1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
//===- IRNumbering.cpp - MLIR Bytecode IR numbering -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "IRNumbering.h"
#include "../Encoding.h"
#include "mlir/Bytecode/BytecodeImplementation.h"
#include "mlir/Bytecode/BytecodeWriter.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::bytecode::detail;
//===----------------------------------------------------------------------===//
// NumberingDialectWriter
//===----------------------------------------------------------------------===//
struct IRNumberingState::NumberingDialectWriter : public DialectBytecodeWriter {
NumberingDialectWriter(IRNumberingState &state) : state(state) {}
void writeAttribute(Attribute attr) override { state.number(attr); }
void writeType(Type type) override { state.number(type); }
void writeResourceHandle(const AsmDialectResourceHandle &resource) override {
state.number(resource.getDialect(), resource);
}
/// Stubbed out methods that are not used for numbering.
void writeVarInt(uint64_t) override {}
void writeSignedVarInt(int64_t value) override {}
void writeAPIntWithKnownWidth(const APInt &value) override {}
void writeAPFloatWithKnownSemantics(const APFloat &value) override {}
void writeOwnedString(StringRef) override {
// TODO: It might be nice to prenumber strings and sort by the number of
// references. This could potentially be useful for optimizing things like
// file locations.
}
void writeOwnedBlob(ArrayRef<char> blob) override {}
int64_t getBytecodeVersion() const override {
llvm_unreachable("unexpected querying of version in IRNumbering");
}
/// The parent numbering state that is populated by this writer.
IRNumberingState &state;
};
//===----------------------------------------------------------------------===//
// IR Numbering
//===----------------------------------------------------------------------===//
/// Group and sort the elements of the given range by their parent dialect. This
/// grouping is applied to sub-sections of the ranged defined by how many bytes
/// it takes to encode a varint index to that sub-section.
template <typename T>
static void groupByDialectPerByte(T range) {
if (range.empty())
return;
// A functor used to sort by a given dialect, with a desired dialect to be
// ordered first (to better enable sharing of dialects across byte groups).
auto sortByDialect = [](unsigned dialectToOrderFirst, const auto &lhs,
const auto &rhs) {
if (lhs->dialect->number == dialectToOrderFirst)
return rhs->dialect->number != dialectToOrderFirst;
if (rhs->dialect->number == dialectToOrderFirst)
return false;
return lhs->dialect->number < rhs->dialect->number;
};
unsigned dialectToOrderFirst = 0;
size_t elementsInByteGroup = 0;
auto iterRange = range;
for (unsigned i = 1; i < 9; ++i) {
// Update the number of elements in the current byte grouping. Reminder
// that varint encodes 7-bits per byte, so that's how we compute the
// number of elements in each byte grouping.
elementsInByteGroup = (1ULL << (7ULL * i)) - elementsInByteGroup;
// Slice out the sub-set of elements that are in the current byte grouping
// to be sorted.
auto byteSubRange = iterRange.take_front(elementsInByteGroup);
iterRange = iterRange.drop_front(byteSubRange.size());
// Sort the sub range for this byte.
llvm::stable_sort(byteSubRange, [&](const auto &lhs, const auto &rhs) {
return sortByDialect(dialectToOrderFirst, lhs, rhs);
});
// Update the dialect to order first to be the dialect at the end of the
// current grouping. This seeks to allow larger dialect groupings across
// byte boundaries.
dialectToOrderFirst = byteSubRange.back()->dialect->number;
// If the data range is now empty, we are done.
if (iterRange.empty())
break;
}
// Assign the entry numbers based on the sort order.
for (auto [idx, value] : llvm::enumerate(range))
value->number = idx;
}
IRNumberingState::IRNumberingState(Operation *op) {
// Number the root operation.
number(*op);
// Push all of the regions of the root operation onto the worklist.
SmallVector<std::pair<Region *, unsigned>, 8> numberContext;
for (Region ®ion : op->getRegions())
numberContext.emplace_back(®ion, nextValueID);
// Iteratively process each of the nested regions.
while (!numberContext.empty()) {
Region *region;
std::tie(region, nextValueID) = numberContext.pop_back_val();
number(*region);
// Traverse into nested regions.
for (Operation &op : region->getOps()) {
// Isolated regions don't share value numbers with their parent, so we can
// start numbering these regions at zero.
unsigned opFirstValueID =
op.hasTrait<OpTrait::IsIsolatedFromAbove>() ? 0 : nextValueID;
for (Region ®ion : op.getRegions())
numberContext.emplace_back(®ion, opFirstValueID);
}
}
// Number each of the dialects. For now this is just in the order they were
// found, given that the number of dialects on average is small enough to fit
// within a singly byte (128). If we ever have real world use cases that have
// a huge number of dialects, this could be made more intelligent.
for (auto [idx, dialect] : llvm::enumerate(dialects))
dialect.second->number = idx;
// Number each of the recorded components within each dialect.
// First sort by ref count so that the most referenced elements are first. We
// try to bias more heavily used elements to the front. This allows for more
// frequently referenced things to be encoded using smaller varints.
auto sortByRefCountFn = [](const auto &lhs, const auto &rhs) {
return lhs->refCount > rhs->refCount;
};
llvm::stable_sort(orderedAttrs, sortByRefCountFn);
llvm::stable_sort(orderedOpNames, sortByRefCountFn);
llvm::stable_sort(orderedTypes, sortByRefCountFn);
// After that, we apply a secondary ordering based on the parent dialect. This
// ordering is applied to sub-sections of the element list defined by how many
// bytes it takes to encode a varint index to that sub-section. This allows
// for more efficiently encoding components of the same dialect (e.g. we only
// have to encode the dialect reference once).
groupByDialectPerByte(llvm::MutableArrayRef(orderedAttrs));
groupByDialectPerByte(llvm::MutableArrayRef(orderedOpNames));
groupByDialectPerByte(llvm::MutableArrayRef(orderedTypes));
// Finalize the numbering of the dialect resources.
finalizeDialectResourceNumberings(op);
}
void IRNumberingState::number(Attribute attr) {
auto it = attrs.insert({attr, nullptr});
if (!it.second) {
++it.first->second->refCount;
return;
}
auto *numbering = new (attrAllocator.Allocate()) AttributeNumbering(attr);
it.first->second = numbering;
orderedAttrs.push_back(numbering);
// Check for OpaqueAttr, which is a dialect-specific attribute that didn't
// have a registered dialect when it got created. We don't want to encode this
// as the builtin OpaqueAttr, we want to encode it as if the dialect was
// actually loaded.
if (OpaqueAttr opaqueAttr = dyn_cast<OpaqueAttr>(attr)) {
numbering->dialect = &numberDialect(opaqueAttr.getDialectNamespace());
return;
}
numbering->dialect = &numberDialect(&attr.getDialect());
// If this attribute will be emitted using the bytecode format, perform a
// dummy writing to number any nested components.
if (const auto *interface = numbering->dialect->interface) {
// TODO: We don't allow custom encodings for mutable attributes right now.
if (!attr.hasTrait<AttributeTrait::IsMutable>()) {
NumberingDialectWriter writer(*this);
if (succeeded(interface->writeAttribute(attr, writer)))
return;
}
}
// If this attribute will be emitted using the fallback, number the nested
// dialect resources. We don't number everything (e.g. no nested
// attributes/types), because we don't want to encode things we won't decode
// (the textual format can't really share much).
AsmState tempState(attr.getContext());
llvm::raw_null_ostream dummyOS;
attr.print(dummyOS, tempState);
// Number the used dialect resources.
for (const auto &it : tempState.getDialectResources())
number(it.getFirst(), it.getSecond().getArrayRef());
}
void IRNumberingState::number(Block &block) {
// Number the arguments of the block.
for (BlockArgument arg : block.getArguments()) {
valueIDs.try_emplace(arg, nextValueID++);
number(arg.getLoc());
number(arg.getType());
}
// Number the operations in this block.
unsigned &numOps = blockOperationCounts[&block];
for (Operation &op : block) {
number(op);
++numOps;
}
}
auto IRNumberingState::numberDialect(Dialect *dialect) -> DialectNumbering & {
DialectNumbering *&numbering = registeredDialects[dialect];
if (!numbering) {
numbering = &numberDialect(dialect->getNamespace());
numbering->interface = dyn_cast<BytecodeDialectInterface>(dialect);
numbering->asmInterface = dyn_cast<OpAsmDialectInterface>(dialect);
}
return *numbering;
}
auto IRNumberingState::numberDialect(StringRef dialect) -> DialectNumbering & {
DialectNumbering *&numbering = dialects[dialect];
if (!numbering) {
numbering = new (dialectAllocator.Allocate())
DialectNumbering(dialect, dialects.size() - 1);
}
return *numbering;
}
void IRNumberingState::number(Region ®ion) {
if (region.empty())
return;
size_t firstValueID = nextValueID;
// Number the blocks within this region.
size_t blockCount = 0;
for (auto it : llvm::enumerate(region)) {
blockIDs.try_emplace(&it.value(), it.index());
number(it.value());
++blockCount;
}
// Remember the number of blocks and values in this region.
regionBlockValueCounts.try_emplace(®ion, blockCount,
nextValueID - firstValueID);
}
void IRNumberingState::number(Operation &op) {
// Number the components of an operation that won't be numbered elsewhere
// (e.g. we don't number operands, regions, or successors here).
number(op.getName());
for (OpResult result : op.getResults()) {
valueIDs.try_emplace(result, nextValueID++);
number(result.getType());
}
// Only number the operation's dictionary if it isn't empty.
DictionaryAttr dictAttr = op.getAttrDictionary();
if (!dictAttr.empty())
number(dictAttr);
number(op.getLoc());
}
void IRNumberingState::number(OperationName opName) {
OpNameNumbering *&numbering = opNames[opName];
if (numbering) {
++numbering->refCount;
return;
}
DialectNumbering *dialectNumber = nullptr;
if (Dialect *dialect = opName.getDialect())
dialectNumber = &numberDialect(dialect);
else
dialectNumber = &numberDialect(opName.getDialectNamespace());
numbering =
new (opNameAllocator.Allocate()) OpNameNumbering(dialectNumber, opName);
orderedOpNames.push_back(numbering);
}
void IRNumberingState::number(Type type) {
auto it = types.insert({type, nullptr});
if (!it.second) {
++it.first->second->refCount;
return;
}
auto *numbering = new (typeAllocator.Allocate()) TypeNumbering(type);
it.first->second = numbering;
orderedTypes.push_back(numbering);
// Check for OpaqueType, which is a dialect-specific type that didn't have a
// registered dialect when it got created. We don't want to encode this as the
// builtin OpaqueType, we want to encode it as if the dialect was actually
// loaded.
if (OpaqueType opaqueType = dyn_cast<OpaqueType>(type)) {
numbering->dialect = &numberDialect(opaqueType.getDialectNamespace());
return;
}
numbering->dialect = &numberDialect(&type.getDialect());
// If this type will be emitted using the bytecode format, perform a dummy
// writing to number any nested components.
if (const auto *interface = numbering->dialect->interface) {
// TODO: We don't allow custom encodings for mutable types right now.
if (!type.hasTrait<TypeTrait::IsMutable>()) {
NumberingDialectWriter writer(*this);
if (succeeded(interface->writeType(type, writer)))
return;
}
}
// If this type will be emitted using the fallback, number the nested dialect
// resources. We don't number everything (e.g. no nested attributes/types),
// because we don't want to encode things we won't decode (the textual format
// can't really share much).
AsmState tempState(type.getContext());
llvm::raw_null_ostream dummyOS;
type.print(dummyOS, tempState);
// Number the used dialect resources.
for (const auto &it : tempState.getDialectResources())
number(it.getFirst(), it.getSecond().getArrayRef());
}
void IRNumberingState::number(Dialect *dialect,
ArrayRef<AsmDialectResourceHandle> resources) {
DialectNumbering &dialectNumber = numberDialect(dialect);
assert(
dialectNumber.asmInterface &&
"expected dialect owning a resource to implement OpAsmDialectInterface");
for (const auto &resource : resources) {
// Check if this is a newly seen resource.
if (!dialectNumber.resources.insert(resource))
return;
auto *numbering =
new (resourceAllocator.Allocate()) DialectResourceNumbering(
dialectNumber.asmInterface->getResourceKey(resource));
dialectNumber.resourceMap.insert({numbering->key, numbering});
dialectResources.try_emplace(resource, numbering);
}
}
namespace {
/// A dummy resource builder used to number dialect resources.
struct NumberingResourceBuilder : public AsmResourceBuilder {
NumberingResourceBuilder(DialectNumbering *dialect, unsigned &nextResourceID)
: dialect(dialect), nextResourceID(nextResourceID) {}
~NumberingResourceBuilder() override = default;
void buildBlob(StringRef key, ArrayRef<char>, uint32_t) final {
numberEntry(key);
}
void buildBool(StringRef key, bool) final { numberEntry(key); }
void buildString(StringRef key, StringRef) final {
// TODO: We could pre-number the value string here as well.
numberEntry(key);
}
/// Number the dialect entry for the given key.
void numberEntry(StringRef key) {
// TODO: We could pre-number resource key strings here as well.
auto it = dialect->resourceMap.find(key);
if (it != dialect->resourceMap.end()) {
it->second->number = nextResourceID++;
it->second->isDeclaration = false;
}
}
DialectNumbering *dialect;
unsigned &nextResourceID;
};
} // namespace
void IRNumberingState::finalizeDialectResourceNumberings(Operation *rootOp) {
unsigned nextResourceID = 0;
for (DialectNumbering &dialect : getDialects()) {
if (!dialect.asmInterface)
continue;
NumberingResourceBuilder entryBuilder(&dialect, nextResourceID);
dialect.asmInterface->buildResources(rootOp, dialect.resources,
entryBuilder);
// Number any resources that weren't added by the dialect. This can happen
// if there was no backing data to the resource, but we still want these
// resource references to roundtrip, so we number them and indicate that the
// data is missing.
for (const auto &it : dialect.resourceMap)
if (it.second->isDeclaration)
it.second->number = nextResourceID++;
}
}
|