special case of 0-D out of the way.
if (sourceRank == 0) {
SmallVector<OpFoldResult> ones(reshapeRank, rewriter.getIndexAttr(1));
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, /*sizes=*/ones, /*strides=*/ones);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(reshapeRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(reshapeRank);
// Compute the reshaped strides and sizes from the base strides and sizes.
SmallVector<OpFoldResult> origSizes =
getAsOpFoldResult(newExtractStridedMetadata.getSizes());
SmallVector<OpFoldResult> origStrides =
getAsOpFoldResult(newExtractStridedMetadata.getStrides());
unsigned idx = 0, endIdx = reshape.getReassociationIndices().size();
for (; idx != endIdx; ++idx) {
SmallVector<OpFoldResult> reshapedSizes =
getReshapedSizes(reshape, rewriter, origSizes, /*groupId=*/idx);
SmallVector<OpFoldResult> reshapedStrides = getReshapedStrides(
reshape, rewriter, origSizes, origStrides, /*groupId=*/idx);
unsigned groupSize = reshapedSizes.size();
for (unsigned i = 0; i < groupSize; ++i) {
finalSizes.push_back(reshapedSizes[i]);
finalStrides.push_back(reshapedStrides[i]);
}
}
assert(((isa<memref::ExpandShapeOp>(reshape) && idx == sourceRank) ||
(isa<memref::CollapseShapeOp>(reshape) && idx == reshapeRank)) &&
"We should have visited all the input dimensions");
assert(finalSizes.size() == reshapeRank &&
"We should have populated all the values");
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, finalSizes, finalStrides);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(allocLikeOp)`
///
/// With
///
/// ```
/// base = reinterpret_cast allocLikeOp(allocSizes) to a flat memref<eltTy>
/// offset = 0
/// sizes = allocSizes
/// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
/// ```
///
/// The transformation only applies if the allocLikeOp has been normalized.
/// In other words, the affine_map must be an identity.
template <typename AllocLikeOp>
struct ExtractStridedMetadataOpAllocFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
public:
using OpRewritePattern<memref::ExtractStridedMetadataOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto allocLikeOp = op.getSource().getDefiningOp<AllocLikeOp>();
if (!allocLikeOp)
return failure();
auto memRefType = cast<MemRefType>(allocLikeOp.getResult().getType());
if (!memRefType.getLayout().isIdentity())
return rewriter.notifyMatchFailure(
allocLikeOp, "alloc-like operations should have been normalized");
Location loc = op.getLoc();
int rank = memRefType.getRank();
// Collect the sizes.
ValueRange dynamic = allocLikeOp.getDynamicSizes();
SmallVector<OpFoldResult> sizes;
sizes.reserve(rank);
unsigned dynamicPos = 0;
for (int64_t size : memRefType.getShape()) {
if (ShapedType::isDynamic(size))
sizes.push_back(dynamic[dynamicPos++]);
else
sizes.push_back(rewriter.getIndexAttr(size));
}
// Strides (just creates identity strides).
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
AffineExpr expr = rewriter.getAffineConstantExpr(1);
unsigned symbolNumber = 0;
for (int i = rank - 2; i >= 0; --i) {
expr = expr * rewriter.getAffineSymbolExpr(symbolNumber++);
assert(i + 1 + symbolNumber == sizes.size() &&
"The ArrayRef should encompass the last #symbolNumber sizes");
ArrayRef<OpFoldResult> sizesInvolvedInStride(&sizes[i + 1], symbolNumber);
strides[i] = makeComposedFoldedAffineApply(rewriter, loc, expr,
sizesInvolvedInStride);
}
// Put all the values together to replace the results.
SmallVector<Value> results;
results.reserve(rank * 2 + 2);
auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
int64_t offset = 0;
if (allocLikeOp.getType() == baseBufferType)
results.push_back(allocLikeOp);
else
results.push_back(rewriter.create<memref::ReinterpretCastOp>(
loc, baseBufferType, allocLikeOp, offset,
/*sizes=*/ArrayRef<int64_t>(),
/*strides=*/ArrayRef<int64_t>()));
// Offset.
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
for (OpFoldResult size : sizes)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, size));
for (OpFoldResult stride : strides)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, stride));
rewriter.replaceOp(op, results);
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(get_global)`
///
/// With
///
/// ```
/// base = reinterpret_cast get_global to a flat memref<eltTy>
/// offset = 0
/// sizes = allocSizes
/// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
/// ```
///
/// It is expected that the memref.get_global op has static shapes
/// and identity affine_map for the layout.
struct ExtractStridedMetadataOpGetGlobalFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
public:
using OpRewritePattern<memref::ExtractStridedMetadataOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto getGlobalOp = op.getSource().getDefiningOp<memref::GetGlobalOp>();
if (!getGlobalOp)
return failure();
auto memRefType = cast<MemRefType>(getGlobalOp.getResult().getType());
if (!memRefType.getLayout().isIdentity()) {
return rewriter.notifyMatchFailure(
getGlobalOp,
"get-global operation result should have been normalized");
}
Location loc = op.getLoc();
int rank = memRefType.getRank();
// Collect the sizes.
ArrayRef<int64_t> sizes = memRefType.getShape();
assert(!llvm::any_of(sizes, ShapedType::isDynamic) &&
"unexpected dynamic shape for result of `memref.get_global` op");
// Strides (just creates identity strides).
SmallVector<int64_t> strides = computeSuffixProduct(sizes);
// Put all the values together to replace the results.
SmallVector<Value> results;
results.reserve(rank * 2 + 2);
auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
int64_t offset = 0;
if (getGlobalOp.getType() == baseBufferType)
results.push_back(getGlobalOp);
else
results.push_back(rewriter.create<memref::ReinterpretCastOp>(
loc, baseBufferType, getGlobalOp, offset,
/*sizes=*/ArrayRef<int64_t>(),
/*strides=*/ArrayRef<int64_t>()));
// Offset.
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
for (auto size : sizes)
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, size));
for (auto stride : strides)
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, stride));
rewriter.replaceOp(op, results);
return success();
}
};
/// Rewrite memref.extract_aligned_pointer_as_index of a ViewLikeOp to the
/// source of the ViewLikeOp.
class RewriteExtractAlignedPointerAsIndexOfViewLikeOp
: public OpRewritePattern<memref::ExtractAlignedPointerAsIndexOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
PatternRewriter &rewriter) const override {
auto viewLikeOp =
extractOp.getSource().getDefiningOp<ViewLikeOpInterface>();
if (!viewLikeOp)
return rewriter.notifyMatchFailure(extractOp, "not a ViewLike source");
rewriter.updateRootInPlace(extractOp, [&]() {
extractOp.getSourceMutable().assign(viewLikeOp.getViewSource());
});
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(
/// reinterpret_cast(src, srcOffset, srcSizes, srcStrides))`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = srcOffset
/// sizes = srcSizes
/// strides = srcStrides
/// ```
///
/// In other words, consume the `reinterpret_cast` and apply its effects
/// on the offset, sizes, and strides.
class ExtractStridedMetadataOpReinterpretCastFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto reinterpretCastOp = extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ReinterpretCastOp>();
if (!reinterpretCastOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
// Check if the source is suitable for extract_strided_metadata.
SmallVector<Type> inferredReturnTypes;
if (failed(extractStridedMetadataOp.inferReturnTypes(
rewriter.getContext(), loc, {reinterpretCastOp.getSource()},
/*attributes=*/{}, /*properties=*/nullptr, /*regions=*/{},
inferredReturnTypes)))
return rewriter.notifyMatchFailure(
reinterpretCastOp, "reinterpret_cast source's type is incompatible");
auto memrefType = cast<MemRefType>(reinterpretCastOp.getResult().getType());
unsigned rank = memrefType.getRank();
SmallVector<OpFoldResult> results;
results.resize_for_overwrite(rank * 2 + 2);
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(
loc, reinterpretCastOp.getSource());
// Register the base_buffer.
results[0] = newExtractStridedMetadata.getBaseBuffer();
// Register the new offset.
results[1] = getValueOrCreateConstantIndexOp(
rewriter, loc, reinterpretCastOp.getMixedOffsets()[0]);
const unsigned sizeStartIdx = 2;
const unsigned strideStartIdx = sizeStartIdx + rank;
SmallVector<OpFoldResult> sizes = reinterpretCastOp.getMixedSizes();
SmallVector<OpFoldResult> strides = reinterpretCastOp.getMixedStrides();
for (unsigned i = 0; i < rank; ++i) {
results[sizeStartIdx + i] = sizes[i];
results[strideStartIdx + i] = strides[i];
}
rewriter.replaceOp(extractStridedMetadataOp,
getValueOrCreateConstantIndexOp(rewriter, loc, results));
return success();
}
};
/// Replace `base, offset =
/// extract_strided_metadata(extract_strided_metadata(src)#0)`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = 0
/// ```
class ExtractStridedMetadataOpExtractStridedMetadataFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto sourceExtractStridedMetadataOp =
extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ExtractStridedMetadataOp>();
if (!sourceExtractStridedMetadataOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
rewriter.replaceOp(extractStridedMetadataOp,
{sourceExtractStridedMetadataOp.getBaseBuffer(),
getValueOrCreateConstantIndexOp(
rewriter, loc, rewriter.getIndexAttr(0))});
return success();
}
};
} // namespace
void memref::populateExpandStridedMetadataPatterns(
RewritePatternSet &patterns) {
patterns.add<SubviewFolder,
ReshapeFolder<memref::ExpandShapeOp, getExpandedSizes,
getExpandedStrides>,
ReshapeFolder<memref::CollapseShapeOp, getCollapsedSize,
getCollapsedStride>,
ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
ExtractStridedMetadataOpGetGlobalFolder,
RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
ExtractStridedMetadataOpReinterpretCastFolder,
ExtractStridedMetadataOpExtractStridedMetadataFolder>(
patterns.getContext());
}
void memref::populateResolveExtractStridedMetadataPatterns(
RewritePatternSet &patterns) {
patterns.add<ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
ExtractStridedMetadataOpGetGlobalFolder,
ExtractStridedMetadataOpSubviewFolder,
RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
ExtractStridedMetadataOpReinterpretCastFolder,
ExtractStridedMetadataOpExtractStridedMetadataFolder>(
patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace {
struct ExpandStridedMetadataPass final
: public memref::impl::ExpandStridedMetadataBase<
ExpandStridedMetadataPass> {
void runOnOperation() override;
};
} // namespace
void ExpandStridedMetadataPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
memref::populateExpandStridedMetadataPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
std::unique_ptr<Pass> memref::createExpandStridedMetadataPass() {
return std::make_unique<ExpandStridedMetadataPass>();
}
|