1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
|
//===- AttributeParser.cpp - MLIR Attribute Parser Implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR Types.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "AsmParserImpl.h"
#include "mlir/AsmParser/AsmParserState.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/DialectResourceBlobManager.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Endian.h"
#include <optional>
using namespace mlir;
using namespace mlir::detail;
/// Parse an arbitrary attribute.
///
/// attribute-value ::= `unit`
/// | bool-literal
/// | integer-literal (`:` (index-type | integer-type))?
/// | float-literal (`:` float-type)?
/// | string-literal (`:` type)?
/// | type
/// | `[` `:` (integer-type | float-type) tensor-literal `]`
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
/// | `{` (attribute-entry (`,` attribute-entry)*)? `}`
/// | symbol-ref-id (`::` symbol-ref-id)*
/// | `dense` `<` tensor-literal `>` `:`
/// (tensor-type | vector-type)
/// | `sparse` `<` attribute-value `,` attribute-value `>`
/// `:` (tensor-type | vector-type)
/// | `strided` `<` `[` comma-separated-int-or-question `]`
/// (`,` `offset` `:` integer-literal)? `>`
/// | extended-attribute
///
Attribute Parser::parseAttribute(Type type) {
switch (getToken().getKind()) {
// Parse an AffineMap or IntegerSet attribute.
case Token::kw_affine_map: {
consumeToken(Token::kw_affine_map);
AffineMap map;
if (parseToken(Token::less, "expected '<' in affine map") ||
parseAffineMapReference(map) ||
parseToken(Token::greater, "expected '>' in affine map"))
return Attribute();
return AffineMapAttr::get(map);
}
case Token::kw_affine_set: {
consumeToken(Token::kw_affine_set);
IntegerSet set;
if (parseToken(Token::less, "expected '<' in integer set") ||
parseIntegerSetReference(set) ||
parseToken(Token::greater, "expected '>' in integer set"))
return Attribute();
return IntegerSetAttr::get(set);
}
// Parse an array attribute.
case Token::l_square: {
consumeToken(Token::l_square);
SmallVector<Attribute, 4> elements;
auto parseElt = [&]() -> ParseResult {
elements.push_back(parseAttribute());
return elements.back() ? success() : failure();
};
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
return nullptr;
return builder.getArrayAttr(elements);
}
// Parse a boolean attribute.
case Token::kw_false:
consumeToken(Token::kw_false);
return builder.getBoolAttr(false);
case Token::kw_true:
consumeToken(Token::kw_true);
return builder.getBoolAttr(true);
// Parse a dense elements attribute.
case Token::kw_dense:
return parseDenseElementsAttr(type);
// Parse a dense resource elements attribute.
case Token::kw_dense_resource:
return parseDenseResourceElementsAttr(type);
// Parse a dense array attribute.
case Token::kw_array:
return parseDenseArrayAttr(type);
// Parse a dictionary attribute.
case Token::l_brace: {
NamedAttrList elements;
if (parseAttributeDict(elements))
return nullptr;
return elements.getDictionary(getContext());
}
// Parse an extended attribute, i.e. alias or dialect attribute.
case Token::hash_identifier:
return parseExtendedAttr(type);
// Parse floating point and integer attributes.
case Token::floatliteral:
return parseFloatAttr(type, /*isNegative=*/false);
case Token::integer:
return parseDecOrHexAttr(type, /*isNegative=*/false);
case Token::minus: {
consumeToken(Token::minus);
if (getToken().is(Token::integer))
return parseDecOrHexAttr(type, /*isNegative=*/true);
if (getToken().is(Token::floatliteral))
return parseFloatAttr(type, /*isNegative=*/true);
return (emitWrongTokenError(
"expected constant integer or floating point value"),
nullptr);
}
// Parse a location attribute.
case Token::kw_loc: {
consumeToken(Token::kw_loc);
LocationAttr locAttr;
if (parseToken(Token::l_paren, "expected '(' in inline location") ||
parseLocationInstance(locAttr) ||
parseToken(Token::r_paren, "expected ')' in inline location"))
return Attribute();
return locAttr;
}
// Parse a sparse elements attribute.
case Token::kw_sparse:
return parseSparseElementsAttr(type);
// Parse a strided layout attribute.
case Token::kw_strided:
return parseStridedLayoutAttr();
// Parse a string attribute.
case Token::string: {
auto val = getToken().getStringValue();
consumeToken(Token::string);
// Parse the optional trailing colon type if one wasn't explicitly provided.
if (!type && consumeIf(Token::colon) && !(type = parseType()))
return Attribute();
return type ? StringAttr::get(val, type)
: StringAttr::get(getContext(), val);
}
// Parse a symbol reference attribute.
case Token::at_identifier: {
// When populating the parser state, this is a list of locations for all of
// the nested references.
SmallVector<SMRange> referenceLocations;
if (state.asmState)
referenceLocations.push_back(getToken().getLocRange());
// Parse the top-level reference.
std::string nameStr = getToken().getSymbolReference();
consumeToken(Token::at_identifier);
// Parse any nested references.
std::vector<FlatSymbolRefAttr> nestedRefs;
while (getToken().is(Token::colon)) {
// Check for the '::' prefix.
const char *curPointer = getToken().getLoc().getPointer();
consumeToken(Token::colon);
if (!consumeIf(Token::colon)) {
if (getToken().isNot(Token::eof, Token::error)) {
state.lex.resetPointer(curPointer);
consumeToken();
}
break;
}
// Parse the reference itself.
auto curLoc = getToken().getLoc();
if (getToken().isNot(Token::at_identifier)) {
emitError(curLoc, "expected nested symbol reference identifier");
return Attribute();
}
// If we are populating the assembly state, add the location for this
// reference.
if (state.asmState)
referenceLocations.push_back(getToken().getLocRange());
std::string nameStr = getToken().getSymbolReference();
consumeToken(Token::at_identifier);
nestedRefs.push_back(SymbolRefAttr::get(getContext(), nameStr));
}
SymbolRefAttr symbolRefAttr =
SymbolRefAttr::get(getContext(), nameStr, nestedRefs);
// If we are populating the assembly state, record this symbol reference.
if (state.asmState)
state.asmState->addUses(symbolRefAttr, referenceLocations);
return symbolRefAttr;
}
// Parse a 'unit' attribute.
case Token::kw_unit:
consumeToken(Token::kw_unit);
return builder.getUnitAttr();
// Handle completion of an attribute.
case Token::code_complete:
if (getToken().isCodeCompletionFor(Token::hash_identifier))
return parseExtendedAttr(type);
return codeCompleteAttribute();
default:
// Parse a type attribute. We parse `Optional` here to allow for providing a
// better error message.
Type type;
OptionalParseResult result = parseOptionalType(type);
if (!result.has_value())
return emitWrongTokenError("expected attribute value"), Attribute();
return failed(*result) ? Attribute() : TypeAttr::get(type);
}
}
/// Parse an optional attribute with the provided type.
OptionalParseResult Parser::parseOptionalAttribute(Attribute &attribute,
Type type) {
switch (getToken().getKind()) {
case Token::at_identifier:
case Token::floatliteral:
case Token::integer:
case Token::hash_identifier:
case Token::kw_affine_map:
case Token::kw_affine_set:
case Token::kw_dense:
case Token::kw_dense_resource:
case Token::kw_false:
case Token::kw_loc:
case Token::kw_sparse:
case Token::kw_true:
case Token::kw_unit:
case Token::l_brace:
case Token::l_square:
case Token::minus:
case Token::string:
attribute = parseAttribute(type);
return success(attribute != nullptr);
default:
// Parse an optional type attribute.
Type type;
OptionalParseResult result = parseOptionalType(type);
if (result.has_value() && succeeded(*result))
attribute = TypeAttr::get(type);
return result;
}
}
OptionalParseResult Parser::parseOptionalAttribute(ArrayAttr &attribute,
Type type) {
return parseOptionalAttributeWithToken(Token::l_square, attribute, type);
}
OptionalParseResult Parser::parseOptionalAttribute(StringAttr &attribute,
Type type) {
return parseOptionalAttributeWithToken(Token::string, attribute, type);
}
OptionalParseResult Parser::parseOptionalAttribute(SymbolRefAttr &result,
Type type) {
return parseOptionalAttributeWithToken(Token::at_identifier, result, type);
}
/// Attribute dictionary.
///
/// attribute-dict ::= `{` `}`
/// | `{` attribute-entry (`,` attribute-entry)* `}`
/// attribute-entry ::= (bare-id | string-literal) `=` attribute-value
///
ParseResult Parser::parseAttributeDict(NamedAttrList &attributes) {
llvm::SmallDenseSet<StringAttr> seenKeys;
auto parseElt = [&]() -> ParseResult {
// The name of an attribute can either be a bare identifier, or a string.
std::optional<StringAttr> nameId;
if (getToken().is(Token::string))
nameId = builder.getStringAttr(getToken().getStringValue());
else if (getToken().isAny(Token::bare_identifier, Token::inttype) ||
getToken().isKeyword())
nameId = builder.getStringAttr(getTokenSpelling());
else
return emitWrongTokenError("expected attribute name");
if (nameId->size() == 0)
return emitError("expected valid attribute name");
if (!seenKeys.insert(*nameId).second)
return emitError("duplicate key '")
<< nameId->getValue() << "' in dictionary attribute";
consumeToken();
// Lazy load a dialect in the context if there is a possible namespace.
auto splitName = nameId->strref().split('.');
if (!splitName.second.empty())
getContext()->getOrLoadDialect(splitName.first);
// Try to parse the '=' for the attribute value.
if (!consumeIf(Token::equal)) {
// If there is no '=', we treat this as a unit attribute.
attributes.push_back({*nameId, builder.getUnitAttr()});
return success();
}
auto attr = parseAttribute();
if (!attr)
return failure();
attributes.push_back({*nameId, attr});
return success();
};
return parseCommaSeparatedList(Delimiter::Braces, parseElt,
" in attribute dictionary");
}
/// Parse a float attribute.
Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
auto val = getToken().getFloatingPointValue();
if (!val)
return (emitError("floating point value too large for attribute"), nullptr);
consumeToken(Token::floatliteral);
if (!type) {
// Default to F64 when no type is specified.
if (!consumeIf(Token::colon))
type = builder.getF64Type();
else if (!(type = parseType()))
return nullptr;
}
if (!isa<FloatType>(type))
return (emitError("floating point value not valid for specified type"),
nullptr);
return FloatAttr::get(type, isNegative ? -*val : *val);
}
/// Construct an APint from a parsed value, a known attribute type and
/// sign.
static std::optional<APInt> buildAttributeAPInt(Type type, bool isNegative,
StringRef spelling) {
// Parse the integer value into an APInt that is big enough to hold the value.
APInt result;
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
if (spelling.getAsInteger(isHex ? 0 : 10, result))
return std::nullopt;
// Extend or truncate the bitwidth to the right size.
unsigned width = type.isIndex() ? IndexType::kInternalStorageBitWidth
: type.getIntOrFloatBitWidth();
if (width > result.getBitWidth()) {
result = result.zext(width);
} else if (width < result.getBitWidth()) {
// The parser can return an unnecessarily wide result with leading zeros.
// This isn't a problem, but truncating off bits is bad.
if (result.countl_zero() < result.getBitWidth() - width)
return std::nullopt;
result = result.trunc(width);
}
if (width == 0) {
// 0 bit integers cannot be negative and manipulation of their sign bit will
// assert, so short-cut validation here.
if (isNegative)
return std::nullopt;
} else if (isNegative) {
// The value is negative, we have an overflow if the sign bit is not set
// in the negated apInt.
result.negate();
if (!result.isSignBitSet())
return std::nullopt;
} else if ((type.isSignedInteger() || type.isIndex()) &&
result.isSignBitSet()) {
// The value is a positive signed integer or index,
// we have an overflow if the sign bit is set.
return std::nullopt;
}
return result;
}
/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
Token tok = getToken();
StringRef spelling = tok.getSpelling();
SMLoc loc = tok.getLoc();
consumeToken(Token::integer);
if (!type) {
// Default to i64 if not type is specified.
if (!consumeIf(Token::colon))
type = builder.getIntegerType(64);
else if (!(type = parseType()))
return nullptr;
}
if (auto floatType = dyn_cast<FloatType>(type)) {
std::optional<APFloat> result;
if (failed(parseFloatFromIntegerLiteral(result, tok, isNegative,
floatType.getFloatSemantics(),
floatType.getWidth())))
return Attribute();
return FloatAttr::get(floatType, *result);
}
if (!isa<IntegerType, IndexType>(type))
return emitError(loc, "integer literal not valid for specified type"),
nullptr;
if (isNegative && type.isUnsignedInteger()) {
emitError(loc,
"negative integer literal not valid for unsigned integer type");
return nullptr;
}
std::optional<APInt> apInt = buildAttributeAPInt(type, isNegative, spelling);
if (!apInt)
return emitError(loc, "integer constant out of range for attribute"),
nullptr;
return builder.getIntegerAttr(type, *apInt);
}
//===----------------------------------------------------------------------===//
// TensorLiteralParser
//===----------------------------------------------------------------------===//
/// Parse elements values stored within a hex string. On success, the values are
/// stored into 'result'.
static ParseResult parseElementAttrHexValues(Parser &parser, Token tok,
std::string &result) {
if (std::optional<std::string> value = tok.getHexStringValue()) {
result = std::move(*value);
return success();
}
return parser.emitError(
tok.getLoc(), "expected string containing hex digits starting with `0x`");
}
namespace {
/// This class implements a parser for TensorLiterals. A tensor literal is
/// either a single element (e.g, 5) or a multi-dimensional list of elements
/// (e.g., [[5, 5]]).
class TensorLiteralParser {
public:
TensorLiteralParser(Parser &p) : p(p) {}
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
/// may also parse a tensor literal that is store as a hex string.
ParseResult parse(bool allowHex);
/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr getAttr(SMLoc loc, ShapedType type);
ArrayRef<int64_t> getShape() const { return shape; }
private:
/// Get the parsed elements for an integer attribute.
ParseResult getIntAttrElements(SMLoc loc, Type eltTy,
std::vector<APInt> &intValues);
/// Get the parsed elements for a float attribute.
ParseResult getFloatAttrElements(SMLoc loc, FloatType eltTy,
std::vector<APFloat> &floatValues);
/// Build a Dense String attribute for the given type.
DenseElementsAttr getStringAttr(SMLoc loc, ShapedType type, Type eltTy);
/// Build a Dense attribute with hex data for the given type.
DenseElementsAttr getHexAttr(SMLoc loc, ShapedType type);
/// Parse a single element, returning failure if it isn't a valid element
/// literal. For example:
/// parseElement(1) -> Success, 1
/// parseElement([1]) -> Failure
ParseResult parseElement();
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult parseList(SmallVectorImpl<int64_t> &dims);
/// Parse a literal that was printed as a hex string.
ParseResult parseHexElements();
Parser &p;
/// The shape inferred from the parsed elements.
SmallVector<int64_t, 4> shape;
/// Storage used when parsing elements, this is a pair of <is_negated, token>.
std::vector<std::pair<bool, Token>> storage;
/// Storage used when parsing elements that were stored as hex values.
std::optional<Token> hexStorage;
};
} // namespace
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
/// may also parse a tensor literal that is store as a hex string.
ParseResult TensorLiteralParser::parse(bool allowHex) {
// If hex is allowed, check for a string literal.
if (allowHex && p.getToken().is(Token::string)) {
hexStorage = p.getToken();
p.consumeToken(Token::string);
return success();
}
// Otherwise, parse a list or an individual element.
if (p.getToken().is(Token::l_square))
return parseList(shape);
return parseElement();
}
/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr TensorLiteralParser::getAttr(SMLoc loc, ShapedType type) {
Type eltType = type.getElementType();
// Check to see if we parse the literal from a hex string.
if (hexStorage &&
(eltType.isIntOrIndexOrFloat() || isa<ComplexType>(eltType)))
return getHexAttr(loc, type);
// Check that the parsed storage size has the same number of elements to the
// type, or is a known splat.
if (!shape.empty() && getShape() != type.getShape()) {
p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
<< "]) does not match type ([" << type.getShape() << "])";
return nullptr;
}
// Handle the case where no elements were parsed.
if (!hexStorage && storage.empty() && type.getNumElements()) {
p.emitError(loc) << "parsed zero elements, but type (" << type
<< ") expected at least 1";
return nullptr;
}
// Handle complex types in the specific element type cases below.
bool isComplex = false;
if (ComplexType complexTy = dyn_cast<ComplexType>(eltType)) {
eltType = complexTy.getElementType();
isComplex = true;
}
// Handle integer and index types.
if (eltType.isIntOrIndex()) {
std::vector<APInt> intValues;
if (failed(getIntAttrElements(loc, eltType, intValues)))
return nullptr;
if (isComplex) {
// If this is a complex, treat the parsed values as complex values.
auto complexData = llvm::ArrayRef(
reinterpret_cast<std::complex<APInt> *>(intValues.data()),
intValues.size() / 2);
return DenseElementsAttr::get(type, complexData);
}
return DenseElementsAttr::get(type, intValues);
}
// Handle floating point types.
if (FloatType floatTy = dyn_cast<FloatType>(eltType)) {
std::vector<APFloat> floatValues;
if (failed(getFloatAttrElements(loc, floatTy, floatValues)))
return nullptr;
if (isComplex) {
// If this is a complex, treat the parsed values as complex values.
auto complexData = llvm::ArrayRef(
reinterpret_cast<std::complex<APFloat> *>(floatValues.data()),
floatValues.size() / 2);
return DenseElementsAttr::get(type, complexData);
}
return DenseElementsAttr::get(type, floatValues);
}
// Other types are assumed to be string representations.
return getStringAttr(loc, type, type.getElementType());
}
/// Build a Dense Integer attribute for the given type.
ParseResult
TensorLiteralParser::getIntAttrElements(SMLoc loc, Type eltTy,
std::vector<APInt> &intValues) {
intValues.reserve(storage.size());
bool isUintType = eltTy.isUnsignedInteger();
for (const auto &signAndToken : storage) {
bool isNegative = signAndToken.first;
const Token &token = signAndToken.second;
auto tokenLoc = token.getLoc();
if (isNegative && isUintType) {
return p.emitError(tokenLoc)
<< "expected unsigned integer elements, but parsed negative value";
}
// Check to see if floating point values were parsed.
if (token.is(Token::floatliteral)) {
return p.emitError(tokenLoc)
<< "expected integer elements, but parsed floating-point";
}
assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
"unexpected token type");
if (token.isAny(Token::kw_true, Token::kw_false)) {
if (!eltTy.isInteger(1)) {
return p.emitError(tokenLoc)
<< "expected i1 type for 'true' or 'false' values";
}
APInt apInt(1, token.is(Token::kw_true), /*isSigned=*/false);
intValues.push_back(apInt);
continue;
}
// Create APInt values for each element with the correct bitwidth.
std::optional<APInt> apInt =
buildAttributeAPInt(eltTy, isNegative, token.getSpelling());
if (!apInt)
return p.emitError(tokenLoc, "integer constant out of range for type");
intValues.push_back(*apInt);
}
return success();
}
/// Build a Dense Float attribute for the given type.
ParseResult
TensorLiteralParser::getFloatAttrElements(SMLoc loc, FloatType eltTy,
std::vector<APFloat> &floatValues) {
floatValues.reserve(storage.size());
for (const auto &signAndToken : storage) {
bool isNegative = signAndToken.first;
const Token &token = signAndToken.second;
// Handle hexadecimal float literals.
if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
std::optional<APFloat> result;
if (failed(p.parseFloatFromIntegerLiteral(result, token, isNegative,
eltTy.getFloatSemantics(),
eltTy.getWidth())))
return failure();
floatValues.push_back(*result);
continue;
}
// Check to see if any decimal integers or booleans were parsed.
if (!token.is(Token::floatliteral))
return p.emitError()
<< "expected floating-point elements, but parsed integer";
// Build the float values from tokens.
auto val = token.getFloatingPointValue();
if (!val)
return p.emitError("floating point value too large for attribute");
APFloat apVal(isNegative ? -*val : *val);
if (!eltTy.isF64()) {
bool unused;
apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven,
&unused);
}
floatValues.push_back(apVal);
}
return success();
}
/// Build a Dense String attribute for the given type.
DenseElementsAttr TensorLiteralParser::getStringAttr(SMLoc loc, ShapedType type,
Type eltTy) {
if (hexStorage.has_value()) {
auto stringValue = hexStorage->getStringValue();
return DenseStringElementsAttr::get(type, {stringValue});
}
std::vector<std::string> stringValues;
std::vector<StringRef> stringRefValues;
stringValues.reserve(storage.size());
stringRefValues.reserve(storage.size());
for (auto val : storage) {
stringValues.push_back(val.second.getStringValue());
stringRefValues.emplace_back(stringValues.back());
}
return DenseStringElementsAttr::get(type, stringRefValues);
}
/// Build a Dense attribute with hex data for the given type.
DenseElementsAttr TensorLiteralParser::getHexAttr(SMLoc loc, ShapedType type) {
Type elementType = type.getElementType();
if (!elementType.isIntOrIndexOrFloat() && !isa<ComplexType>(elementType)) {
p.emitError(loc)
<< "expected floating-point, integer, or complex element type, got "
<< elementType;
return nullptr;
}
std::string data;
if (parseElementAttrHexValues(p, *hexStorage, data))
return nullptr;
ArrayRef<char> rawData(data.data(), data.size());
bool detectedSplat = false;
if (!DenseElementsAttr::isValidRawBuffer(type, rawData, detectedSplat)) {
p.emitError(loc) << "elements hex data size is invalid for provided type: "
<< type;
return nullptr;
}
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Convert endianess in big-endian(BE) machines. `rawData` is
// little-endian(LE) because HEX in raw data of dense element attribute
// is always LE format. It is converted into BE here to be used in BE
// machines.
SmallVector<char, 64> outDataVec(rawData.size());
MutableArrayRef<char> convRawData(outDataVec);
DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
rawData, convRawData, type);
return DenseElementsAttr::getFromRawBuffer(type, convRawData);
}
return DenseElementsAttr::getFromRawBuffer(type, rawData);
}
ParseResult TensorLiteralParser::parseElement() {
switch (p.getToken().getKind()) {
// Parse a boolean element.
case Token::kw_true:
case Token::kw_false:
case Token::floatliteral:
case Token::integer:
storage.emplace_back(/*isNegative=*/false, p.getToken());
p.consumeToken();
break;
// Parse a signed integer or a negative floating-point element.
case Token::minus:
p.consumeToken(Token::minus);
if (!p.getToken().isAny(Token::floatliteral, Token::integer))
return p.emitError("expected integer or floating point literal");
storage.emplace_back(/*isNegative=*/true, p.getToken());
p.consumeToken();
break;
case Token::string:
storage.emplace_back(/*isNegative=*/false, p.getToken());
p.consumeToken();
break;
// Parse a complex element of the form '(' element ',' element ')'.
case Token::l_paren:
p.consumeToken(Token::l_paren);
if (parseElement() ||
p.parseToken(Token::comma, "expected ',' between complex elements") ||
parseElement() ||
p.parseToken(Token::r_paren, "expected ')' after complex elements"))
return failure();
break;
default:
return p.emitError("expected element literal of primitive type");
}
return success();
}
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) {
auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims,
const SmallVectorImpl<int64_t> &newDims) -> ParseResult {
if (prevDims == newDims)
return success();
return p.emitError("tensor literal is invalid; ranks are not consistent "
"between elements");
};
bool first = true;
SmallVector<int64_t, 4> newDims;
unsigned size = 0;
auto parseOneElement = [&]() -> ParseResult {
SmallVector<int64_t, 4> thisDims;
if (p.getToken().getKind() == Token::l_square) {
if (parseList(thisDims))
return failure();
} else if (parseElement()) {
return failure();
}
++size;
if (!first)
return checkDims(newDims, thisDims);
newDims = thisDims;
first = false;
return success();
};
if (p.parseCommaSeparatedList(Parser::Delimiter::Square, parseOneElement))
return failure();
// Return the sublists' dimensions with 'size' prepended.
dims.clear();
dims.push_back(size);
dims.append(newDims.begin(), newDims.end());
return success();
}
//===----------------------------------------------------------------------===//
// DenseArrayAttr Parser
//===----------------------------------------------------------------------===//
namespace {
/// A generic dense array element parser. It parsers integer and floating point
/// elements.
class DenseArrayElementParser {
public:
explicit DenseArrayElementParser(Type type) : type(type) {}
/// Parse an integer element.
ParseResult parseIntegerElement(Parser &p);
/// Parse a floating point element.
ParseResult parseFloatElement(Parser &p);
/// Convert the current contents to a dense array.
DenseArrayAttr getAttr() { return DenseArrayAttr::get(type, size, rawData); }
private:
/// Append the raw data of an APInt to the result.
void append(const APInt &data);
/// The array element type.
Type type;
/// The resultant byte array representing the contents of the array.
std::vector<char> rawData;
/// The number of elements in the array.
int64_t size = 0;
};
} // namespace
void DenseArrayElementParser::append(const APInt &data) {
if (data.getBitWidth()) {
assert(data.getBitWidth() % 8 == 0);
unsigned byteSize = data.getBitWidth() / 8;
size_t offset = rawData.size();
rawData.insert(rawData.end(), byteSize, 0);
llvm::StoreIntToMemory(
data, reinterpret_cast<uint8_t *>(rawData.data() + offset), byteSize);
}
++size;
}
ParseResult DenseArrayElementParser::parseIntegerElement(Parser &p) {
bool isNegative = p.consumeIf(Token::minus);
// Parse an integer literal as an APInt.
std::optional<APInt> value;
StringRef spelling = p.getToken().getSpelling();
if (p.getToken().isAny(Token::kw_true, Token::kw_false)) {
if (!type.isInteger(1))
return p.emitError("expected i1 type for 'true' or 'false' values");
value = APInt(/*numBits=*/8, p.getToken().is(Token::kw_true),
!type.isUnsignedInteger());
p.consumeToken();
} else if (p.consumeIf(Token::integer)) {
value = buildAttributeAPInt(type, isNegative, spelling);
if (!value)
return p.emitError("integer constant out of range");
} else {
return p.emitError("expected integer literal");
}
append(*value);
return success();
}
ParseResult DenseArrayElementParser::parseFloatElement(Parser &p) {
bool isNegative = p.consumeIf(Token::minus);
Token token = p.getToken();
std::optional<APFloat> result;
auto floatType = cast<FloatType>(type);
if (p.consumeIf(Token::integer)) {
// Parse an integer literal as a float.
if (p.parseFloatFromIntegerLiteral(result, token, isNegative,
floatType.getFloatSemantics(),
floatType.getWidth()))
return failure();
} else if (p.consumeIf(Token::floatliteral)) {
// Parse a floating point literal.
std::optional<double> val = token.getFloatingPointValue();
if (!val)
return failure();
result = APFloat(isNegative ? -*val : *val);
if (!type.isF64()) {
bool unused;
result->convert(floatType.getFloatSemantics(),
APFloat::rmNearestTiesToEven, &unused);
}
} else {
return p.emitError("expected integer or floating point literal");
}
append(result->bitcastToAPInt());
return success();
}
/// Parse a dense array attribute.
Attribute Parser::parseDenseArrayAttr(Type attrType) {
consumeToken(Token::kw_array);
if (parseToken(Token::less, "expected '<' after 'array'"))
return {};
SMLoc typeLoc = getToken().getLoc();
Type eltType = parseType();
if (!eltType) {
emitError(typeLoc, "expected an integer or floating point type");
return {};
}
// Only bool or integer and floating point elements divisible by bytes are
// supported.
if (!eltType.isIntOrIndexOrFloat()) {
emitError(typeLoc, "expected integer or float type, got: ") << eltType;
return {};
}
if (!eltType.isInteger(1) && eltType.getIntOrFloatBitWidth() % 8 != 0) {
emitError(typeLoc, "element type bitwidth must be a multiple of 8");
return {};
}
// Check for empty list.
if (consumeIf(Token::greater))
return DenseArrayAttr::get(eltType, 0, {});
if (parseToken(Token::colon, "expected ':' after dense array type"))
return {};
DenseArrayElementParser eltParser(eltType);
if (eltType.isIntOrIndex()) {
if (parseCommaSeparatedList(
[&] { return eltParser.parseIntegerElement(*this); }))
return {};
} else {
if (parseCommaSeparatedList(
[&] { return eltParser.parseFloatElement(*this); }))
return {};
}
if (parseToken(Token::greater, "expected '>' to close an array attribute"))
return {};
return eltParser.getAttr();
}
/// Parse a dense elements attribute.
Attribute Parser::parseDenseElementsAttr(Type attrType) {
auto attribLoc = getToken().getLoc();
consumeToken(Token::kw_dense);
if (parseToken(Token::less, "expected '<' after 'dense'"))
return nullptr;
// Parse the literal data if necessary.
TensorLiteralParser literalParser(*this);
if (!consumeIf(Token::greater)) {
if (literalParser.parse(/*allowHex=*/true) ||
parseToken(Token::greater, "expected '>'"))
return nullptr;
}
// If the type is specified `parseElementsLiteralType` will not parse a type.
// Use the attribute location as the location for error reporting in that
// case.
auto loc = attrType ? attribLoc : getToken().getLoc();
auto type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
return literalParser.getAttr(loc, type);
}
Attribute Parser::parseDenseResourceElementsAttr(Type attrType) {
auto loc = getToken().getLoc();
consumeToken(Token::kw_dense_resource);
if (parseToken(Token::less, "expected '<' after 'dense_resource'"))
return nullptr;
// Parse the resource handle.
FailureOr<AsmDialectResourceHandle> rawHandle =
parseResourceHandle(getContext()->getLoadedDialect<BuiltinDialect>());
if (failed(rawHandle) || parseToken(Token::greater, "expected '>'"))
return nullptr;
auto *handle = dyn_cast<DenseResourceElementsHandle>(&*rawHandle);
if (!handle)
return emitError(loc, "invalid `dense_resource` handle type"), nullptr;
// Parse the type of the attribute if the user didn't provide one.
SMLoc typeLoc = loc;
if (!attrType) {
typeLoc = getToken().getLoc();
if (parseToken(Token::colon, "expected ':'") || !(attrType = parseType()))
return nullptr;
}
ShapedType shapedType = dyn_cast<ShapedType>(attrType);
if (!shapedType) {
emitError(typeLoc, "`dense_resource` expected a shaped type");
return nullptr;
}
return DenseResourceElementsAttr::get(shapedType, *handle);
}
/// Shaped type for elements attribute.
///
/// elements-literal-type ::= vector-type | ranked-tensor-type
///
/// This method also checks the type has static shape.
ShapedType Parser::parseElementsLiteralType(Type type) {
// If the user didn't provide a type, parse the colon type for the literal.
if (!type) {
if (parseToken(Token::colon, "expected ':'"))
return nullptr;
if (!(type = parseType()))
return nullptr;
}
auto sType = dyn_cast<ShapedType>(type);
if (!sType) {
emitError("elements literal must be a shaped type");
return nullptr;
}
if (!sType.hasStaticShape())
return (emitError("elements literal type must have static shape"), nullptr);
return sType;
}
/// Parse a sparse elements attribute.
Attribute Parser::parseSparseElementsAttr(Type attrType) {
SMLoc loc = getToken().getLoc();
consumeToken(Token::kw_sparse);
if (parseToken(Token::less, "Expected '<' after 'sparse'"))
return nullptr;
// Check for the case where all elements are sparse. The indices are
// represented by a 2-dimensional shape where the second dimension is the rank
// of the type.
Type indiceEltType = builder.getIntegerType(64);
if (consumeIf(Token::greater)) {
ShapedType type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
// Construct the sparse elements attr using zero element indice/value
// attributes.
ShapedType indicesType =
RankedTensorType::get({0, type.getRank()}, indiceEltType);
ShapedType valuesType = RankedTensorType::get({0}, type.getElementType());
return getChecked<SparseElementsAttr>(
loc, type, DenseElementsAttr::get(indicesType, ArrayRef<Attribute>()),
DenseElementsAttr::get(valuesType, ArrayRef<Attribute>()));
}
/// Parse the indices. We don't allow hex values here as we may need to use
/// the inferred shape.
auto indicesLoc = getToken().getLoc();
TensorLiteralParser indiceParser(*this);
if (indiceParser.parse(/*allowHex=*/false))
return nullptr;
if (parseToken(Token::comma, "expected ','"))
return nullptr;
/// Parse the values.
auto valuesLoc = getToken().getLoc();
TensorLiteralParser valuesParser(*this);
if (valuesParser.parse(/*allowHex=*/true))
return nullptr;
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
auto type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
// If the indices are a splat, i.e. the literal parser parsed an element and
// not a list, we set the shape explicitly. The indices are represented by a
// 2-dimensional shape where the second dimension is the rank of the type.
// Given that the parsed indices is a splat, we know that we only have one
// indice and thus one for the first dimension.
ShapedType indicesType;
if (indiceParser.getShape().empty()) {
indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
} else {
// Otherwise, set the shape to the one parsed by the literal parser.
indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
}
auto indices = indiceParser.getAttr(indicesLoc, indicesType);
// If the values are a splat, set the shape explicitly based on the number of
// indices. The number of indices is encoded in the first dimension of the
// indice shape type.
auto valuesEltType = type.getElementType();
ShapedType valuesType =
valuesParser.getShape().empty()
? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
: RankedTensorType::get(valuesParser.getShape(), valuesEltType);
auto values = valuesParser.getAttr(valuesLoc, valuesType);
// Build the sparse elements attribute by the indices and values.
return getChecked<SparseElementsAttr>(loc, type, indices, values);
}
Attribute Parser::parseStridedLayoutAttr() {
// Callback for error emissing at the keyword token location.
llvm::SMLoc loc = getToken().getLoc();
auto errorEmitter = [&] { return emitError(loc); };
consumeToken(Token::kw_strided);
if (failed(parseToken(Token::less, "expected '<' after 'strided'")) ||
failed(parseToken(Token::l_square, "expected '['")))
return nullptr;
// Parses either an integer token or a question mark token. Reports an error
// and returns std::nullopt if the current token is neither. The integer token
// must fit into int64_t limits.
auto parseStrideOrOffset = [&]() -> std::optional<int64_t> {
if (consumeIf(Token::question))
return ShapedType::kDynamic;
SMLoc loc = getToken().getLoc();
auto emitWrongTokenError = [&] {
emitError(loc, "expected a 64-bit signed integer or '?'");
return std::nullopt;
};
bool negative = consumeIf(Token::minus);
if (getToken().is(Token::integer)) {
std::optional<uint64_t> value = getToken().getUInt64IntegerValue();
if (!value ||
*value > static_cast<uint64_t>(std::numeric_limits<int64_t>::max()))
return emitWrongTokenError();
consumeToken();
auto result = static_cast<int64_t>(*value);
if (negative)
result = -result;
return result;
}
return emitWrongTokenError();
};
// Parse strides.
SmallVector<int64_t> strides;
if (!getToken().is(Token::r_square)) {
do {
std::optional<int64_t> stride = parseStrideOrOffset();
if (!stride)
return nullptr;
strides.push_back(*stride);
} while (consumeIf(Token::comma));
}
if (failed(parseToken(Token::r_square, "expected ']'")))
return nullptr;
// Fast path in absence of offset.
if (consumeIf(Token::greater)) {
if (failed(StridedLayoutAttr::verify(errorEmitter,
/*offset=*/0, strides)))
return nullptr;
return StridedLayoutAttr::get(getContext(), /*offset=*/0, strides);
}
if (failed(parseToken(Token::comma, "expected ','")) ||
failed(parseToken(Token::kw_offset, "expected 'offset' after comma")) ||
failed(parseToken(Token::colon, "expected ':' after 'offset'")))
return nullptr;
std::optional<int64_t> offset = parseStrideOrOffset();
if (!offset || failed(parseToken(Token::greater, "expected '>'")))
return nullptr;
if (failed(StridedLayoutAttr::verify(errorEmitter, *offset, strides)))
return nullptr;
return StridedLayoutAttr::get(getContext(), *offset, strides);
// return getChecked<StridedLayoutAttr>(loc,getContext(), *offset, strides);
}
|