1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
//===- ExpandTanh.cpp - Code to perform expanding tanh op -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of tanh op.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
/// Create a float constant.
static Value createFloatConst(Location loc, Type type, double value,
OpBuilder &b) {
auto attr = b.getFloatAttr(getElementTypeOrSelf(type), value);
if (auto shapedTy = dyn_cast<ShapedType>(type)) {
return b.create<arith::ConstantOp>(loc,
DenseElementsAttr::get(shapedTy, attr));
}
return b.create<arith::ConstantOp>(loc, attr);
}
/// Create a float constant.
static Value createIntConst(Location loc, Type type, int64_t value,
OpBuilder &b) {
auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value);
if (auto shapedTy = dyn_cast<ShapedType>(type)) {
return b.create<arith::ConstantOp>(loc,
DenseElementsAttr::get(shapedTy, attr));
}
return b.create<arith::ConstantOp>(loc, attr);
}
static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) {
Type opType = operand.getType();
Type i64Ty = b.getI64Type();
if (auto shapedTy = dyn_cast<ShapedType>(opType))
i64Ty = shapedTy.clone(i64Ty);
Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand);
Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert);
// The truncation does not preserve the sign when the truncated
// value is -0. So here the sign is copied again.
return b.create<math::CopySignOp>(fpFixedConvert, operand);
}
/// Expands tanh op into
/// 1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
/// 2) exp^{2x}-1 / exp^{2x}+1 , if x < 0
static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
auto floatType = op.getOperand().getType();
Location loc = op.getLoc();
Value one = createFloatConst(loc, floatType, 1.0, rewriter);
Value two = createFloatConst(loc, floatType, 2.0, rewriter);
Value doubledX = rewriter.create<arith::MulFOp>(loc, op.getOperand(), two);
// Case 1: tanh(x) = 1-exp^{-2x} / 1+exp^{-2x}
Value negDoubledX = rewriter.create<arith::NegFOp>(loc, doubledX);
Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
// Case 2: tanh(x) = exp^{2x}-1 / exp^{2x}+1
exp2x = rewriter.create<math::ExpOp>(loc, doubledX);
dividend = rewriter.create<arith::SubFOp>(loc, exp2x, one);
divisor = rewriter.create<arith::AddFOp>(loc, exp2x, one);
Value negativeRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
// tanh(x) = x >= 0 ? positiveRes : negativeRes
Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
Value cmpRes = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE,
op.getOperand(), zero);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpRes, positiveRes,
negativeRes);
return success();
}
// Converts math.tan to math.sin, math.cos, and arith.divf.
static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operand = op.getOperand();
Type type = operand.getType();
Value sin = b.create<math::SinOp>(type, operand);
Value cos = b.create<math::CosOp>(type, operand);
Value div = b.create<arith::DivFOp>(type, sin, cos);
rewriter.replaceOp(op, div);
return success();
}
static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operandA = op.getOperand(0);
Value operandB = op.getOperand(1);
Value operandC = op.getOperand(2);
Type type = op.getType();
Value mult = b.create<arith::MulFOp>(type, operandA, operandB);
Value add = b.create<arith::AddFOp>(type, mult, operandC);
rewriter.replaceOp(op, add);
return success();
}
// Converts a floorf() function to the following:
// floorf(float x) ->
// y = (float)(int) x
// if (x < 0) then incr = -1 else incr = 0
// y = y + incr <= replace this op with the floorf op.
static LogicalResult convertFloorOp(math::FloorOp op,
PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operand = op.getOperand();
Type opType = operand.getType();
Value fpFixedConvert = createTruncatedFPValue(operand, b);
// Creating constants for later use.
Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
Value negCheck =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
Value incrValue =
b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero);
Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
rewriter.replaceOp(op, ret);
return success();
}
// Converts a ceilf() function to the following:
// ceilf(float x) ->
// y = (float)(int) x
// if (x > y) then incr = 1 else incr = 0
// y = y + incr <= replace this op with the ceilf op.
static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operand = op.getOperand();
Type opType = operand.getType();
Value fpFixedConvert = createTruncatedFPValue(operand, b);
// Creating constants for later use.
Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand,
fpFixedConvert);
Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero);
Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
rewriter.replaceOp(op, ret);
return success();
}
// Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operandA = op.getOperand(0);
Value operandB = op.getOperand(1);
Type opType = operandA.getType();
Value logA = b.create<math::LogOp>(opType, operandA);
Value mult = b.create<arith::MulFOp>(opType, logA, operandB);
Value expResult = b.create<math::ExpOp>(opType, mult);
rewriter.replaceOp(op, expResult);
return success();
}
// exp2f(float x) -> exp(x * ln(2))
// Proof: Let's say 2^x = y
// ln(2^x) = ln(y)
// x * ln(2) = ln(y) => e ^(x*ln(2)) = y
static LogicalResult convertExp2fOp(math::Exp2Op op,
PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operand = op.getOperand();
Type opType = operand.getType();
Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b);
Value mult = b.create<arith::MulFOp>(opType, operand, ln2);
Value exp = b.create<math::ExpOp>(op->getLoc(), mult);
rewriter.replaceOp(op, exp);
return success();
}
static LogicalResult convertRoundOp(math::RoundOp op,
PatternRewriter &rewriter) {
Location loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
Value operand = op.getOperand();
Type opType = operand.getType();
Type opEType = getElementTypeOrSelf(opType);
if (!opEType.isF32()) {
return rewriter.notifyMatchFailure(op, "not a round of f32.");
}
Type i32Ty = b.getI32Type();
if (auto shapedTy = dyn_cast<ShapedType>(opType))
i32Ty = shapedTy.clone(i32Ty);
Value half = createFloatConst(loc, opType, 0.5, b);
Value c23 = createIntConst(loc, i32Ty, 23, b);
Value c127 = createIntConst(loc, i32Ty, 127, b);
Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);
Value incrValue = b.create<math::CopySignOp>(half, operand);
Value add = b.create<arith::AddFOp>(opType, operand, incrValue);
Value fpFixedConvert = createTruncatedFPValue(add, b);
// There are three cases where adding 0.5 to the value and truncating by
// converting to an i64 does not result in the correct behavior:
//
// 1. Special values: +-inf and +-nan
// Casting these special values to i64 has undefined behavior. To identify
// these values, we use the fact that these values are the only float
// values with the maximum possible biased exponent.
//
// 2. Large values: 2^23 <= |x| <= INT_64_MAX
// Adding 0.5 to a float larger than or equal to 2^23 results in precision
// errors that sometimes round the value up and sometimes round the value
// down. For example:
// 8388608.0 + 0.5 = 8388608.0
// 8388609.0 + 0.5 = 8388610.0
//
// 3. Very large values: |x| > INT_64_MAX
// Casting to i64 a value greater than the max i64 value will overflow the
// i64 leading to wrong outputs.
//
// All three cases satisfy the property `biasedExp >= 23`.
Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
Value operandExp = b.create<arith::AndIOp>(
b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
Value isSpecialValOrLargeVal =
b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23);
Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand,
fpFixedConvert);
rewriter.replaceOp(op, result);
return success();
}
// Converts math.ctlz to scf and arith operations. This is done
// by performing a binary search on the bits.
static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op,
PatternRewriter &rewriter) {
auto operand = op.getOperand();
auto operandTy = operand.getType();
auto eTy = getElementTypeOrSelf(operandTy);
Location loc = op.getLoc();
int32_t bitwidth = eTy.getIntOrFloatBitWidth();
if (bitwidth > 64)
return failure();
uint64_t allbits = -1;
if (bitwidth < 64) {
allbits = allbits >> (64 - bitwidth);
}
Value x = operand;
Value count = createIntConst(loc, operandTy, 0, rewriter);
for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) {
auto half = bw / 2;
auto bits = createIntConst(loc, operandTy, half, rewriter);
auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter);
Value pred =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask);
Value add = rewriter.create<arith::AddIOp>(loc, count, bits);
Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits);
x = rewriter.create<arith::SelectOp>(loc, pred, shift, x);
count = rewriter.create<arith::SelectOp>(loc, pred, add, count);
}
Value zero = createIntConst(loc, operandTy, 0, rewriter);
Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
operand, zero);
Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter);
Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count);
rewriter.replaceOp(op, sel);
return success();
}
// Convert `math.roundeven` into `math.round` + arith ops
static LogicalResult convertRoundEvenOp(math::RoundEvenOp op,
PatternRewriter &rewriter) {
Location loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
auto operand = op.getOperand();
Type operandTy = operand.getType();
Type resultTy = op.getType();
Type operandETy = getElementTypeOrSelf(operandTy);
Type resultETy = getElementTypeOrSelf(resultTy);
if (!operandETy.isF32() || !resultETy.isF32()) {
return rewriter.notifyMatchFailure(op, "not a roundeven of f32.");
}
Type i32Ty = b.getI32Type();
Type f32Ty = b.getF32Type();
if (auto shapedTy = dyn_cast<ShapedType>(operandTy)) {
i32Ty = shapedTy.clone(i32Ty);
f32Ty = shapedTy.clone(f32Ty);
}
Value c1Float = createFloatConst(loc, f32Ty, 1.0, b);
Value c0 = createIntConst(loc, i32Ty, 0, b);
Value c1 = createIntConst(loc, i32Ty, 1, b);
Value cNeg1 = createIntConst(loc, i32Ty, -1, b);
Value c23 = createIntConst(loc, i32Ty, 23, b);
Value c31 = createIntConst(loc, i32Ty, 31, b);
Value c127 = createIntConst(loc, i32Ty, 127, b);
Value c2To22 = createIntConst(loc, i32Ty, 1 << 22, b);
Value c23Mask = createIntConst(loc, i32Ty, (1 << 23) - 1, b);
Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);
Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
Value round = b.create<math::RoundOp>(operand);
Value roundBitcast = b.create<arith::BitcastOp>(i32Ty, round);
// Get biased exponents for operand and round(operand)
Value operandExp = b.create<arith::AndIOp>(
b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
Value roundExp = b.create<arith::AndIOp>(
b.create<arith::ShRUIOp>(roundBitcast, c23), expMask);
Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127);
auto safeShiftRight = [&](Value x, Value shift) -> Value {
// Clamp shift to valid range [0, 31] to avoid undefined behavior
Value clampedShift = b.create<arith::MaxSIOp>(shift, c0);
clampedShift = b.create<arith::MinSIOp>(clampedShift, c31);
return b.create<arith::ShRUIOp>(x, clampedShift);
};
auto maskMantissa = [&](Value mantissa,
Value mantissaMaskRightShift) -> Value {
Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift);
return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask);
};
// A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring
// the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers
// with `biasedExp > 23` (numbers where there is not enough precision to store
// decimals) are always even, and they satisfy the even condition trivially
// since the mantissa without all its bits is zero. The even condition
// is also true for +-0, since they have `biasedExp = -127` and the entire
// mantissa is zero. The case of +-1 has to be handled separately. Here
// we identify these values by noting that +-1 are the only whole numbers with
// `biasedExp == 0`.
//
// The special values +-inf and +-nan also satisfy the same property that
// whole non-unit even numbers satisfy. In particular, the special values have
// `biasedExp > 23`, so they get treated as large numbers with no room for
// decimals, which are always even.
Value roundBiasedExpEq0 =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0);
Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1);
Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1);
Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>(
arith::CmpIPredicate::ne, roundMaskedMantissa, c0);
roundIsNotEvenOrSpecialVal =
b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0);
// A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive
// integers if the bit at index `biasedExp` starting from the left in the
// mantissa is 1 and all the bits to the right are zero. Values with
// `biasedExp >= 23` don't have decimals, so they are never halfway. The
// values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`,
// so these are handled separately. In particular, if `biasedExp == -1`, the
// value is halfway if the entire mantissa is zero.
Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>(
arith::CmpIPredicate::eq, operandBiasedExp, cNeg1);
Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>(
operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp));
Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp);
Value operandIsHalfway =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa,
expectedOperandMaskedMantissa);
// Ensure `biasedExp` is in the valid range for half values.
Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>(
arith::CmpIPredicate::sge, operandBiasedExp, cNeg1);
Value operandBiasedExpLt23 =
b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23);
operandIsHalfway =
b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23);
operandIsHalfway =
b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1);
// Adjust rounded operand with `round(operand) - sign(operand)` to correct the
// case where `round` rounded in the opposite direction of `roundeven`.
Value sign = b.create<math::CopySignOp>(c1Float, operand);
Value roundShifted = b.create<arith::SubFOp>(round, sign);
// If the rounded value is even or a special value, we default to the behavior
// of `math.round`.
Value needsShift =
b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway);
Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round);
// The `x - sign` adjustment does not preserve the sign when we are adjusting
// the value -1 to -0. So here the sign is copied again to ensure that -0.5 is
// rounded to -0.0.
result = b.create<math::CopySignOp>(result, operand);
rewriter.replaceOp(op, result);
return success();
}
void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) {
patterns.add(convertCtlzOp);
}
void mlir::populateExpandTanPattern(RewritePatternSet &patterns) {
patterns.add(convertTanOp);
}
void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) {
patterns.add(convertTanhOp);
}
void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) {
patterns.add(convertFmaFOp);
}
void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) {
patterns.add(convertCeilOp);
}
void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) {
patterns.add(convertExp2fOp);
}
void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) {
patterns.add(convertPowfOp);
}
void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) {
patterns.add(convertRoundOp);
}
void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) {
patterns.add(convertFloorOp);
}
void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) {
patterns.add(convertRoundEvenOp);
}
|