summaryrefslogtreecommitdiff
path: root/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
blob: c866fc610bc8eae4b70376af1b3e1028c4f04969 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//===- IntegerRangeAnalysis.cpp - Integer range analysis --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the dataflow analysis class for integer range inference
// which is used in transformations over the `arith` dialect such as
// branch elimination or signed->unsigned rewriting
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/DataFlow/IntegerRangeAnalysis.h"
#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
#include "mlir/Interfaces/InferIntRangeInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "llvm/Support/Debug.h"
#include <optional>

#define DEBUG_TYPE "int-range-analysis"

using namespace mlir;
using namespace mlir::dataflow;

IntegerValueRange IntegerValueRange::getMaxRange(Value value) {
  unsigned width = ConstantIntRanges::getStorageBitwidth(value.getType());
  if (width == 0)
    return {};
  APInt umin = APInt::getMinValue(width);
  APInt umax = APInt::getMaxValue(width);
  APInt smin = width != 0 ? APInt::getSignedMinValue(width) : umin;
  APInt smax = width != 0 ? APInt::getSignedMaxValue(width) : umax;
  return IntegerValueRange{ConstantIntRanges{umin, umax, smin, smax}};
}

void IntegerValueRangeLattice::onUpdate(DataFlowSolver *solver) const {
  Lattice::onUpdate(solver);

  // If the integer range can be narrowed to a constant, update the constant
  // value of the SSA value.
  std::optional<APInt> constant = getValue().getValue().getConstantValue();
  auto value = point.get<Value>();
  auto *cv = solver->getOrCreateState<Lattice<ConstantValue>>(value);
  if (!constant)
    return solver->propagateIfChanged(
        cv, cv->join(ConstantValue::getUnknownConstant()));

  Dialect *dialect;
  if (auto *parent = value.getDefiningOp())
    dialect = parent->getDialect();
  else
    dialect = value.getParentBlock()->getParentOp()->getDialect();
  solver->propagateIfChanged(
      cv, cv->join(ConstantValue(IntegerAttr::get(value.getType(), *constant),
                                 dialect)));
}

void IntegerRangeAnalysis::visitOperation(
    Operation *op, ArrayRef<const IntegerValueRangeLattice *> operands,
    ArrayRef<IntegerValueRangeLattice *> results) {
  // If the lattice on any operand is unitialized, bail out.
  if (llvm::any_of(operands, [](const IntegerValueRangeLattice *lattice) {
        return lattice->getValue().isUninitialized();
      })) {
    return;
  }

  // Ignore non-integer outputs - return early if the op has no scalar
  // integer results
  bool hasIntegerResult = false;
  for (auto it : llvm::zip(results, op->getResults())) {
    Value value = std::get<1>(it);
    if (value.getType().isIntOrIndex()) {
      hasIntegerResult = true;
    } else {
      IntegerValueRangeLattice *lattice = std::get<0>(it);
      propagateIfChanged(lattice,
                         lattice->join(IntegerValueRange::getMaxRange(value)));
    }
  }
  if (!hasIntegerResult)
    return;

  auto inferrable = dyn_cast<InferIntRangeInterface>(op);
  if (!inferrable)
    return setAllToEntryStates(results);

  LLVM_DEBUG(llvm::dbgs() << "Inferring ranges for " << *op << "\n");
  SmallVector<ConstantIntRanges> argRanges(
      llvm::map_range(operands, [](const IntegerValueRangeLattice *val) {
        return val->getValue().getValue();
      }));

  auto joinCallback = [&](Value v, const ConstantIntRanges &attrs) {
    auto result = dyn_cast<OpResult>(v);
    if (!result)
      return;
    assert(llvm::is_contained(op->getResults(), result));

    LLVM_DEBUG(llvm::dbgs() << "Inferred range " << attrs << "\n");
    IntegerValueRangeLattice *lattice = results[result.getResultNumber()];
    IntegerValueRange oldRange = lattice->getValue();

    ChangeResult changed = lattice->join(IntegerValueRange{attrs});

    // Catch loop results with loop variant bounds and conservatively make
    // them [-inf, inf] so we don't circle around infinitely often (because
    // the dataflow analysis in MLIR doesn't attempt to work out trip counts
    // and often can't).
    bool isYieldedResult = llvm::any_of(v.getUsers(), [](Operation *op) {
      return op->hasTrait<OpTrait::IsTerminator>();
    });
    if (isYieldedResult && !oldRange.isUninitialized() &&
        !(lattice->getValue() == oldRange)) {
      LLVM_DEBUG(llvm::dbgs() << "Loop variant loop result detected\n");
      changed |= lattice->join(IntegerValueRange::getMaxRange(v));
    }
    propagateIfChanged(lattice, changed);
  };

  inferrable.inferResultRanges(argRanges, joinCallback);
}

void IntegerRangeAnalysis::visitNonControlFlowArguments(
    Operation *op, const RegionSuccessor &successor,
    ArrayRef<IntegerValueRangeLattice *> argLattices, unsigned firstIndex) {
  if (auto inferrable = dyn_cast<InferIntRangeInterface>(op)) {
    LLVM_DEBUG(llvm::dbgs() << "Inferring ranges for " << *op << "\n");
    // If the lattice on any operand is unitialized, bail out.
    if (llvm::any_of(op->getOperands(), [&](Value value) {
          return getLatticeElementFor(op, value)->getValue().isUninitialized();
        }))
      return;
    SmallVector<ConstantIntRanges> argRanges(
        llvm::map_range(op->getOperands(), [&](Value value) {
          return getLatticeElementFor(op, value)->getValue().getValue();
        }));

    auto joinCallback = [&](Value v, const ConstantIntRanges &attrs) {
      auto arg = dyn_cast<BlockArgument>(v);
      if (!arg)
        return;
      if (!llvm::is_contained(successor.getSuccessor()->getArguments(), arg))
        return;

      LLVM_DEBUG(llvm::dbgs() << "Inferred range " << attrs << "\n");
      IntegerValueRangeLattice *lattice = argLattices[arg.getArgNumber()];
      IntegerValueRange oldRange = lattice->getValue();

      ChangeResult changed = lattice->join(IntegerValueRange{attrs});

      // Catch loop results with loop variant bounds and conservatively make
      // them [-inf, inf] so we don't circle around infinitely often (because
      // the dataflow analysis in MLIR doesn't attempt to work out trip counts
      // and often can't).
      bool isYieldedValue = llvm::any_of(v.getUsers(), [](Operation *op) {
        return op->hasTrait<OpTrait::IsTerminator>();
      });
      if (isYieldedValue && !oldRange.isUninitialized() &&
          !(lattice->getValue() == oldRange)) {
        LLVM_DEBUG(llvm::dbgs() << "Loop variant loop result detected\n");
        changed |= lattice->join(IntegerValueRange::getMaxRange(v));
      }
      propagateIfChanged(lattice, changed);
    };

    inferrable.inferResultRanges(argRanges, joinCallback);
    return;
  }

  /// Given the results of getConstant{Lower,Upper}Bound() or getConstantStep()
  /// on a LoopLikeInterface return the lower/upper bound for that result if
  /// possible.
  auto getLoopBoundFromFold = [&](std::optional<OpFoldResult> loopBound,
                                  Type boundType, bool getUpper) {
    unsigned int width = ConstantIntRanges::getStorageBitwidth(boundType);
    if (loopBound.has_value()) {
      if (loopBound->is<Attribute>()) {
        if (auto bound =
                dyn_cast_or_null<IntegerAttr>(loopBound->get<Attribute>()))
          return bound.getValue();
      } else if (auto value = loopBound->dyn_cast<Value>()) {
        const IntegerValueRangeLattice *lattice =
            getLatticeElementFor(op, value);
        if (lattice != nullptr)
          return getUpper ? lattice->getValue().getValue().smax()
                          : lattice->getValue().getValue().smin();
      }
    }
    // Given the results of getConstant{Lower,Upper}Bound()
    // or getConstantStep() on a LoopLikeInterface return the lower/upper
    // bound
    return getUpper ? APInt::getSignedMaxValue(width)
                    : APInt::getSignedMinValue(width);
  };

  // Infer bounds for loop arguments that have static bounds
  if (auto loop = dyn_cast<LoopLikeOpInterface>(op)) {
    std::optional<Value> iv = loop.getSingleInductionVar();
    if (!iv) {
      return SparseDataFlowAnalysis ::visitNonControlFlowArguments(
          op, successor, argLattices, firstIndex);
    }
    std::optional<OpFoldResult> lowerBound = loop.getSingleLowerBound();
    std::optional<OpFoldResult> upperBound = loop.getSingleUpperBound();
    std::optional<OpFoldResult> step = loop.getSingleStep();
    APInt min = getLoopBoundFromFold(lowerBound, iv->getType(),
                                     /*getUpper=*/false);
    APInt max = getLoopBoundFromFold(upperBound, iv->getType(),
                                     /*getUpper=*/true);
    // Assume positivity for uniscoverable steps by way of getUpper = true.
    APInt stepVal =
        getLoopBoundFromFold(step, iv->getType(), /*getUpper=*/true);

    if (stepVal.isNegative()) {
      std::swap(min, max);
    } else {
      // Correct the upper bound by subtracting 1 so that it becomes a <=
      // bound, because loops do not generally include their upper bound.
      max -= 1;
    }

    IntegerValueRangeLattice *ivEntry = getLatticeElement(*iv);
    auto ivRange = ConstantIntRanges::fromSigned(min, max);
    propagateIfChanged(ivEntry, ivEntry->join(IntegerValueRange{ivRange}));
    return;
  }

  return SparseDataFlowAnalysis::visitNonControlFlowArguments(
      op, successor, argLattices, firstIndex);
}