summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Async/Transforms/AsyncToAsyncRuntime.cpp
blob: db7550d7d99fa76047a5da5aab4912a95afb7256 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
//===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering from high level async operations to async.coro
// and async.runtime operations.
//
//===----------------------------------------------------------------------===//

#include <utility>

#include "mlir/Dialect/Async/Passes.h"

#include "PassDetail.h"
#include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include <optional>

namespace mlir {
#define GEN_PASS_DEF_ASYNCTOASYNCRUNTIME
#define GEN_PASS_DEF_ASYNCFUNCTOASYNCRUNTIME
#include "mlir/Dialect/Async/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::async;

#define DEBUG_TYPE "async-to-async-runtime"
// Prefix for functions outlined from `async.execute` op regions.
static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";

namespace {

class AsyncToAsyncRuntimePass
    : public impl::AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
public:
  AsyncToAsyncRuntimePass() = default;
  void runOnOperation() override;
};

} // namespace

namespace {

class AsyncFuncToAsyncRuntimePass
    : public impl::AsyncFuncToAsyncRuntimeBase<AsyncFuncToAsyncRuntimePass> {
public:
  AsyncFuncToAsyncRuntimePass() = default;
  void runOnOperation() override;
};

} // namespace

/// Function targeted for coroutine transformation has two additional blocks at
/// the end: coroutine cleanup and coroutine suspension.
///
/// async.await op lowering additionaly creates a resume block for each
/// operation to enable non-blocking waiting via coroutine suspension.
namespace {
struct CoroMachinery {
  func::FuncOp func;

  // Async function returns an optional token, followed by some async values
  //
  //  async.func @foo() -> !async.value<T> {
  //    %cst = arith.constant 42.0 : T
  //    return %cst: T
  //  }
  // Async execute region returns a completion token, and an async value for
  // each yielded value.
  //
  //   %token, %result = async.execute -> !async.value<T> {
  //     %0 = arith.constant ... : T
  //     async.yield %0 : T
  //   }
  std::optional<Value> asyncToken;          // returned completion token
  llvm::SmallVector<Value, 4> returnValues; // returned async values

  Value coroHandle; // coroutine handle (!async.coro.getHandle value)
  Block *entry;     // coroutine entry block
  std::optional<Block *> setError; // set returned values to error state
  Block *cleanup;   // coroutine cleanup block
  Block *suspend;   // coroutine suspension block
};
} // namespace

using FuncCoroMapPtr =
    std::shared_ptr<llvm::DenseMap<func::FuncOp, CoroMachinery>>;

/// Utility to partially update the regular function CFG to the coroutine CFG
/// compatible with LLVM coroutines switched-resume lowering using
/// `async.runtime.*` and `async.coro.*` operations. Adds a new entry block
/// that branches into preexisting entry block. Also inserts trailing blocks.
///
/// The result types of the passed `func` start with an optional `async.token`
/// and be continued with some number of `async.value`s.
///
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
///
///  - `entry` block sets up the coroutine.
///  - `set_error` block sets completion token and async values state to error.
///  - `cleanup` block cleans up the coroutine state.
///  - `suspend block after the @llvm.coro.end() defines what value will be
///    returned to the initial caller of a coroutine. Everything before the
///    @llvm.coro.end() will be executed at every suspension point.
///
/// Coroutine structure (only the important bits):
///
///   func @some_fn(<function-arguments>) -> (!async.token, !async.value<T>)
///   {
///     ^entry(<function-arguments>):
///       %token = <async token> : !async.token    // create async runtime token
///       %value = <async value> : !async.value<T> // create async value
///       %id = async.coro.getId                   // create a coroutine id
///       %hdl = async.coro.begin %id              // create a coroutine handle
///       cf.br ^preexisting_entry_block
///
///     /*  preexisting blocks modified to branch to the cleanup block */
///
///     ^set_error: // this block created lazily only if needed (see code below)
///       async.runtime.set_error %token : !async.token
///       async.runtime.set_error %value : !async.value<T>
///       cf.br ^cleanup
///
///     ^cleanup:
///       async.coro.free %hdl // delete the coroutine state
///       cf.br ^suspend
///
///     ^suspend:
///       async.coro.end %hdl // marks the end of a coroutine
///       return %token, %value : !async.token, !async.value<T>
///   }
///
static CoroMachinery setupCoroMachinery(func::FuncOp func) {
  assert(!func.getBlocks().empty() && "Function must have an entry block");

  MLIRContext *ctx = func.getContext();
  Block *entryBlock = &func.getBlocks().front();
  Block *originalEntryBlock =
      entryBlock->splitBlock(entryBlock->getOperations().begin());
  auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);

  // ------------------------------------------------------------------------ //
  // Allocate async token/values that we will return from a ramp function.
  // ------------------------------------------------------------------------ //

  // We treat TokenType as state update marker to represent side-effects of
  // async computations
  bool isStateful = isa<TokenType>(func.getCallableResults().front());

  std::optional<Value> retToken;
  if (isStateful)
    retToken.emplace(builder.create<RuntimeCreateOp>(TokenType::get(ctx)));

  llvm::SmallVector<Value, 4> retValues;
  ArrayRef<Type> resValueTypes = isStateful
                                     ? func.getCallableResults().drop_front()
                                     : func.getCallableResults();
  for (auto resType : resValueTypes)
    retValues.emplace_back(
        builder.create<RuntimeCreateOp>(resType).getResult());

  // ------------------------------------------------------------------------ //
  // Initialize coroutine: get coroutine id and coroutine handle.
  // ------------------------------------------------------------------------ //
  auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
  auto coroHdlOp =
      builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.getId());
  builder.create<cf::BranchOp>(originalEntryBlock);

  Block *cleanupBlock = func.addBlock();
  Block *suspendBlock = func.addBlock();

  // ------------------------------------------------------------------------ //
  // Coroutine cleanup block: deallocate coroutine frame, free the memory.
  // ------------------------------------------------------------------------ //
  builder.setInsertionPointToStart(cleanupBlock);
  builder.create<CoroFreeOp>(coroIdOp.getId(), coroHdlOp.getHandle());

  // Branch into the suspend block.
  builder.create<cf::BranchOp>(suspendBlock);

  // ------------------------------------------------------------------------ //
  // Coroutine suspend block: mark the end of a coroutine and return allocated
  // async token.
  // ------------------------------------------------------------------------ //
  builder.setInsertionPointToStart(suspendBlock);

  // Mark the end of a coroutine: async.coro.end
  builder.create<CoroEndOp>(coroHdlOp.getHandle());

  // Return created optional `async.token` and `async.values` from the suspend
  // block. This will be the return value of a coroutine ramp function.
  SmallVector<Value, 4> ret;
  if (retToken)
    ret.push_back(*retToken);
  ret.insert(ret.end(), retValues.begin(), retValues.end());
  builder.create<func::ReturnOp>(ret);

  // `async.await` op lowering will create resume blocks for async
  // continuations, and will conditionally branch to cleanup or suspend blocks.

  // The switch-resumed API based coroutine should be marked with
  // coroutine.presplit attribute to mark the function as a coroutine.
  func->setAttr("passthrough", builder.getArrayAttr(
                                   StringAttr::get(ctx, "presplitcoroutine")));

  CoroMachinery machinery;
  machinery.func = func;
  machinery.asyncToken = retToken;
  machinery.returnValues = retValues;
  machinery.coroHandle = coroHdlOp.getHandle();
  machinery.entry = entryBlock;
  machinery.setError = std::nullopt; // created lazily only if needed
  machinery.cleanup = cleanupBlock;
  machinery.suspend = suspendBlock;
  return machinery;
}

// Lazily creates `set_error` block only if it is required for lowering to the
// runtime operations (see for example lowering of assert operation).
static Block *setupSetErrorBlock(CoroMachinery &coro) {
  if (coro.setError)
    return *coro.setError;

  coro.setError = coro.func.addBlock();
  (*coro.setError)->moveBefore(coro.cleanup);

  auto builder =
      ImplicitLocOpBuilder::atBlockBegin(coro.func->getLoc(), *coro.setError);

  // Coroutine set_error block: set error on token and all returned values.
  if (coro.asyncToken)
    builder.create<RuntimeSetErrorOp>(*coro.asyncToken);

  for (Value retValue : coro.returnValues)
    builder.create<RuntimeSetErrorOp>(retValue);

  // Branch into the cleanup block.
  builder.create<cf::BranchOp>(coro.cleanup);

  return *coro.setError;
}

//===----------------------------------------------------------------------===//
// async.execute op outlining to the coroutine functions.
//===----------------------------------------------------------------------===//

/// Outline the body region attached to the `async.execute` op into a standalone
/// function.
///
/// Note that this is not reversible transformation.
static std::pair<func::FuncOp, CoroMachinery>
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
  ModuleOp module = execute->getParentOfType<ModuleOp>();

  MLIRContext *ctx = module.getContext();
  Location loc = execute.getLoc();

  // Make sure that all constants will be inside the outlined async function to
  // reduce the number of function arguments.
  cloneConstantsIntoTheRegion(execute.getBodyRegion());

  // Collect all outlined function inputs.
  SetVector<mlir::Value> functionInputs(execute.getDependencies().begin(),
                                        execute.getDependencies().end());
  functionInputs.insert(execute.getBodyOperands().begin(),
                        execute.getBodyOperands().end());
  getUsedValuesDefinedAbove(execute.getBodyRegion(), functionInputs);

  // Collect types for the outlined function inputs and outputs.
  auto typesRange = llvm::map_range(
      functionInputs, [](Value value) { return value.getType(); });
  SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
  auto outputTypes = execute.getResultTypes();

  auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
  auto funcAttrs = ArrayRef<NamedAttribute>();

  // TODO: Derive outlined function name from the parent FuncOp (support
  // multiple nested async.execute operations).
  func::FuncOp func =
      func::FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
  symbolTable.insert(func);

  SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
  auto builder = ImplicitLocOpBuilder::atBlockBegin(loc, func.addEntryBlock());

  // Prepare for coroutine conversion by creating the body of the function.
  {
    size_t numDependencies = execute.getDependencies().size();
    size_t numOperands = execute.getBodyOperands().size();

    // Await on all dependencies before starting to execute the body region.
    for (size_t i = 0; i < numDependencies; ++i)
      builder.create<AwaitOp>(func.getArgument(i));

    // Await on all async value operands and unwrap the payload.
    SmallVector<Value, 4> unwrappedOperands(numOperands);
    for (size_t i = 0; i < numOperands; ++i) {
      Value operand = func.getArgument(numDependencies + i);
      unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).getResult();
    }

    // Map from function inputs defined above the execute op to the function
    // arguments.
    IRMapping valueMapping;
    valueMapping.map(functionInputs, func.getArguments());
    valueMapping.map(execute.getBodyRegion().getArguments(), unwrappedOperands);

    // Clone all operations from the execute operation body into the outlined
    // function body.
    for (Operation &op : execute.getBodyRegion().getOps())
      builder.clone(op, valueMapping);
  }

  // Adding entry/cleanup/suspend blocks.
  CoroMachinery coro = setupCoroMachinery(func);

  // Suspend async function at the end of an entry block, and resume it using
  // Async resume operation (execution will be resumed in a thread managed by
  // the async runtime).
  {
    cf::BranchOp branch = cast<cf::BranchOp>(coro.entry->getTerminator());
    builder.setInsertionPointToEnd(coro.entry);

    // Save the coroutine state: async.coro.save
    auto coroSaveOp =
        builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);

    // Pass coroutine to the runtime to be resumed on a runtime managed
    // thread.
    builder.create<RuntimeResumeOp>(coro.coroHandle);

    // Add async.coro.suspend as a suspended block terminator.
    builder.create<CoroSuspendOp>(coroSaveOp.getState(), coro.suspend,
                                  branch.getDest(), coro.cleanup);

    branch.erase();
  }

  // Replace the original `async.execute` with a call to outlined function.
  {
    ImplicitLocOpBuilder callBuilder(loc, execute);
    auto callOutlinedFunc = callBuilder.create<func::CallOp>(
        func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
    execute.replaceAllUsesWith(callOutlinedFunc.getResults());
    execute.erase();
  }

  return {func, coro};
}

//===----------------------------------------------------------------------===//
// Convert async.create_group operation to async.runtime.create_group
//===----------------------------------------------------------------------===//

namespace {
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
public:
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(CreateGroupOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<RuntimeCreateGroupOp>(
        op, GroupType::get(op->getContext()), adaptor.getOperands());
    return success();
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// Convert async.add_to_group operation to async.runtime.add_to_group.
//===----------------------------------------------------------------------===//

namespace {
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
public:
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(AddToGroupOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
        op, rewriter.getIndexType(), adaptor.getOperands());
    return success();
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// Convert async.func, async.return and async.call operations to non-blocking
// operations based on llvm coroutine
//===----------------------------------------------------------------------===//

namespace {

//===----------------------------------------------------------------------===//
// Convert async.func operation to func.func
//===----------------------------------------------------------------------===//

class AsyncFuncOpLowering : public OpConversionPattern<async::FuncOp> {
public:
  AsyncFuncOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
      : OpConversionPattern<async::FuncOp>(ctx), coros(std::move(coros)) {}

  LogicalResult
  matchAndRewrite(async::FuncOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();

    auto newFuncOp =
        rewriter.create<func::FuncOp>(loc, op.getName(), op.getFunctionType());

    SymbolTable::setSymbolVisibility(newFuncOp,
                                     SymbolTable::getSymbolVisibility(op));
    // Copy over all attributes other than the name.
    for (const auto &namedAttr : op->getAttrs()) {
      if (namedAttr.getName() != SymbolTable::getSymbolAttrName())
        newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
    }

    rewriter.inlineRegionBefore(op.getBody(), newFuncOp.getBody(),
                                newFuncOp.end());

    CoroMachinery coro = setupCoroMachinery(newFuncOp);
    (*coros)[newFuncOp] = coro;
    // no initial suspend, we should hot-start

    rewriter.eraseOp(op);
    return success();
  }

private:
  FuncCoroMapPtr coros;
};

//===----------------------------------------------------------------------===//
// Convert async.call operation to func.call
//===----------------------------------------------------------------------===//

class AsyncCallOpLowering : public OpConversionPattern<async::CallOp> {
public:
  AsyncCallOpLowering(MLIRContext *ctx)
      : OpConversionPattern<async::CallOp>(ctx) {}

  LogicalResult
  matchAndRewrite(async::CallOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<func::CallOp>(
        op, op.getCallee(), op.getResultTypes(), op.getOperands());
    return success();
  }
};

//===----------------------------------------------------------------------===//
// Convert async.return operation to async.runtime operations.
//===----------------------------------------------------------------------===//

class AsyncReturnOpLowering : public OpConversionPattern<async::ReturnOp> {
public:
  AsyncReturnOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
      : OpConversionPattern<async::ReturnOp>(ctx), coros(std::move(coros)) {}

  LogicalResult
  matchAndRewrite(async::ReturnOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto func = op->template getParentOfType<func::FuncOp>();
    auto funcCoro = coros->find(func);
    if (funcCoro == coros->end())
      return rewriter.notifyMatchFailure(
          op, "operation is not inside the async coroutine function");

    Location loc = op->getLoc();
    const CoroMachinery &coro = funcCoro->getSecond();
    rewriter.setInsertionPointAfter(op);

    // Store return values into the async values storage and switch async
    // values state to available.
    for (auto tuple : llvm::zip(adaptor.getOperands(), coro.returnValues)) {
      Value returnValue = std::get<0>(tuple);
      Value asyncValue = std::get<1>(tuple);
      rewriter.create<RuntimeStoreOp>(loc, returnValue, asyncValue);
      rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
    }

    if (coro.asyncToken)
      // Switch the coroutine completion token to available state.
      rewriter.create<RuntimeSetAvailableOp>(loc, *coro.asyncToken);

    rewriter.eraseOp(op);
    rewriter.create<cf::BranchOp>(loc, coro.cleanup);
    return success();
  }

private:
  FuncCoroMapPtr coros;
};
} // namespace

//===----------------------------------------------------------------------===//
// Convert async.await and async.await_all operations to the async.runtime.await
// or async.runtime.await_and_resume operations.
//===----------------------------------------------------------------------===//

namespace {
template <typename AwaitType, typename AwaitableType>
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
  using AwaitAdaptor = typename AwaitType::Adaptor;

public:
  AwaitOpLoweringBase(MLIRContext *ctx, FuncCoroMapPtr coros,
                      bool shouldLowerBlockingWait)
      : OpConversionPattern<AwaitType>(ctx), coros(std::move(coros)),
        shouldLowerBlockingWait(shouldLowerBlockingWait) {}

  LogicalResult
  matchAndRewrite(AwaitType op, typename AwaitType::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // We can only await on one the `AwaitableType` (for `await` it can be
    // a `token` or a `value`, for `await_all` it must be a `group`).
    if (!isa<AwaitableType>(op.getOperand().getType()))
      return rewriter.notifyMatchFailure(op, "unsupported awaitable type");

    // Check if await operation is inside the coroutine function.
    auto func = op->template getParentOfType<func::FuncOp>();
    auto funcCoro = coros->find(func);
    const bool isInCoroutine = funcCoro != coros->end();

    Location loc = op->getLoc();
    Value operand = adaptor.getOperand();

    Type i1 = rewriter.getI1Type();

    // Delay lowering to block wait in case await op is inside async.execute
    if (!isInCoroutine && !shouldLowerBlockingWait)
      return failure();

    // Inside regular functions we use the blocking wait operation to wait for
    // the async object (token, value or group) to become available.
    if (!isInCoroutine) {
      ImplicitLocOpBuilder builder(loc, op, &rewriter);
      builder.create<RuntimeAwaitOp>(loc, operand);

      // Assert that the awaited operands is not in the error state.
      Value isError = builder.create<RuntimeIsErrorOp>(i1, operand);
      Value notError = builder.create<arith::XOrIOp>(
          isError, builder.create<arith::ConstantOp>(
                       loc, i1, builder.getIntegerAttr(i1, 1)));

      builder.create<cf::AssertOp>(notError,
                                   "Awaited async operand is in error state");
    }

    // Inside the coroutine we convert await operation into coroutine suspension
    // point, and resume execution asynchronously.
    if (isInCoroutine) {
      CoroMachinery &coro = funcCoro->getSecond();
      Block *suspended = op->getBlock();

      ImplicitLocOpBuilder builder(loc, op, &rewriter);
      MLIRContext *ctx = op->getContext();

      // Save the coroutine state and resume on a runtime managed thread when
      // the operand becomes available.
      auto coroSaveOp =
          builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
      builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);

      // Split the entry block before the await operation.
      Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));

      // Add async.coro.suspend as a suspended block terminator.
      builder.setInsertionPointToEnd(suspended);
      builder.create<CoroSuspendOp>(coroSaveOp.getState(), coro.suspend, resume,
                                    coro.cleanup);

      // Split the resume block into error checking and continuation.
      Block *continuation = rewriter.splitBlock(resume, Block::iterator(op));

      // Check if the awaited value is in the error state.
      builder.setInsertionPointToStart(resume);
      auto isError = builder.create<RuntimeIsErrorOp>(loc, i1, operand);
      builder.create<cf::CondBranchOp>(isError,
                                       /*trueDest=*/setupSetErrorBlock(coro),
                                       /*trueArgs=*/ArrayRef<Value>(),
                                       /*falseDest=*/continuation,
                                       /*falseArgs=*/ArrayRef<Value>());

      // Make sure that replacement value will be constructed in the
      // continuation block.
      rewriter.setInsertionPointToStart(continuation);
    }

    // Erase or replace the await operation with the new value.
    if (Value replaceWith = getReplacementValue(op, operand, rewriter))
      rewriter.replaceOp(op, replaceWith);
    else
      rewriter.eraseOp(op);

    return success();
  }

  virtual Value getReplacementValue(AwaitType op, Value operand,
                                    ConversionPatternRewriter &rewriter) const {
    return Value();
  }

private:
  FuncCoroMapPtr coros;
  bool shouldLowerBlockingWait;
};

/// Lowering for `async.await` with a token operand.
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
  using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;

public:
  using Base::Base;
};

/// Lowering for `async.await` with a value operand.
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
  using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;

public:
  using Base::Base;

  Value
  getReplacementValue(AwaitOp op, Value operand,
                      ConversionPatternRewriter &rewriter) const override {
    // Load from the async value storage.
    auto valueType = cast<ValueType>(operand.getType()).getValueType();
    return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
  }
};

/// Lowering for `async.await_all` operation.
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
  using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;

public:
  using Base::Base;
};

} // namespace

//===----------------------------------------------------------------------===//
// Convert async.yield operation to async.runtime operations.
//===----------------------------------------------------------------------===//

class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
public:
  YieldOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
      : OpConversionPattern<async::YieldOp>(ctx), coros(std::move(coros)) {}

  LogicalResult
  matchAndRewrite(async::YieldOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Check if yield operation is inside the async coroutine function.
    auto func = op->template getParentOfType<func::FuncOp>();
    auto funcCoro = coros->find(func);
    if (funcCoro == coros->end())
      return rewriter.notifyMatchFailure(
          op, "operation is not inside the async coroutine function");

    Location loc = op->getLoc();
    const CoroMachinery &coro = funcCoro->getSecond();

    // Store yielded values into the async values storage and switch async
    // values state to available.
    for (auto tuple : llvm::zip(adaptor.getOperands(), coro.returnValues)) {
      Value yieldValue = std::get<0>(tuple);
      Value asyncValue = std::get<1>(tuple);
      rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
      rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
    }

    if (coro.asyncToken)
      // Switch the coroutine completion token to available state.
      rewriter.create<RuntimeSetAvailableOp>(loc, *coro.asyncToken);

    rewriter.eraseOp(op);
    rewriter.create<cf::BranchOp>(loc, coro.cleanup);

    return success();
  }

private:
  FuncCoroMapPtr coros;
};

//===----------------------------------------------------------------------===//
// Convert cf.assert operation to cf.cond_br into `set_error` block.
//===----------------------------------------------------------------------===//

class AssertOpLowering : public OpConversionPattern<cf::AssertOp> {
public:
  AssertOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
      : OpConversionPattern<cf::AssertOp>(ctx), coros(std::move(coros)) {}

  LogicalResult
  matchAndRewrite(cf::AssertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Check if assert operation is inside the async coroutine function.
    auto func = op->template getParentOfType<func::FuncOp>();
    auto funcCoro = coros->find(func);
    if (funcCoro == coros->end())
      return rewriter.notifyMatchFailure(
          op, "operation is not inside the async coroutine function");

    Location loc = op->getLoc();
    CoroMachinery &coro = funcCoro->getSecond();

    Block *cont = rewriter.splitBlock(op->getBlock(), Block::iterator(op));
    rewriter.setInsertionPointToEnd(cont->getPrevNode());
    rewriter.create<cf::CondBranchOp>(loc, adaptor.getArg(),
                                      /*trueDest=*/cont,
                                      /*trueArgs=*/ArrayRef<Value>(),
                                      /*falseDest=*/setupSetErrorBlock(coro),
                                      /*falseArgs=*/ArrayRef<Value>());
    rewriter.eraseOp(op);

    return success();
  }

private:
  FuncCoroMapPtr coros;
};

//===----------------------------------------------------------------------===//
void AsyncToAsyncRuntimePass::runOnOperation() {
  ModuleOp module = getOperation();
  SymbolTable symbolTable(module);

  // Functions with coroutine CFG setups, which are results of outlining
  // `async.execute` body regions
  FuncCoroMapPtr coros =
      std::make_shared<llvm::DenseMap<func::FuncOp, CoroMachinery>>();

  module.walk([&](ExecuteOp execute) {
    coros->insert(outlineExecuteOp(symbolTable, execute));
  });

  LLVM_DEBUG({
    llvm::dbgs() << "Outlined " << coros->size()
                 << " functions built from async.execute operations\n";
  });

  // Returns true if operation is inside the coroutine.
  auto isInCoroutine = [&](Operation *op) -> bool {
    auto parentFunc = op->getParentOfType<func::FuncOp>();
    return coros->find(parentFunc) != coros->end();
  };

  // Lower async operations to async.runtime operations.
  MLIRContext *ctx = module->getContext();
  RewritePatternSet asyncPatterns(ctx);

  // Conversion to async runtime augments original CFG with the coroutine CFG,
  // and we have to make sure that structured control flow operations with async
  // operations in nested regions will be converted to branch-based control flow
  // before we add the coroutine basic blocks.
  populateSCFToControlFlowConversionPatterns(asyncPatterns);

  // Async lowering does not use type converter because it must preserve all
  // types for async.runtime operations.
  asyncPatterns.add<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);

  asyncPatterns
      .add<AwaitTokenOpLowering, AwaitValueOpLowering, AwaitAllOpLowering>(
          ctx, coros, /*should_lower_blocking_wait=*/true);

  // Lower assertions to conditional branches into error blocks.
  asyncPatterns.add<YieldOpLowering, AssertOpLowering>(ctx, coros);

  // All high level async operations must be lowered to the runtime operations.
  ConversionTarget runtimeTarget(*ctx);
  runtimeTarget.addLegalDialect<AsyncDialect, func::FuncDialect>();
  runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
  runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();

  // Decide if structured control flow has to be lowered to branch-based CFG.
  runtimeTarget.addDynamicallyLegalDialect<scf::SCFDialect>([&](Operation *op) {
    auto walkResult = op->walk([&](Operation *nested) {
      bool isAsync = isa<async::AsyncDialect>(nested->getDialect());
      return isAsync && isInCoroutine(nested) ? WalkResult::interrupt()
                                              : WalkResult::advance();
    });
    return !walkResult.wasInterrupted();
  });
  runtimeTarget.addLegalOp<cf::AssertOp, arith::XOrIOp, arith::ConstantOp,
                           func::ConstantOp, cf::BranchOp, cf::CondBranchOp>();

  // Assertions must be converted to runtime errors inside async functions.
  runtimeTarget.addDynamicallyLegalOp<cf::AssertOp>(
      [&](cf::AssertOp op) -> bool {
        auto func = op->getParentOfType<func::FuncOp>();
        return coros->find(func) == coros->end();
      });

  if (failed(applyPartialConversion(module, runtimeTarget,
                                    std::move(asyncPatterns)))) {
    signalPassFailure();
    return;
  }
}

//===----------------------------------------------------------------------===//
void mlir::populateAsyncFuncToAsyncRuntimeConversionPatterns(
    RewritePatternSet &patterns, ConversionTarget &target) {
  // Functions with coroutine CFG setups, which are results of converting
  // async.func.
  FuncCoroMapPtr coros =
      std::make_shared<llvm::DenseMap<func::FuncOp, CoroMachinery>>();
  MLIRContext *ctx = patterns.getContext();
  // Lower async.func to func.func with coroutine cfg.
  patterns.add<AsyncCallOpLowering>(ctx);
  patterns.add<AsyncFuncOpLowering, AsyncReturnOpLowering>(ctx, coros);

  patterns.add<AwaitTokenOpLowering, AwaitValueOpLowering, AwaitAllOpLowering>(
      ctx, coros, /*should_lower_blocking_wait=*/false);
  patterns.add<YieldOpLowering, AssertOpLowering>(ctx, coros);

  target.addDynamicallyLegalOp<AwaitOp, AwaitAllOp, YieldOp, cf::AssertOp>(
      [coros](Operation *op) {
        auto exec = op->getParentOfType<ExecuteOp>();
        auto func = op->getParentOfType<func::FuncOp>();
        return exec || coros->find(func) == coros->end();
      });
}

void AsyncFuncToAsyncRuntimePass::runOnOperation() {
  ModuleOp module = getOperation();

  // Lower async operations to async.runtime operations.
  MLIRContext *ctx = module->getContext();
  RewritePatternSet asyncPatterns(ctx);
  ConversionTarget runtimeTarget(*ctx);

  // Lower async.func to func.func with coroutine cfg.
  populateAsyncFuncToAsyncRuntimeConversionPatterns(asyncPatterns,
                                                    runtimeTarget);

  runtimeTarget.addLegalDialect<AsyncDialect, func::FuncDialect>();
  runtimeTarget.addIllegalOp<async::FuncOp, async::CallOp, async::ReturnOp>();

  runtimeTarget.addLegalOp<arith::XOrIOp, arith::ConstantOp, func::ConstantOp,
                           cf::BranchOp, cf::CondBranchOp>();

  if (failed(applyPartialConversion(module, runtimeTarget,
                                    std::move(asyncPatterns)))) {
    signalPassFailure();
    return;
  }
}

std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
  return std::make_unique<AsyncToAsyncRuntimePass>();
}

std::unique_ptr<OperationPass<ModuleOp>>
mlir::createAsyncFuncToAsyncRuntimePass() {
  return std::make_unique<AsyncFuncToAsyncRuntimePass>();
}