summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/ComplexDeinterleavingPass.cpp
blob: f2599fc05b478970565e6cfd0fc7af13257398e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
//===- ComplexDeinterleavingPass.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Identification:
// This step is responsible for finding the patterns that can be lowered to
// complex instructions, and building a graph to represent the complex
// structures. Starting from the "Converging Shuffle" (a shuffle that
// reinterleaves the complex components, with a mask of <0, 2, 1, 3>), the
// operands are evaluated and identified as "Composite Nodes" (collections of
// instructions that can potentially be lowered to a single complex
// instruction). This is performed by checking the real and imaginary components
// and tracking the data flow for each component while following the operand
// pairs. Validity of each node is expected to be done upon creation, and any
// validation errors should halt traversal and prevent further graph
// construction.
// Instead of relying on Shuffle operations, vector interleaving and
// deinterleaving can be represented by vector.interleave2 and
// vector.deinterleave2 intrinsics. Scalable vectors can be represented only by
// these intrinsics, whereas, fixed-width vectors are recognized for both
// shufflevector instruction and intrinsics.
//
// Replacement:
// This step traverses the graph built up by identification, delegating to the
// target to validate and generate the correct intrinsics, and plumbs them
// together connecting each end of the new intrinsics graph to the existing
// use-def chain. This step is assumed to finish successfully, as all
// information is expected to be correct by this point.
//
//
// Internal data structure:
// ComplexDeinterleavingGraph:
// Keeps references to all the valid CompositeNodes formed as part of the
// transformation, and every Instruction contained within said nodes. It also
// holds onto a reference to the root Instruction, and the root node that should
// replace it.
//
// ComplexDeinterleavingCompositeNode:
// A CompositeNode represents a single transformation point; each node should
// transform into a single complex instruction (ignoring vector splitting, which
// would generate more instructions per node). They are identified in a
// depth-first manner, traversing and identifying the operands of each
// instruction in the order they appear in the IR.
// Each node maintains a reference  to its Real and Imaginary instructions,
// as well as any additional instructions that make up the identified operation
// (Internal instructions should only have uses within their containing node).
// A Node also contains the rotation and operation type that it represents.
// Operands contains pointers to other CompositeNodes, acting as the edges in
// the graph. ReplacementValue is the transformed Value* that has been emitted
// to the IR.
//
// Note: If the operation of a Node is Shuffle, only the Real, Imaginary, and
// ReplacementValue fields of that Node are relevant, where the ReplacementValue
// should be pre-populated.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ComplexDeinterleavingPass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "complex-deinterleaving"

STATISTIC(NumComplexTransformations, "Amount of complex patterns transformed");

static cl::opt<bool> ComplexDeinterleavingEnabled(
    "enable-complex-deinterleaving",
    cl::desc("Enable generation of complex instructions"), cl::init(true),
    cl::Hidden);

/// Checks the given mask, and determines whether said mask is interleaving.
///
/// To be interleaving, a mask must alternate between `i` and `i + (Length /
/// 2)`, and must contain all numbers within the range of `[0..Length)` (e.g. a
/// 4x vector interleaving mask would be <0, 2, 1, 3>).
static bool isInterleavingMask(ArrayRef<int> Mask);

/// Checks the given mask, and determines whether said mask is deinterleaving.
///
/// To be deinterleaving, a mask must increment in steps of 2, and either start
/// with 0 or 1.
/// (e.g. an 8x vector deinterleaving mask would be either <0, 2, 4, 6> or
/// <1, 3, 5, 7>).
static bool isDeinterleavingMask(ArrayRef<int> Mask);

namespace {

class ComplexDeinterleavingLegacyPass : public FunctionPass {
public:
  static char ID;

  ComplexDeinterleavingLegacyPass(const TargetMachine *TM = nullptr)
      : FunctionPass(ID), TM(TM) {
    initializeComplexDeinterleavingLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Complex Deinterleaving Pass";
  }

  bool runOnFunction(Function &F) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.setPreservesCFG();
  }

private:
  const TargetMachine *TM;
};

class ComplexDeinterleavingGraph;
struct ComplexDeinterleavingCompositeNode {

  ComplexDeinterleavingCompositeNode(ComplexDeinterleavingOperation Op,
                                     Instruction *R, Instruction *I)
      : Operation(Op), Real(R), Imag(I) {}

private:
  friend class ComplexDeinterleavingGraph;
  using NodePtr = std::shared_ptr<ComplexDeinterleavingCompositeNode>;
  using RawNodePtr = ComplexDeinterleavingCompositeNode *;

public:
  ComplexDeinterleavingOperation Operation;
  Instruction *Real;
  Instruction *Imag;

  ComplexDeinterleavingRotation Rotation =
      ComplexDeinterleavingRotation::Rotation_0;
  SmallVector<RawNodePtr> Operands;
  Value *ReplacementNode = nullptr;

  void addOperand(NodePtr Node) { Operands.push_back(Node.get()); }

  void dump() { dump(dbgs()); }
  void dump(raw_ostream &OS) {
    auto PrintValue = [&](Value *V) {
      if (V) {
        OS << "\"";
        V->print(OS, true);
        OS << "\"\n";
      } else
        OS << "nullptr\n";
    };
    auto PrintNodeRef = [&](RawNodePtr Ptr) {
      if (Ptr)
        OS << Ptr << "\n";
      else
        OS << "nullptr\n";
    };

    OS << "- CompositeNode: " << this << "\n";
    OS << "  Real: ";
    PrintValue(Real);
    OS << "  Imag: ";
    PrintValue(Imag);
    OS << "  ReplacementNode: ";
    PrintValue(ReplacementNode);
    OS << "  Operation: " << (int)Operation << "\n";
    OS << "  Rotation: " << ((int)Rotation * 90) << "\n";
    OS << "  Operands: \n";
    for (const auto &Op : Operands) {
      OS << "    - ";
      PrintNodeRef(Op);
    }
  }
};

class ComplexDeinterleavingGraph {
public:
  using NodePtr = ComplexDeinterleavingCompositeNode::NodePtr;
  using RawNodePtr = ComplexDeinterleavingCompositeNode::RawNodePtr;
  explicit ComplexDeinterleavingGraph(const TargetLowering *TL,
                                      const TargetLibraryInfo *TLI)
      : TL(TL), TLI(TLI) {}

private:
  const TargetLowering *TL = nullptr;
  const TargetLibraryInfo *TLI = nullptr;
  SmallVector<NodePtr> CompositeNodes;

  SmallPtrSet<Instruction *, 16> FinalInstructions;

  /// Root instructions are instructions from which complex computation starts
  std::map<Instruction *, NodePtr> RootToNode;

  /// Topologically sorted root instructions
  SmallVector<Instruction *, 1> OrderedRoots;

  NodePtr prepareCompositeNode(ComplexDeinterleavingOperation Operation,
                               Instruction *R, Instruction *I) {
    return std::make_shared<ComplexDeinterleavingCompositeNode>(Operation, R,
                                                                I);
  }

  NodePtr submitCompositeNode(NodePtr Node) {
    CompositeNodes.push_back(Node);
    return Node;
  }

  NodePtr getContainingComposite(Value *R, Value *I) {
    for (const auto &CN : CompositeNodes) {
      if (CN->Real == R && CN->Imag == I)
        return CN;
    }
    return nullptr;
  }

  /// Identifies a complex partial multiply pattern and its rotation, based on
  /// the following patterns
  ///
  ///  0:  r: cr + ar * br
  ///      i: ci + ar * bi
  /// 90:  r: cr - ai * bi
  ///      i: ci + ai * br
  /// 180: r: cr - ar * br
  ///      i: ci - ar * bi
  /// 270: r: cr + ai * bi
  ///      i: ci - ai * br
  NodePtr identifyPartialMul(Instruction *Real, Instruction *Imag);

  /// Identify the other branch of a Partial Mul, taking the CommonOperandI that
  /// is partially known from identifyPartialMul, filling in the other half of
  /// the complex pair.
  NodePtr identifyNodeWithImplicitAdd(
      Instruction *I, Instruction *J,
      std::pair<Instruction *, Instruction *> &CommonOperandI);

  /// Identifies a complex add pattern and its rotation, based on the following
  /// patterns.
  ///
  /// 90:  r: ar - bi
  ///      i: ai + br
  /// 270: r: ar + bi
  ///      i: ai - br
  NodePtr identifyAdd(Instruction *Real, Instruction *Imag);
  NodePtr identifySymmetricOperation(Instruction *Real, Instruction *Imag);

  NodePtr identifyNode(Instruction *I, Instruction *J);

  NodePtr identifyRoot(Instruction *I);

  /// Identifies the Deinterleave operation applied to a vector containing
  /// complex numbers. There are two ways to represent the Deinterleave
  /// operation:
  /// * Using two shufflevectors with even indices for /pReal instruction and
  /// odd indices for /pImag instructions (only for fixed-width vectors)
  /// * Using two extractvalue instructions applied to `vector.deinterleave2`
  /// intrinsic (for both fixed and scalable vectors)
  NodePtr identifyDeinterleave(Instruction *Real, Instruction *Imag);

  Value *replaceNode(RawNodePtr Node);

public:
  void dump() { dump(dbgs()); }
  void dump(raw_ostream &OS) {
    for (const auto &Node : CompositeNodes)
      Node->dump(OS);
  }

  /// Returns false if the deinterleaving operation should be cancelled for the
  /// current graph.
  bool identifyNodes(Instruction *RootI);

  /// Check that every instruction, from the roots to the leaves, has internal
  /// uses.
  bool checkNodes();

  /// Perform the actual replacement of the underlying instruction graph.
  void replaceNodes();
};

class ComplexDeinterleaving {
public:
  ComplexDeinterleaving(const TargetLowering *tl, const TargetLibraryInfo *tli)
      : TL(tl), TLI(tli) {}
  bool runOnFunction(Function &F);

private:
  bool evaluateBasicBlock(BasicBlock *B);

  const TargetLowering *TL = nullptr;
  const TargetLibraryInfo *TLI = nullptr;
};

} // namespace

char ComplexDeinterleavingLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ComplexDeinterleavingLegacyPass, DEBUG_TYPE,
                      "Complex Deinterleaving", false, false)
INITIALIZE_PASS_END(ComplexDeinterleavingLegacyPass, DEBUG_TYPE,
                    "Complex Deinterleaving", false, false)

PreservedAnalyses ComplexDeinterleavingPass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  const TargetLowering *TL = TM->getSubtargetImpl(F)->getTargetLowering();
  auto &TLI = AM.getResult<llvm::TargetLibraryAnalysis>(F);
  if (!ComplexDeinterleaving(TL, &TLI).runOnFunction(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<FunctionAnalysisManagerModuleProxy>();
  return PA;
}

FunctionPass *llvm::createComplexDeinterleavingPass(const TargetMachine *TM) {
  return new ComplexDeinterleavingLegacyPass(TM);
}

bool ComplexDeinterleavingLegacyPass::runOnFunction(Function &F) {
  const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
  auto TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  return ComplexDeinterleaving(TL, &TLI).runOnFunction(F);
}

bool ComplexDeinterleaving::runOnFunction(Function &F) {
  if (!ComplexDeinterleavingEnabled) {
    LLVM_DEBUG(
        dbgs() << "Complex deinterleaving has been explicitly disabled.\n");
    return false;
  }

  if (!TL->isComplexDeinterleavingSupported()) {
    LLVM_DEBUG(
        dbgs() << "Complex deinterleaving has been disabled, target does "
                  "not support lowering of complex number operations.\n");
    return false;
  }

  bool Changed = false;
  for (auto &B : F)
    Changed |= evaluateBasicBlock(&B);

  return Changed;
}

static bool isInterleavingMask(ArrayRef<int> Mask) {
  // If the size is not even, it's not an interleaving mask
  if ((Mask.size() & 1))
    return false;

  int HalfNumElements = Mask.size() / 2;
  for (int Idx = 0; Idx < HalfNumElements; ++Idx) {
    int MaskIdx = Idx * 2;
    if (Mask[MaskIdx] != Idx || Mask[MaskIdx + 1] != (Idx + HalfNumElements))
      return false;
  }

  return true;
}

static bool isDeinterleavingMask(ArrayRef<int> Mask) {
  int Offset = Mask[0];
  int HalfNumElements = Mask.size() / 2;

  for (int Idx = 1; Idx < HalfNumElements; ++Idx) {
    if (Mask[Idx] != (Idx * 2) + Offset)
      return false;
  }

  return true;
}

bool ComplexDeinterleaving::evaluateBasicBlock(BasicBlock *B) {
  ComplexDeinterleavingGraph Graph(TL, TLI);
  for (auto &I : *B)
    Graph.identifyNodes(&I);

  if (Graph.checkNodes()) {
    Graph.replaceNodes();
    return true;
  }

  return false;
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyNodeWithImplicitAdd(
    Instruction *Real, Instruction *Imag,
    std::pair<Instruction *, Instruction *> &PartialMatch) {
  LLVM_DEBUG(dbgs() << "identifyNodeWithImplicitAdd " << *Real << " / " << *Imag
                    << "\n");

  if (!Real->hasOneUse() || !Imag->hasOneUse()) {
    LLVM_DEBUG(dbgs() << "  - Mul operand has multiple uses.\n");
    return nullptr;
  }

  if (Real->getOpcode() != Instruction::FMul ||
      Imag->getOpcode() != Instruction::FMul) {
    LLVM_DEBUG(dbgs() << "  - Real or imaginary instruction is not fmul\n");
    return nullptr;
  }

  Instruction *R0 = dyn_cast<Instruction>(Real->getOperand(0));
  Instruction *R1 = dyn_cast<Instruction>(Real->getOperand(1));
  Instruction *I0 = dyn_cast<Instruction>(Imag->getOperand(0));
  Instruction *I1 = dyn_cast<Instruction>(Imag->getOperand(1));
  if (!R0 || !R1 || !I0 || !I1) {
    LLVM_DEBUG(dbgs() << "  - Mul operand not Instruction\n");
    return nullptr;
  }

  // A +/+ has a rotation of 0. If any of the operands are fneg, we flip the
  // rotations and use the operand.
  unsigned Negs = 0;
  SmallVector<Instruction *> FNegs;
  if (R0->getOpcode() == Instruction::FNeg ||
      R1->getOpcode() == Instruction::FNeg) {
    Negs |= 1;
    if (R0->getOpcode() == Instruction::FNeg) {
      FNegs.push_back(R0);
      R0 = dyn_cast<Instruction>(R0->getOperand(0));
    } else {
      FNegs.push_back(R1);
      R1 = dyn_cast<Instruction>(R1->getOperand(0));
    }
    if (!R0 || !R1)
      return nullptr;
  }
  if (I0->getOpcode() == Instruction::FNeg ||
      I1->getOpcode() == Instruction::FNeg) {
    Negs |= 2;
    Negs ^= 1;
    if (I0->getOpcode() == Instruction::FNeg) {
      FNegs.push_back(I0);
      I0 = dyn_cast<Instruction>(I0->getOperand(0));
    } else {
      FNegs.push_back(I1);
      I1 = dyn_cast<Instruction>(I1->getOperand(0));
    }
    if (!I0 || !I1)
      return nullptr;
  }

  ComplexDeinterleavingRotation Rotation = (ComplexDeinterleavingRotation)Negs;

  Instruction *CommonOperand;
  Instruction *UncommonRealOp;
  Instruction *UncommonImagOp;

  if (R0 == I0 || R0 == I1) {
    CommonOperand = R0;
    UncommonRealOp = R1;
  } else if (R1 == I0 || R1 == I1) {
    CommonOperand = R1;
    UncommonRealOp = R0;
  } else {
    LLVM_DEBUG(dbgs() << "  - No equal operand\n");
    return nullptr;
  }

  UncommonImagOp = (CommonOperand == I0) ? I1 : I0;
  if (Rotation == ComplexDeinterleavingRotation::Rotation_90 ||
      Rotation == ComplexDeinterleavingRotation::Rotation_270)
    std::swap(UncommonRealOp, UncommonImagOp);

  // Between identifyPartialMul and here we need to have found a complete valid
  // pair from the CommonOperand of each part.
  if (Rotation == ComplexDeinterleavingRotation::Rotation_0 ||
      Rotation == ComplexDeinterleavingRotation::Rotation_180)
    PartialMatch.first = CommonOperand;
  else
    PartialMatch.second = CommonOperand;

  if (!PartialMatch.first || !PartialMatch.second) {
    LLVM_DEBUG(dbgs() << "  - Incomplete partial match\n");
    return nullptr;
  }

  NodePtr CommonNode = identifyNode(PartialMatch.first, PartialMatch.second);
  if (!CommonNode) {
    LLVM_DEBUG(dbgs() << "  - No CommonNode identified\n");
    return nullptr;
  }

  NodePtr UncommonNode = identifyNode(UncommonRealOp, UncommonImagOp);
  if (!UncommonNode) {
    LLVM_DEBUG(dbgs() << "  - No UncommonNode identified\n");
    return nullptr;
  }

  NodePtr Node = prepareCompositeNode(
      ComplexDeinterleavingOperation::CMulPartial, Real, Imag);
  Node->Rotation = Rotation;
  Node->addOperand(CommonNode);
  Node->addOperand(UncommonNode);
  return submitCompositeNode(Node);
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyPartialMul(Instruction *Real,
                                               Instruction *Imag) {
  LLVM_DEBUG(dbgs() << "identifyPartialMul " << *Real << " / " << *Imag
                    << "\n");
  // Determine rotation
  ComplexDeinterleavingRotation Rotation;
  if (Real->getOpcode() == Instruction::FAdd &&
      Imag->getOpcode() == Instruction::FAdd)
    Rotation = ComplexDeinterleavingRotation::Rotation_0;
  else if (Real->getOpcode() == Instruction::FSub &&
           Imag->getOpcode() == Instruction::FAdd)
    Rotation = ComplexDeinterleavingRotation::Rotation_90;
  else if (Real->getOpcode() == Instruction::FSub &&
           Imag->getOpcode() == Instruction::FSub)
    Rotation = ComplexDeinterleavingRotation::Rotation_180;
  else if (Real->getOpcode() == Instruction::FAdd &&
           Imag->getOpcode() == Instruction::FSub)
    Rotation = ComplexDeinterleavingRotation::Rotation_270;
  else {
    LLVM_DEBUG(dbgs() << "  - Unhandled rotation.\n");
    return nullptr;
  }

  if (!Real->getFastMathFlags().allowContract() ||
      !Imag->getFastMathFlags().allowContract()) {
    LLVM_DEBUG(dbgs() << "  - Contract is missing from the FastMath flags.\n");
    return nullptr;
  }

  Value *CR = Real->getOperand(0);
  Instruction *RealMulI = dyn_cast<Instruction>(Real->getOperand(1));
  if (!RealMulI)
    return nullptr;
  Value *CI = Imag->getOperand(0);
  Instruction *ImagMulI = dyn_cast<Instruction>(Imag->getOperand(1));
  if (!ImagMulI)
    return nullptr;

  if (!RealMulI->hasOneUse() || !ImagMulI->hasOneUse()) {
    LLVM_DEBUG(dbgs() << "  - Mul instruction has multiple uses\n");
    return nullptr;
  }

  Instruction *R0 = dyn_cast<Instruction>(RealMulI->getOperand(0));
  Instruction *R1 = dyn_cast<Instruction>(RealMulI->getOperand(1));
  Instruction *I0 = dyn_cast<Instruction>(ImagMulI->getOperand(0));
  Instruction *I1 = dyn_cast<Instruction>(ImagMulI->getOperand(1));
  if (!R0 || !R1 || !I0 || !I1) {
    LLVM_DEBUG(dbgs() << "  - Mul operand not Instruction\n");
    return nullptr;
  }

  Instruction *CommonOperand;
  Instruction *UncommonRealOp;
  Instruction *UncommonImagOp;

  if (R0 == I0 || R0 == I1) {
    CommonOperand = R0;
    UncommonRealOp = R1;
  } else if (R1 == I0 || R1 == I1) {
    CommonOperand = R1;
    UncommonRealOp = R0;
  } else {
    LLVM_DEBUG(dbgs() << "  - No equal operand\n");
    return nullptr;
  }

  UncommonImagOp = (CommonOperand == I0) ? I1 : I0;
  if (Rotation == ComplexDeinterleavingRotation::Rotation_90 ||
      Rotation == ComplexDeinterleavingRotation::Rotation_270)
    std::swap(UncommonRealOp, UncommonImagOp);

  std::pair<Instruction *, Instruction *> PartialMatch(
      (Rotation == ComplexDeinterleavingRotation::Rotation_0 ||
       Rotation == ComplexDeinterleavingRotation::Rotation_180)
          ? CommonOperand
          : nullptr,
      (Rotation == ComplexDeinterleavingRotation::Rotation_90 ||
       Rotation == ComplexDeinterleavingRotation::Rotation_270)
          ? CommonOperand
          : nullptr);

  auto *CRInst = dyn_cast<Instruction>(CR);
  auto *CIInst = dyn_cast<Instruction>(CI);

  if (!CRInst || !CIInst) {
    LLVM_DEBUG(dbgs() << "  - Common operands are not instructions.\n");
    return nullptr;
  }

  NodePtr CNode = identifyNodeWithImplicitAdd(CRInst, CIInst, PartialMatch);
  if (!CNode) {
    LLVM_DEBUG(dbgs() << "  - No cnode identified\n");
    return nullptr;
  }

  NodePtr UncommonRes = identifyNode(UncommonRealOp, UncommonImagOp);
  if (!UncommonRes) {
    LLVM_DEBUG(dbgs() << "  - No UncommonRes identified\n");
    return nullptr;
  }

  assert(PartialMatch.first && PartialMatch.second);
  NodePtr CommonRes = identifyNode(PartialMatch.first, PartialMatch.second);
  if (!CommonRes) {
    LLVM_DEBUG(dbgs() << "  - No CommonRes identified\n");
    return nullptr;
  }

  NodePtr Node = prepareCompositeNode(
      ComplexDeinterleavingOperation::CMulPartial, Real, Imag);
  Node->Rotation = Rotation;
  Node->addOperand(CommonRes);
  Node->addOperand(UncommonRes);
  Node->addOperand(CNode);
  return submitCompositeNode(Node);
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyAdd(Instruction *Real, Instruction *Imag) {
  LLVM_DEBUG(dbgs() << "identifyAdd " << *Real << " / " << *Imag << "\n");

  // Determine rotation
  ComplexDeinterleavingRotation Rotation;
  if ((Real->getOpcode() == Instruction::FSub &&
       Imag->getOpcode() == Instruction::FAdd) ||
      (Real->getOpcode() == Instruction::Sub &&
       Imag->getOpcode() == Instruction::Add))
    Rotation = ComplexDeinterleavingRotation::Rotation_90;
  else if ((Real->getOpcode() == Instruction::FAdd &&
            Imag->getOpcode() == Instruction::FSub) ||
           (Real->getOpcode() == Instruction::Add &&
            Imag->getOpcode() == Instruction::Sub))
    Rotation = ComplexDeinterleavingRotation::Rotation_270;
  else {
    LLVM_DEBUG(dbgs() << " - Unhandled case, rotation is not assigned.\n");
    return nullptr;
  }

  auto *AR = dyn_cast<Instruction>(Real->getOperand(0));
  auto *BI = dyn_cast<Instruction>(Real->getOperand(1));
  auto *AI = dyn_cast<Instruction>(Imag->getOperand(0));
  auto *BR = dyn_cast<Instruction>(Imag->getOperand(1));

  if (!AR || !AI || !BR || !BI) {
    LLVM_DEBUG(dbgs() << " - Not all operands are instructions.\n");
    return nullptr;
  }

  NodePtr ResA = identifyNode(AR, AI);
  if (!ResA) {
    LLVM_DEBUG(dbgs() << " - AR/AI is not identified as a composite node.\n");
    return nullptr;
  }
  NodePtr ResB = identifyNode(BR, BI);
  if (!ResB) {
    LLVM_DEBUG(dbgs() << " - BR/BI is not identified as a composite node.\n");
    return nullptr;
  }

  NodePtr Node =
      prepareCompositeNode(ComplexDeinterleavingOperation::CAdd, Real, Imag);
  Node->Rotation = Rotation;
  Node->addOperand(ResA);
  Node->addOperand(ResB);
  return submitCompositeNode(Node);
}

static bool isInstructionPairAdd(Instruction *A, Instruction *B) {
  unsigned OpcA = A->getOpcode();
  unsigned OpcB = B->getOpcode();

  return (OpcA == Instruction::FSub && OpcB == Instruction::FAdd) ||
         (OpcA == Instruction::FAdd && OpcB == Instruction::FSub) ||
         (OpcA == Instruction::Sub && OpcB == Instruction::Add) ||
         (OpcA == Instruction::Add && OpcB == Instruction::Sub);
}

static bool isInstructionPairMul(Instruction *A, Instruction *B) {
  auto Pattern =
      m_BinOp(m_FMul(m_Value(), m_Value()), m_FMul(m_Value(), m_Value()));

  return match(A, Pattern) && match(B, Pattern);
}

static bool isInstructionPotentiallySymmetric(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FNeg:
    return true;
  default:
    return false;
  }
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifySymmetricOperation(Instruction *Real,
                                                       Instruction *Imag) {
  if (Real->getOpcode() != Imag->getOpcode())
    return nullptr;

  if (!isInstructionPotentiallySymmetric(Real) ||
      !isInstructionPotentiallySymmetric(Imag))
    return nullptr;

  auto *R0 = dyn_cast<Instruction>(Real->getOperand(0));
  auto *I0 = dyn_cast<Instruction>(Imag->getOperand(0));

  if (!R0 || !I0)
    return nullptr;

  NodePtr Op0 = identifyNode(R0, I0);
  NodePtr Op1 = nullptr;
  if (Op0 == nullptr)
    return nullptr;

  if (Real->isBinaryOp()) {
    auto *R1 = dyn_cast<Instruction>(Real->getOperand(1));
    auto *I1 = dyn_cast<Instruction>(Imag->getOperand(1));
    if (!R1 || !I1)
      return nullptr;

    Op1 = identifyNode(R1, I1);
    if (Op1 == nullptr)
      return nullptr;
  }

  auto Node = prepareCompositeNode(ComplexDeinterleavingOperation::Symmetric,
                                   Real, Imag);
  Node->addOperand(Op0);
  if (Real->isBinaryOp())
    Node->addOperand(Op1);

  return submitCompositeNode(Node);
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyNode(Instruction *Real, Instruction *Imag) {
  LLVM_DEBUG(dbgs() << "identifyNode on " << *Real << " / " << *Imag << "\n");
  if (NodePtr CN = getContainingComposite(Real, Imag)) {
    LLVM_DEBUG(dbgs() << " - Folding to existing node\n");
    return CN;
  }

  NodePtr Node = identifyDeinterleave(Real, Imag);
  if (Node)
    return Node;

  auto *VTy = cast<VectorType>(Real->getType());
  auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy);

  if (TL->isComplexDeinterleavingOperationSupported(
          ComplexDeinterleavingOperation::CMulPartial, NewVTy) &&
      isInstructionPairMul(Real, Imag)) {
    return identifyPartialMul(Real, Imag);
  }

  if (TL->isComplexDeinterleavingOperationSupported(
          ComplexDeinterleavingOperation::CAdd, NewVTy) &&
      isInstructionPairAdd(Real, Imag)) {
    return identifyAdd(Real, Imag);
  }

  auto Symmetric = identifySymmetricOperation(Real, Imag);
  LLVM_DEBUG(if (Symmetric == nullptr) dbgs()
             << "  - Not recognised as a valid pattern.\n");
  return Symmetric;
}

bool ComplexDeinterleavingGraph::identifyNodes(Instruction *RootI) {
  auto RootNode = identifyRoot(RootI);
  if (!RootNode)
    return false;

  LLVM_DEBUG({
    Function *F = RootI->getFunction();
    BasicBlock *B = RootI->getParent();
    dbgs() << "Complex deinterleaving graph for " << F->getName()
           << "::" << B->getName() << ".\n";
    dump(dbgs());
    dbgs() << "\n";
  });
  RootToNode[RootI] = RootNode;
  OrderedRoots.push_back(RootI);
  return true;
}

bool ComplexDeinterleavingGraph::checkNodes() {
  // Collect all instructions from roots to leaves
  SmallPtrSet<Instruction *, 16> AllInstructions;
  SmallVector<Instruction *, 8> Worklist;
  for (auto *I : OrderedRoots)
    Worklist.push_back(I);

  // Extract all instructions that are used by all XCMLA/XCADD/ADD/SUB/NEG
  // chains
  while (!Worklist.empty()) {
    auto *I = Worklist.back();
    Worklist.pop_back();

    if (!AllInstructions.insert(I).second)
      continue;

    for (Value *Op : I->operands()) {
      if (auto *OpI = dyn_cast<Instruction>(Op)) {
        if (!FinalInstructions.count(I))
          Worklist.emplace_back(OpI);
      }
    }
  }

  // Find instructions that have users outside of chain
  SmallVector<Instruction *, 2> OuterInstructions;
  for (auto *I : AllInstructions) {
    // Skip root nodes
    if (RootToNode.count(I))
      continue;

    for (User *U : I->users()) {
      if (AllInstructions.count(cast<Instruction>(U)))
        continue;

      // Found an instruction that is not used by XCMLA/XCADD chain
      Worklist.emplace_back(I);
      break;
    }
  }

  // If any instructions are found to be used outside, find and remove roots
  // that somehow connect to those instructions.
  SmallPtrSet<Instruction *, 16> Visited;
  while (!Worklist.empty()) {
    auto *I = Worklist.back();
    Worklist.pop_back();
    if (!Visited.insert(I).second)
      continue;

    // Found an impacted root node. Removing it from the nodes to be
    // deinterleaved
    if (RootToNode.count(I)) {
      LLVM_DEBUG(dbgs() << "Instruction " << *I
                        << " could be deinterleaved but its chain of complex "
                           "operations have an outside user\n");
      RootToNode.erase(I);
    }

    if (!AllInstructions.count(I) || FinalInstructions.count(I))
      continue;

    for (User *U : I->users())
      Worklist.emplace_back(cast<Instruction>(U));

    for (Value *Op : I->operands()) {
      if (auto *OpI = dyn_cast<Instruction>(Op))
        Worklist.emplace_back(OpI);
    }
  }
  return !RootToNode.empty();
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyRoot(Instruction *RootI) {
  if (auto *Intrinsic = dyn_cast<IntrinsicInst>(RootI)) {
    if (Intrinsic->getIntrinsicID() !=
        Intrinsic::experimental_vector_interleave2)
      return nullptr;

    auto *Real = dyn_cast<Instruction>(Intrinsic->getOperand(0));
    auto *Imag = dyn_cast<Instruction>(Intrinsic->getOperand(1));
    if (!Real || !Imag)
      return nullptr;

    return identifyNode(Real, Imag);
  }

  auto *SVI = dyn_cast<ShuffleVectorInst>(RootI);
  if (!SVI)
    return nullptr;

  // Look for a shufflevector that takes separate vectors of the real and
  // imaginary components and recombines them into a single vector.
  if (!isInterleavingMask(SVI->getShuffleMask()))
    return nullptr;

  Instruction *Real;
  Instruction *Imag;
  if (!match(RootI, m_Shuffle(m_Instruction(Real), m_Instruction(Imag))))
    return nullptr;

  return identifyNode(Real, Imag);
}

ComplexDeinterleavingGraph::NodePtr
ComplexDeinterleavingGraph::identifyDeinterleave(Instruction *Real,
                                                 Instruction *Imag) {
  Instruction *I = nullptr;
  Value *FinalValue = nullptr;
  if (match(Real, m_ExtractValue<0>(m_Instruction(I))) &&
      match(Imag, m_ExtractValue<1>(m_Specific(I))) &&
      match(I, m_Intrinsic<Intrinsic::experimental_vector_deinterleave2>(
                   m_Value(FinalValue)))) {
    NodePtr PlaceholderNode = prepareCompositeNode(
        llvm::ComplexDeinterleavingOperation::Deinterleave, Real, Imag);
    PlaceholderNode->ReplacementNode = FinalValue;
    FinalInstructions.insert(Real);
    FinalInstructions.insert(Imag);
    return submitCompositeNode(PlaceholderNode);
  }

  auto *RealShuffle = dyn_cast<ShuffleVectorInst>(Real);
  auto *ImagShuffle = dyn_cast<ShuffleVectorInst>(Imag);
  if (!RealShuffle || !ImagShuffle) {
    if (RealShuffle || ImagShuffle)
      LLVM_DEBUG(dbgs() << " - There's a shuffle where there shouldn't be.\n");
    return nullptr;
  }

  Value *RealOp1 = RealShuffle->getOperand(1);
  if (!isa<UndefValue>(RealOp1) && !isa<ConstantAggregateZero>(RealOp1)) {
    LLVM_DEBUG(dbgs() << " - RealOp1 is not undef or zero.\n");
    return nullptr;
  }
  Value *ImagOp1 = ImagShuffle->getOperand(1);
  if (!isa<UndefValue>(ImagOp1) && !isa<ConstantAggregateZero>(ImagOp1)) {
    LLVM_DEBUG(dbgs() << " - ImagOp1 is not undef or zero.\n");
    return nullptr;
  }

  Value *RealOp0 = RealShuffle->getOperand(0);
  Value *ImagOp0 = ImagShuffle->getOperand(0);

  if (RealOp0 != ImagOp0) {
    LLVM_DEBUG(dbgs() << " - Shuffle operands are not equal.\n");
    return nullptr;
  }

  ArrayRef<int> RealMask = RealShuffle->getShuffleMask();
  ArrayRef<int> ImagMask = ImagShuffle->getShuffleMask();
  if (!isDeinterleavingMask(RealMask) || !isDeinterleavingMask(ImagMask)) {
    LLVM_DEBUG(dbgs() << " - Masks are not deinterleaving.\n");
    return nullptr;
  }

  if (RealMask[0] != 0 || ImagMask[0] != 1) {
    LLVM_DEBUG(dbgs() << " - Masks do not have the correct initial value.\n");
    return nullptr;
  }

  // Type checking, the shuffle type should be a vector type of the same
  // scalar type, but half the size
  auto CheckType = [&](ShuffleVectorInst *Shuffle) {
    Value *Op = Shuffle->getOperand(0);
    auto *ShuffleTy = cast<FixedVectorType>(Shuffle->getType());
    auto *OpTy = cast<FixedVectorType>(Op->getType());

    if (OpTy->getScalarType() != ShuffleTy->getScalarType())
      return false;
    if ((ShuffleTy->getNumElements() * 2) != OpTy->getNumElements())
      return false;

    return true;
  };

  auto CheckDeinterleavingShuffle = [&](ShuffleVectorInst *Shuffle) -> bool {
    if (!CheckType(Shuffle))
      return false;

    ArrayRef<int> Mask = Shuffle->getShuffleMask();
    int Last = *Mask.rbegin();

    Value *Op = Shuffle->getOperand(0);
    auto *OpTy = cast<FixedVectorType>(Op->getType());
    int NumElements = OpTy->getNumElements();

    // Ensure that the deinterleaving shuffle only pulls from the first
    // shuffle operand.
    return Last < NumElements;
  };

  if (RealShuffle->getType() != ImagShuffle->getType()) {
    LLVM_DEBUG(dbgs() << " - Shuffle types aren't equal.\n");
    return nullptr;
  }
  if (!CheckDeinterleavingShuffle(RealShuffle)) {
    LLVM_DEBUG(dbgs() << " - RealShuffle is invalid type.\n");
    return nullptr;
  }
  if (!CheckDeinterleavingShuffle(ImagShuffle)) {
    LLVM_DEBUG(dbgs() << " - ImagShuffle is invalid type.\n");
    return nullptr;
  }

  NodePtr PlaceholderNode =
      prepareCompositeNode(llvm::ComplexDeinterleavingOperation::Deinterleave,
                           RealShuffle, ImagShuffle);
  PlaceholderNode->ReplacementNode = RealShuffle->getOperand(0);
  FinalInstructions.insert(RealShuffle);
  FinalInstructions.insert(ImagShuffle);
  return submitCompositeNode(PlaceholderNode);
}

static Value *replaceSymmetricNode(ComplexDeinterleavingGraph::RawNodePtr Node,
                                   Value *InputA, Value *InputB) {
  Instruction *I = Node->Real;
  if (I->isUnaryOp())
    assert(!InputB &&
           "Unary symmetric operations need one input, but two were provided.");
  else if (I->isBinaryOp())
    assert(InputB && "Binary symmetric operations need two inputs, only one "
                     "was provided.");

  IRBuilder<> B(I);

  switch (I->getOpcode()) {
  case Instruction::FNeg:
    return B.CreateFNegFMF(InputA, I);
  case Instruction::FAdd:
    return B.CreateFAddFMF(InputA, InputB, I);
  case Instruction::FSub:
    return B.CreateFSubFMF(InputA, InputB, I);
  case Instruction::FMul:
    return B.CreateFMulFMF(InputA, InputB, I);
  }

  return nullptr;
}

Value *ComplexDeinterleavingGraph::replaceNode(
    ComplexDeinterleavingGraph::RawNodePtr Node) {
  if (Node->ReplacementNode)
    return Node->ReplacementNode;

  Value *Input0 = replaceNode(Node->Operands[0]);
  Value *Input1 =
      Node->Operands.size() > 1 ? replaceNode(Node->Operands[1]) : nullptr;
  Value *Accumulator =
      Node->Operands.size() > 2 ? replaceNode(Node->Operands[2]) : nullptr;

  if (Input1)
    assert(Input0->getType() == Input1->getType() &&
           "Node inputs need to be of the same type");

  if (Node->Operation == ComplexDeinterleavingOperation::Symmetric)
    Node->ReplacementNode = replaceSymmetricNode(Node, Input0, Input1);
  else
    Node->ReplacementNode = TL->createComplexDeinterleavingIR(
        Node->Real, Node->Operation, Node->Rotation, Input0, Input1,
        Accumulator);

  assert(Node->ReplacementNode && "Target failed to create Intrinsic call.");
  NumComplexTransformations += 1;
  return Node->ReplacementNode;
}

void ComplexDeinterleavingGraph::replaceNodes() {
  SmallVector<Instruction *, 16> DeadInstrRoots;
  for (auto *RootInstruction : OrderedRoots) {
    // Check if this potential root went through check process and we can
    // deinterleave it
    if (!RootToNode.count(RootInstruction))
      continue;

    IRBuilder<> Builder(RootInstruction);
    auto RootNode = RootToNode[RootInstruction];
    Value *R = replaceNode(RootNode.get());
    assert(R && "Unable to find replacement for RootInstruction");
    DeadInstrRoots.push_back(RootInstruction);
    RootInstruction->replaceAllUsesWith(R);
  }

  for (auto *I : DeadInstrRoots)
    RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
}