1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
//===- MLModelRunnerTest.cpp - test for MLModelRunner ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/InteractiveModelRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
#include <atomic>
#include <thread>
using namespace llvm;
namespace llvm {
// This is a mock of the kind of AOT-generated model evaluator. It has 2 tensors
// of shape {1}, and 'evaluation' adds them.
// The interface is the one expected by ReleaseModelRunner.
class MockAOTModel final {
int64_t A = 0;
int64_t B = 0;
int64_t R = 0;
public:
MockAOTModel() = default;
int LookupArgIndex(const std::string &Name) {
if (Name == "prefix_a")
return 0;
if (Name == "prefix_b")
return 1;
return -1;
}
int LookupResultIndex(const std::string &) { return 0; }
void Run() { R = A + B; }
void *result_data(int RIndex) {
if (RIndex == 0)
return &R;
return nullptr;
}
void *arg_data(int Index) {
switch (Index) {
case 0:
return &A;
case 1:
return &B;
default:
return nullptr;
}
}
};
} // namespace llvm
TEST(NoInferenceModelRunner, AccessTensors) {
const std::vector<TensorSpec> Inputs{
TensorSpec::createSpec<int64_t>("F1", {1}),
TensorSpec::createSpec<int64_t>("F2", {10}),
TensorSpec::createSpec<float>("F2", {5}),
};
LLVMContext Ctx;
NoInferenceModelRunner NIMR(Ctx, Inputs);
NIMR.getTensor<int64_t>(0)[0] = 1;
std::memcpy(NIMR.getTensor<int64_t>(1),
std::vector<int64_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.data(),
10 * sizeof(int64_t));
std::memcpy(NIMR.getTensor<float>(2),
std::vector<float>{0.1f, 0.2f, 0.3f, 0.4f, 0.5f}.data(),
5 * sizeof(float));
ASSERT_EQ(NIMR.getTensor<int64_t>(0)[0], 1);
ASSERT_EQ(NIMR.getTensor<int64_t>(1)[8], 9);
ASSERT_EQ(NIMR.getTensor<float>(2)[1], 0.2f);
}
TEST(ReleaseModeRunner, NormalUse) {
LLVMContext Ctx;
std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
TensorSpec::createSpec<int64_t>("b", {1})};
auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
Ctx, Inputs, "", "prefix_");
*Evaluator->getTensor<int64_t>(0) = 1;
*Evaluator->getTensor<int64_t>(1) = 2;
EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
}
TEST(ReleaseModeRunner, ExtraFeatures) {
LLVMContext Ctx;
std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
TensorSpec::createSpec<int64_t>("b", {1}),
TensorSpec::createSpec<int64_t>("c", {1})};
auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
Ctx, Inputs, "", "prefix_");
*Evaluator->getTensor<int64_t>(0) = 1;
*Evaluator->getTensor<int64_t>(1) = 2;
*Evaluator->getTensor<int64_t>(2) = -3;
EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
}
TEST(ReleaseModeRunner, ExtraFeaturesOutOfOrder) {
LLVMContext Ctx;
std::vector<TensorSpec> Inputs{
TensorSpec::createSpec<int64_t>("a", {1}),
TensorSpec::createSpec<int64_t>("c", {1}),
TensorSpec::createSpec<int64_t>("b", {1}),
};
auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
Ctx, Inputs, "", "prefix_");
*Evaluator->getTensor<int64_t>(0) = 1; // a
*Evaluator->getTensor<int64_t>(1) = 2; // c
*Evaluator->getTensor<int64_t>(2) = -3; // b
EXPECT_EQ(Evaluator->evaluate<int64_t>(), -2); // a + b
EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
}
#if defined(LLVM_ON_UNIX)
TEST(InteractiveModelRunner, Evaluation) {
LLVMContext Ctx;
// Test the interaction with an external advisor by asking for advice twice.
// Use simple values, since we use the Logger underneath, that's tested more
// extensively elsewhere.
std::vector<TensorSpec> Inputs{
TensorSpec::createSpec<int64_t>("a", {1}),
TensorSpec::createSpec<int64_t>("b", {1}),
TensorSpec::createSpec<int64_t>("c", {1}),
};
TensorSpec AdviceSpec = TensorSpec::createSpec<float>("advice", {1});
// Create the 2 files. Ideally we'd create them as named pipes, but that's not
// quite supported by the generic API.
std::error_code EC;
llvm::unittest::TempDir Tmp("tmpdir", /*Unique=*/true);
SmallString<128> FromCompilerName(Tmp.path().begin(), Tmp.path().end());
SmallString<128> ToCompilerName(Tmp.path().begin(), Tmp.path().end());
sys::path::append(FromCompilerName, "InteractiveModelRunner_Evaluation.out");
sys::path::append(ToCompilerName, "InteractiveModelRunner_Evaluation.in");
EXPECT_EQ(::mkfifo(FromCompilerName.c_str(), 0666), 0);
EXPECT_EQ(::mkfifo(ToCompilerName.c_str(), 0666), 0);
FileRemover Cleanup1(FromCompilerName);
FileRemover Cleanup2(ToCompilerName);
// Since the evaluator sends the features over and then blocks waiting for
// an answer, we must spawn a thread playing the role of the advisor / host:
std::atomic<int> SeenObservations = 0;
// Start the host first to make sure the pipes are being prepared. Otherwise
// the evaluator will hang.
std::thread Advisor([&]() {
// Open the writer first. This is because the evaluator will try opening
// the "input" pipe first. An alternative that avoids ordering is for the
// host to open the pipes RW.
raw_fd_ostream ToCompiler(ToCompilerName, EC);
EXPECT_FALSE(EC);
int FromCompilerHandle = 0;
EXPECT_FALSE(
sys::fs::openFileForRead(FromCompilerName, FromCompilerHandle));
sys::fs::file_t FromCompiler =
sys::fs::convertFDToNativeFile(FromCompilerHandle);
EXPECT_EQ(SeenObservations, 0);
// Helper to read headers and other json lines.
SmallVector<char, 1024> Buffer;
auto ReadLn = [&]() {
Buffer.clear();
while (true) {
char Chr = 0;
auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
EXPECT_FALSE(ReadOrErr.takeError());
if (!*ReadOrErr)
continue;
if (Chr == '\n')
return StringRef(Buffer.data(), Buffer.size());
Buffer.push_back(Chr);
}
};
// See include/llvm/Analysis/Utils/TrainingLogger.h
// First comes the header
auto Header = json::parse(ReadLn());
EXPECT_FALSE(Header.takeError());
EXPECT_NE(Header->getAsObject()->getArray("features"), nullptr);
EXPECT_NE(Header->getAsObject()->getObject("advice"), nullptr);
// Then comes the context
EXPECT_FALSE(json::parse(ReadLn()).takeError());
int64_t Features[3] = {0};
auto FullyRead = [&]() {
size_t InsPt = 0;
const size_t ToRead = 3 * Inputs[0].getTotalTensorBufferSize();
char *Buff = reinterpret_cast<char *>(Features);
while (InsPt < ToRead) {
auto ReadOrErr = sys::fs::readNativeFile(
FromCompiler, {Buff + InsPt, ToRead - InsPt});
EXPECT_FALSE(ReadOrErr.takeError());
InsPt += *ReadOrErr;
}
};
// Observation
EXPECT_FALSE(json::parse(ReadLn()).takeError());
// Tensor values
FullyRead();
// a "\n"
char Chr = 0;
auto ReadNL = [&]() {
do {
auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
EXPECT_FALSE(ReadOrErr.takeError());
if (*ReadOrErr == 1)
break;
} while (true);
};
ReadNL();
EXPECT_EQ(Chr, '\n');
EXPECT_EQ(Features[0], 42);
EXPECT_EQ(Features[1], 43);
EXPECT_EQ(Features[2], 100);
++SeenObservations;
// Send the advice
float Advice = 42.0012;
ToCompiler.write(reinterpret_cast<const char *>(&Advice),
AdviceSpec.getTotalTensorBufferSize());
ToCompiler.flush();
// Second observation, and same idea as above
EXPECT_FALSE(json::parse(ReadLn()).takeError());
FullyRead();
ReadNL();
EXPECT_EQ(Chr, '\n');
EXPECT_EQ(Features[0], 10);
EXPECT_EQ(Features[1], -2);
EXPECT_EQ(Features[2], 1);
++SeenObservations;
Advice = 50.30;
ToCompiler.write(reinterpret_cast<const char *>(&Advice),
AdviceSpec.getTotalTensorBufferSize());
ToCompiler.flush();
sys::fs::closeFile(FromCompiler);
});
InteractiveModelRunner Evaluator(Ctx, Inputs, AdviceSpec, FromCompilerName,
ToCompilerName);
Evaluator.switchContext("hi");
EXPECT_EQ(SeenObservations, 0);
*Evaluator.getTensor<int64_t>(0) = 42;
*Evaluator.getTensor<int64_t>(1) = 43;
*Evaluator.getTensor<int64_t>(2) = 100;
float Ret = Evaluator.evaluate<float>();
EXPECT_EQ(SeenObservations, 1);
EXPECT_FLOAT_EQ(Ret, 42.0012);
*Evaluator.getTensor<int64_t>(0) = 10;
*Evaluator.getTensor<int64_t>(1) = -2;
*Evaluator.getTensor<int64_t>(2) = 1;
Ret = Evaluator.evaluate<float>();
EXPECT_EQ(SeenObservations, 2);
EXPECT_FLOAT_EQ(Ret, 50.30);
Advisor.join();
}
#endif
|