summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp
blob: f73efc120d3770f8b76bd0c1b3d53be91a9e5b1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include <optional>

namespace mlir {
namespace bufferization {
namespace func_ext {

void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) {
  analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
  auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
  auto createdAliasingResults =
      aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
  auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
  auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
  (void)createdEquiv;
  (void)createdAliasingResults;
  (void)createdRead;
  (void)createdWritten;
#ifndef NDEBUG
  assert(createdEquiv.second && "equivalence info exists already");
  assert(createdAliasingResults.second && "aliasing info exists already");
  assert(createdRead.second && "bbarg access info exists already");
  assert(createdWritten.second && "bbarg access info exists already");
#endif // NDEBUG
}

/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
  func::ReturnOp returnOp;
  for (Block &b : funcOp.getBody()) {
    if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
      if (returnOp)
        return nullptr;
      returnOp = candidateOp;
    }
  }
  return returnOp;
}

/// Return the index-th bufferized function argument type. This assumes that the
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
/// specified by the user (as per `options.functionArgTypeConverterFn`).
static BaseMemRefType
getBufferizedFunctionArgType(FuncOp funcOp, int64_t index,
                             const BufferizationOptions &options) {
  auto tensorType =
      dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index));
  assert(tensorType && "expected TensorType");

  BaseMemRefType memrefType = options.functionArgTypeConverterFn(
      tensorType, *options.defaultMemorySpace, funcOp, options);

  auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
      index, BufferizationDialect::kBufferLayoutAttrName);
  if (!layoutAttr)
    return memrefType;

  auto rankedMemrefType = dyn_cast<MemRefType>(memrefType);
  assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
  return MemRefType::get(
      rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
      layoutAttr.getValue(), rankedMemrefType.getMemorySpace());
}

/// Return the FuncOp called by `callOp`.
static FuncOp getCalledFunction(CallOpInterface callOp) {
  SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
  if (!sym)
    return nullptr;
  return dyn_cast_or_null<FuncOp>(
      SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}

/// Get FuncAnalysisState.
static const FuncAnalysisState &
getFuncAnalysisState(const AnalysisState &state) {
  assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState");
  auto *result = static_cast<const OneShotAnalysisState &>(state)
                     .getExtension<FuncAnalysisState>();
  assert(result && "FuncAnalysisState does not exist");
  return *result;
}

/// Return the state (phase) of analysis of the FuncOp.
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
                                                  FuncOp funcOp) {
  if (!isa<OneShotAnalysisState>(state))
    return FuncOpAnalysisState::NotAnalyzed;
  auto *funcState = static_cast<const OneShotAnalysisState &>(state)
                        .getExtension<FuncAnalysisState>();
  if (!funcState)
    return FuncOpAnalysisState::NotAnalyzed;
  const auto &analyzedFuncOps = funcState->analyzedFuncOps;
  auto it = analyzedFuncOps.find(funcOp);
  if (it == analyzedFuncOps.end())
    return FuncOpAnalysisState::NotAnalyzed;
  return it->second;
}

/// Return the index of the bbArg in the given FuncOp that is equivalent to the
/// specified return value (if any).
static std::optional<int64_t>
getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state,
                        int64_t returnValIdx) {
  auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
  if (funcOpIt == state.equivalentFuncArgs.end())
    // No equivalence info stores for funcOp.
    return std::nullopt;

  auto retValIt = funcOpIt->getSecond().find(returnValIdx);
  if (retValIt == funcOpIt->getSecond().end())
    // Return value has no equivalent bbArg.
    return std::nullopt;

  return retValIt->getSecond();
}

struct CallOpInterface
    : public BufferizableOpInterface::ExternalModel<CallOpInterface,
                                                    func::CallOp> {
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                              const AnalysisState &state) const {
    func::CallOp callOp = cast<func::CallOp>(op);
    FuncOp funcOp = getCalledFunction(callOp);
    assert(funcOp && "expected CallOp to a FuncOp");

    if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
      // FuncOp not analyzed yet. Assume that OpOperand is read.
      return true;

    const FuncAnalysisState &funcState = getFuncAnalysisState(state);
    return funcState.readBbArgs.lookup(funcOp).contains(
        opOperand.getOperandNumber());
  }

  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
    func::CallOp callOp = cast<func::CallOp>(op);
    FuncOp funcOp = getCalledFunction(callOp);
    assert(funcOp && "expected CallOp to a FuncOp");

    if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
      // FuncOp not analyzed yet. Assume that OpOperand is written.
      return true;

    const FuncAnalysisState &funcState = getFuncAnalysisState(state);
    return funcState.writtenBbArgs.lookup(funcOp).contains(
        opOperand.getOperandNumber());
  }

  AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
                                            const AnalysisState &state) const {
    func::CallOp callOp = cast<func::CallOp>(op);
    FuncOp funcOp = getCalledFunction(callOp);
    assert(funcOp && "expected CallOp to a FuncOp");
    if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
      // FuncOp not analyzed yet. Any OpResult may be aliasing.
      return detail::unknownGetAliasingOpResults(opOperand);

    // Get aliasing results from state.
    const FuncAnalysisState &funcState = getFuncAnalysisState(state);
    auto aliasingReturnVals =
        funcState.aliasingReturnVals.lookup(funcOp).lookup(
            opOperand.getOperandNumber());

    // Check if the aliasing OpResult is equivalent to the OpOperand.
    std::optional<int64_t> equivalent = {};
    if (aliasingReturnVals.size() == 1) {
      equivalent = getEquivalentFuncArgIdx(funcOp, funcState,
                                           aliasingReturnVals.front());
      assert((!equivalent.has_value() ||
              *equivalent == opOperand.getOperandNumber()) &&
             "inconsistent analysis state");
    }
    AliasingOpResultList result;
    for (int64_t resultIdx : aliasingReturnVals)
      result.addAlias({callOp->getOpResult(resultIdx),
                       equivalent.has_value() ? BufferRelation::Equivalent
                                              : BufferRelation::Unknown,
                       /*isDefinite=*/equivalent.has_value()});
    return result;
  }

  /// All function arguments are writable. It is the responsibility of the
  /// CallOp to insert buffer copies where necessary.
  LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
                          const BufferizationOptions &options) const {
    func::CallOp callOp = cast<func::CallOp>(op);
    unsigned numResults = callOp.getNumResults();
    unsigned numOperands = callOp->getNumOperands();
    FuncOp funcOp = getCalledFunction(callOp);
    assert(funcOp && "expected CallOp to a FuncOp");
    FunctionType funcType = funcOp.getFunctionType();

    // Result types of the bufferized CallOp.
    SmallVector<Type> resultTypes;
    // Replacement values for the existing CallOp. These are usually the results
    // of the bufferized CallOp, unless a tensor result folds onto an operand.
    SmallVector<Value> replacementValues(numResults, Value());
    // For non-tensor results: A mapping from return val indices of the old
    // CallOp to return val indices of the bufferized CallOp.
    SmallVector<std::optional<unsigned>> retValMapping(numResults,
                                                       std::nullopt);
    // Operands of the bufferized CallOp.
    SmallVector<Value> newOperands(numOperands, Value());

    // 1. Compute the result types of the new CallOp.
    for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
      unsigned returnValIdx = it.index();
      Type returnType = it.value();
      if (!isa<TensorType>(returnType)) {
        // Non-tensor values are returned.
        retValMapping[returnValIdx] = resultTypes.size();
        resultTypes.push_back(returnType);
        continue;
      }

      // Returning a memref.
      retValMapping[returnValIdx] = resultTypes.size();
      resultTypes.push_back(funcType.getResult(resultTypes.size()));
    }

    // 2. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
    for (OpOperand &opOperand : callOp->getOpOperands()) {
      unsigned idx = opOperand.getOperandNumber();
      Value tensorOperand = opOperand.get();

      // Non-tensor operands are just copied.
      if (!isa<TensorType>(tensorOperand.getType())) {
        newOperands[idx] = tensorOperand;
        continue;
      }

      // Retrieve buffers for tensor operands.
      Value buffer = newOperands[idx];
      if (!buffer) {
        FailureOr<Value> maybeBuffer =
            getBuffer(rewriter, opOperand.get(), options);
        if (failed(maybeBuffer))
          return failure();
        buffer = *maybeBuffer;
      }

      // Caller / callee type mismatch is handled with a CastOp.
      auto memRefType = funcType.getInput(idx);
      // Since we don't yet have a clear layout story, to_memref may
      // conservatively turn tensors into more dynamic memref than necessary.
      // If the memref type of the callee fails, introduce an extra memref.cast
      // that will either canonicalize away or fail compilation until we can do
      // something better.
      if (buffer.getType() != memRefType) {
        assert(
            memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
            "CallOp::bufferize: cast incompatible");
        Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
                                                           memRefType, buffer);
        buffer = castBuffer;
      }
      newOperands[idx] = buffer;
    }

    // 3. Create the new CallOp.
    Operation *newCallOp = rewriter.create<func::CallOp>(
        callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
    newCallOp->setAttrs(callOp->getAttrs());
    // Get replacement values.
    for (unsigned i = 0; i < replacementValues.size(); ++i) {
      if (replacementValues[i])
        continue;
      replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
    }

    // 4. Replace the old op with the new op.
    replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);

    return success();
  }
};

struct ReturnOpInterface
    : public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
                                                    func::ReturnOp> {
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                              const AnalysisState &state) const {
    return true;
  }

  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
    return false;
  }

  AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
                                            const AnalysisState &state) const {
    return {};
  }

  LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
                          const BufferizationOptions &options) const {
#ifndef NDEBUG
    auto returnOp = cast<func::ReturnOp>(op);
    assert(isa<FuncOp>(returnOp->getParentOp()) &&
           "only support FuncOp parent for ReturnOp");
#endif // NDEBUG

    // ReturnOps are bufferized as part of FuncOps.
    return success();
  }
};

struct FuncOpInterface
    : public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
  /// Rewrite function bbArgs and return values into buffer form. This function
  /// bufferizes the function signature and the ReturnOp. When the entire
  /// function body has been bufferized, function return types can be switched
  /// to more concise memref types as part of `foldMemRefCasts`.
  ///
  /// All function bbArgs are writable unless they are explicitly marked as
  /// read-only. Callers must insert copies when needed.
  LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
                          const BufferizationOptions &options) const {
    auto funcOp = cast<FuncOp>(op);
    FunctionType funcType = funcOp.getFunctionType();

    // Construct the bufferized function type.
    SmallVector<Type> argTypes;
    for (const auto &it : llvm::enumerate(funcType.getInputs())) {
      Type argType = it.value();
      if (auto tensorType = dyn_cast<TensorType>(argType)) {
        argTypes.push_back(
            getBufferizedFunctionArgType(funcOp, it.index(), options));
        continue;
      }
      argTypes.push_back(argType);
    }

    // Bodiless functions are assumed opaque and we cannot know the
    // bufferization contract they want to enforce. As a consequence, only
    // support functions that don't return any tensors atm.
    if (funcOp.getBody().empty()) {
      SmallVector<Type> retTypes;
      for (Type resultType : funcType.getResults()) {
        if (isa<TensorType>(resultType))
          return funcOp->emitError() << "cannot bufferize bodiless function "
                                     << "that returns a tensor";
        retTypes.push_back(resultType);
      }
      funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
      return success();
    }

    // TODO: Support functions with multiple returns.
    func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
    assert(returnOp && "expected func with single return op");
    Location loc = returnOp.getLoc();

    // 1. Rewrite the bbArgs. Turn every tensor bbArg into a memref bbArg.
    Block &frontBlock = funcOp.getBody().front();
    for (BlockArgument &bbArg : frontBlock.getArguments()) {
      auto tensorType = dyn_cast<TensorType>(bbArg.getType());
      // Non-tensor types stay the same.
      if (!tensorType)
        continue;

      // Collect all uses of the bbArg.
      SmallVector<OpOperand *> bbArgUses;
      for (OpOperand &use : bbArg.getUses())
        bbArgUses.push_back(&use);

      // Change the bbArg type to memref.
      Type memrefType =
          getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), options);
      bbArg.setType(memrefType);

      // Replace all uses of the original tensor bbArg.
      rewriter.setInsertionPointToStart(&frontBlock);
      if (!bbArgUses.empty()) {
        // Insert to_tensor because the remaining function body has not been
        // bufferized yet.
        Value toTensorOp =
            rewriter.create<bufferization::ToTensorOp>(funcOp.getLoc(), bbArg);
        for (OpOperand *use : bbArgUses)
          use->set(toTensorOp);
      }
    }

    // 2. For each result, keep track of which inplace argument it reuses.
    SmallVector<Value> returnValues;
    for (OpOperand &returnOperand : returnOp->getOpOperands()) {
      Value returnVal = returnOperand.get();
      auto tensorType = dyn_cast<TensorType>(returnVal.getType());
      rewriter.setInsertionPoint(returnOp);

      // If not a tensor type just forward it.
      if (!tensorType) {
        returnValues.push_back(returnVal);
        continue;
      }

      // Note: If `inferFunctionResultLayout = true`, cast are later folded
      // away.
      BaseMemRefType resultType = options.functionArgTypeConverterFn(
          tensorType, *options.defaultMemorySpace, funcOp, options);
      Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
          loc, resultType, returnVal);
      returnValues.push_back(toMemrefOp);
    }

    // 3. Rewrite the terminator without the in-place bufferizable values.
    returnOp.getOperandsMutable().assign(returnValues);

    // 4. Rewrite the FuncOp type to buffer form.
    funcOp.setType(FunctionType::get(op->getContext(), argTypes,
                                     ValueRange(returnValues).getTypes()));

    return success();
  }

  /// Return `true` if the given function argument is writable.
  bool isWritable(Operation *op, Value value,
                  const AnalysisState &state) const {
    auto funcOp = cast<FuncOp>(op);
    BlockArgument bbArg = dyn_cast<BlockArgument>(value);
    assert(bbArg && "expected BlockArgument");

    // "bufferization.writable" overrides other writability decisions. This is
    // currently used for testing only.
    if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>(
            bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName))
      return writable.getValue();

    // All function arguments are writable by default.
    return true;
  }
};

} // namespace func_ext
} // namespace bufferization
} // namespace mlir

void mlir::bufferization::func_ext::
    registerBufferizableOpInterfaceExternalModels(DialectRegistry &registry) {
  registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
    func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx);
    func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx);
    func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx);
  });
}