1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
//===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file Std transformations to expand Divs operation to help for the
// lowering to LLVM. Currently implemented transformations are Ceil and Floor
// for Signed Integers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace memref {
#define GEN_PASS_DEF_EXPANDOPS
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
} // namespace memref
} // namespace mlir
using namespace mlir;
namespace {
/// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with
/// AtomicRMWOpLowering pattern, e.g. with "minf" or "maxf" attributes, to
/// `memref.generic_atomic_rmw` with the expanded code.
///
/// %x = atomic_rmw "maxf" %fval, %F[%i] : (f32, memref<10xf32>) -> f32
///
/// will be lowered to
///
/// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> {
/// ^bb0(%current: f32):
/// %cmp = arith.cmpf "ogt", %current, %fval : f32
/// %new_value = select %cmp, %current, %fval : f32
/// memref.atomic_yield %new_value : f32
/// }
struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::AtomicRMWOp op,
PatternRewriter &rewriter) const final {
arith::CmpFPredicate predicate;
switch (op.getKind()) {
case arith::AtomicRMWKind::maxf:
predicate = arith::CmpFPredicate::OGT;
break;
case arith::AtomicRMWKind::minf:
predicate = arith::CmpFPredicate::OLT;
break;
default:
return failure();
}
auto loc = op.getLoc();
auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>(
loc, op.getMemref(), op.getIndices());
OpBuilder bodyBuilder =
OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener());
Value lhs = genericOp.getCurrentValue();
Value rhs = op.getValue();
Value cmp = bodyBuilder.create<arith::CmpFOp>(loc, predicate, lhs, rhs);
Value select = bodyBuilder.create<arith::SelectOp>(loc, cmp, lhs, rhs);
bodyBuilder.create<memref::AtomicYieldOp>(loc, select);
rewriter.replaceOp(op, genericOp.getResult());
return success();
}
};
/// Converts `memref.reshape` that has a target shape of a statically-known
/// size to `memref.reinterpret_cast`.
struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ReshapeOp op,
PatternRewriter &rewriter) const final {
auto shapeType = cast<MemRefType>(op.getShape().getType());
if (!shapeType.hasStaticShape())
return failure();
int64_t rank = cast<MemRefType>(shapeType).getDimSize(0);
SmallVector<OpFoldResult, 4> sizes, strides;
sizes.resize(rank);
strides.resize(rank);
Location loc = op.getLoc();
Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1);
for (int i = rank - 1; i >= 0; --i) {
Value size;
// Load dynamic sizes from the shape input, use constants for static dims.
if (op.getType().isDynamicDim(i)) {
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
size = rewriter.create<memref::LoadOp>(loc, op.getShape(), index);
if (!isa<IndexType>(size.getType()))
size = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIndexType(), size);
sizes[i] = size;
} else {
auto sizeAttr = rewriter.getIndexAttr(op.getType().getDimSize(i));
size = rewriter.create<arith::ConstantOp>(loc, sizeAttr);
sizes[i] = sizeAttr;
}
strides[i] = stride;
if (i > 0)
stride = rewriter.create<arith::MulIOp>(loc, stride, size);
}
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
op, op.getType(), op.getSource(), /*offset=*/rewriter.getIndexAttr(0),
sizes, strides);
return success();
}
};
struct ExpandOpsPass : public memref::impl::ExpandOpsBase<ExpandOpsPass> {
void runOnOperation() override {
MLIRContext &ctx = getContext();
RewritePatternSet patterns(&ctx);
memref::populateExpandOpsPatterns(patterns);
ConversionTarget target(ctx);
target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect>();
target.addDynamicallyLegalOp<memref::AtomicRMWOp>(
[](memref::AtomicRMWOp op) {
return op.getKind() != arith::AtomicRMWKind::maxf &&
op.getKind() != arith::AtomicRMWKind::minf;
});
target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) {
return !cast<MemRefType>(op.getShape().getType()).hasStaticShape();
});
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) {
patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>(
patterns.getContext());
}
std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() {
return std::make_unique<ExpandOpsPass>();
}
|