1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
//===-- AMDGPUMachineFunctionInfo.cpp ---------------------------------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUMachineFunction.h"
#include "AMDGPU.h"
#include "AMDGPUPerfHintAnalysis.h"
#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
AMDGPUMachineFunction::AMDGPUMachineFunction(const Function &F,
const AMDGPUSubtarget &ST)
: IsEntryFunction(AMDGPU::isEntryFunctionCC(F.getCallingConv())),
IsModuleEntryFunction(
AMDGPU::isModuleEntryFunctionCC(F.getCallingConv())),
NoSignedZerosFPMath(false) {
// FIXME: Should initialize KernArgSize based on ExplicitKernelArgOffset,
// except reserved size is not correctly aligned.
Attribute MemBoundAttr = F.getFnAttribute("amdgpu-memory-bound");
MemoryBound = MemBoundAttr.getValueAsBool();
Attribute WaveLimitAttr = F.getFnAttribute("amdgpu-wave-limiter");
WaveLimiter = WaveLimitAttr.getValueAsBool();
// FIXME: How is this attribute supposed to interact with statically known
// global sizes?
StringRef S = F.getFnAttribute("amdgpu-gds-size").getValueAsString();
if (!S.empty())
S.consumeInteger(0, GDSSize);
// Assume the attribute allocates before any known GDS globals.
StaticGDSSize = GDSSize;
CallingConv::ID CC = F.getCallingConv();
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL)
ExplicitKernArgSize = ST.getExplicitKernArgSize(F, MaxKernArgAlign);
// FIXME: Shouldn't be target specific
Attribute NSZAttr = F.getFnAttribute("no-signed-zeros-fp-math");
NoSignedZerosFPMath =
NSZAttr.isStringAttribute() && NSZAttr.getValueAsString() == "true";
}
unsigned AMDGPUMachineFunction::allocateLDSGlobal(const DataLayout &DL,
const GlobalVariable &GV,
Align Trailing) {
auto Entry = LocalMemoryObjects.insert(std::pair(&GV, 0));
if (!Entry.second)
return Entry.first->second;
Align Alignment =
DL.getValueOrABITypeAlignment(GV.getAlign(), GV.getValueType());
unsigned Offset;
if (GV.getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
/// TODO: We should sort these to minimize wasted space due to alignment
/// padding. Currently the padding is decided by the first encountered use
/// during lowering.
Offset = StaticLDSSize = alignTo(StaticLDSSize, Alignment);
StaticLDSSize += DL.getTypeAllocSize(GV.getValueType());
// Align LDS size to trailing, e.g. for aligning dynamic shared memory
LDSSize = alignTo(StaticLDSSize, Trailing);
} else {
assert(GV.getAddressSpace() == AMDGPUAS::REGION_ADDRESS &&
"expected region address space");
Offset = StaticGDSSize = alignTo(StaticGDSSize, Alignment);
StaticGDSSize += DL.getTypeAllocSize(GV.getValueType());
// FIXME: Apply alignment of dynamic GDS
GDSSize = StaticGDSSize;
}
Entry.first->second = Offset;
return Offset;
}
static constexpr StringLiteral ModuleLDSName = "llvm.amdgcn.module.lds";
static const GlobalVariable *getKernelLDSGlobalFromFunction(const Function &F) {
const Module *M = F.getParent();
std::string KernelLDSName = "llvm.amdgcn.kernel.";
KernelLDSName += F.getName();
KernelLDSName += ".lds";
return M->getNamedGlobal(KernelLDSName);
}
static const GlobalVariable *
getKernelDynLDSGlobalFromFunction(const Function &F) {
const Module *M = F.getParent();
std::string KernelDynLDSName = "llvm.amdgcn.";
KernelDynLDSName += F.getName();
KernelDynLDSName += ".dynlds";
return M->getNamedGlobal(KernelDynLDSName);
}
// This kernel calls no functions that require the module lds struct
static bool canElideModuleLDS(const Function &F) {
return F.hasFnAttribute("amdgpu-elide-module-lds");
}
void AMDGPUMachineFunction::allocateKnownAddressLDSGlobal(const Function &F) {
const Module *M = F.getParent();
// This function is called before allocating any other LDS so that it can
// reliably put values at known addresses. Consequently, dynamic LDS, if
// present, will not yet have been allocated
assert(getDynLDSAlign() == Align() && "dynamic LDS not yet allocated");
if (isModuleEntryFunction()) {
// Pointer values start from zero, memory allocated per-kernel-launch
// Variables can be grouped into a module level struct and a struct per
// kernel function by AMDGPULowerModuleLDSPass. If that is done, they
// are allocated at statically computable addresses here.
//
// Address 0
// {
// llvm.amdgcn.module.lds
// }
// alignment padding
// {
// llvm.amdgcn.kernel.some-name.lds
// }
// other variables, e.g. dynamic lds, allocated after this call
const GlobalVariable *GV = M->getNamedGlobal(ModuleLDSName);
const GlobalVariable *KV = getKernelLDSGlobalFromFunction(F);
const GlobalVariable *Dyn = getKernelDynLDSGlobalFromFunction(F);
if (GV && !canElideModuleLDS(F)) {
unsigned Offset = allocateLDSGlobal(M->getDataLayout(), *GV, Align());
std::optional<uint32_t> Expect = getLDSAbsoluteAddress(*GV);
if (!Expect || (Offset != *Expect)) {
report_fatal_error("Inconsistent metadata on module LDS variable");
}
}
if (KV) {
// The per-kernel offset is deterministic because it is allocated
// before any other non-module LDS variables.
unsigned Offset = allocateLDSGlobal(M->getDataLayout(), *KV, Align());
std::optional<uint32_t> Expect = getLDSAbsoluteAddress(*KV);
if (!Expect || (Offset != *Expect)) {
report_fatal_error("Inconsistent metadata on kernel LDS variable");
}
}
if (Dyn) {
// The dynamic LDS is deterministic because the per-kernel one has the
// maximum alignment of any reachable and all remaining LDS variables,
// if this is present, are themselves dynamic LDS and will be allocated
// at the same address.
setDynLDSAlign(F, *Dyn);
unsigned Offset = LDSSize;
std::optional<uint32_t> Expect = getLDSAbsoluteAddress(*Dyn);
if (!Expect || (Offset != *Expect)) {
report_fatal_error("Inconsistent metadata on dynamic LDS variable");
}
}
}
}
std::optional<uint32_t>
AMDGPUMachineFunction::getLDSKernelIdMetadata(const Function &F) {
// TODO: Would be more consistent with the abs symbols to use a range
MDNode *MD = F.getMetadata("llvm.amdgcn.lds.kernel.id");
if (MD && MD->getNumOperands() == 1) {
if (ConstantInt *KnownSize =
mdconst::extract<ConstantInt>(MD->getOperand(0))) {
uint64_t ZExt = KnownSize->getZExtValue();
if (ZExt <= UINT32_MAX) {
return ZExt;
}
}
}
return {};
}
std::optional<uint32_t>
AMDGPUMachineFunction::getLDSAbsoluteAddress(const GlobalValue &GV) {
if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
return {};
std::optional<ConstantRange> AbsSymRange = GV.getAbsoluteSymbolRange();
if (!AbsSymRange)
return {};
if (const APInt *V = AbsSymRange->getSingleElement()) {
std::optional<uint64_t> ZExt = V->tryZExtValue();
if (ZExt && (*ZExt <= UINT32_MAX)) {
return *ZExt;
}
}
return {};
}
void AMDGPUMachineFunction::setDynLDSAlign(const Function &F,
const GlobalVariable &GV) {
const Module *M = F.getParent();
const DataLayout &DL = M->getDataLayout();
assert(DL.getTypeAllocSize(GV.getValueType()).isZero());
Align Alignment =
DL.getValueOrABITypeAlignment(GV.getAlign(), GV.getValueType());
if (Alignment <= DynLDSAlign)
return;
LDSSize = alignTo(StaticLDSSize, Alignment);
DynLDSAlign = Alignment;
// If there is a dynamic LDS variable associated with this function F, every
// further dynamic LDS instance (allocated by calling setDynLDSAlign) must
// map to the same address. This holds because no LDS is allocated after the
// lowering pass if there are dynamic LDS variables present.
const GlobalVariable *Dyn = getKernelDynLDSGlobalFromFunction(F);
if (Dyn) {
unsigned Offset = LDSSize; // return this?
std::optional<uint32_t> Expect = getLDSAbsoluteAddress(*Dyn);
if (!Expect || (Offset != *Expect)) {
report_fatal_error("Inconsistent metadata on dynamic LDS variable");
}
}
}
|