1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: no-localization
// UNSUPPORTED: c++03
// ADDITIONAL_COMPILE_FLAGS: -D_LIBCPP_DISABLE_DEPRECATION_WARNINGS
// <filesystem>
// class path
// Test constructors, accessors and modifiers that convert from/to various
// character encodings. Constructors and modifiers (append, concat,
// operator/=, operator+=) accept inputs with various character encodings,
// and accessors (*string(), string<>(), u8string()) export the string with
// various encodings.
//
// Some encodings are standardized; char16_t, char32_t and the u8string
// accessor and u8path constructor (and normal functions taking char8_t in
// C++20) convert from/to UTF-16, UTF-32 and UTF-8. wchar_t can be either
// UTF-16 or UTF-32 depending on the size of the wchar_t type, or can be
// left unimplemented.
//
// Plain char is implicitly UTF-8 on posix systems. On Windows, plain char
// is supposed to be in the same encoding as the platform's native file
// system APIs consumes in the functions that take narrow strings as path
// names.
#include "filesystem_include.h"
#include <type_traits>
#include <cassert>
#include "test_macros.h"
#include "filesystem_test_helper.h"
// Test conversion with strings that fit within the latin1 charset, that fit
// within one code point in UTF-16, and that can be expressible in certain
// one-byte code pages.
static void test_latin_unicode()
{
const char16_t u16str[] = { 0xe5, 0xe4, 0xf6, 0x00 };
const char32_t u32str[] = { 0xe5, 0xe4, 0xf6, 0x00 };
const char str[] = { char(0xc3), char(0xa5), char(0xc3), char(0xa4), char(0xc3), char(0xb6), 0x00 }; // UTF8, in a regular char string
#if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t)
const char8_t u8str[] = { 0xc3, 0xa5, 0xc3, 0xa4, 0xc3, 0xb6, 0x00 };
#else
const char u8str[] = { char(0xc3), char(0xa5), char(0xc3), char(0xa4), char(0xc3), char(0xb6), 0x00 };
#endif
#ifndef TEST_HAS_NO_WIDE_CHARACTERS
const wchar_t wstr[] = { 0xe5, 0xe4, 0xf6, 0x00 };
#endif
// Test well-defined conversion between UTF-8, UTF-16 and UTF-32
{
const fs::path p(u16str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.string<char16_t>() == u16str);
assert(p.string<char32_t>() == u32str);
}
{
const fs::path p(u32str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.string<char16_t>() == u16str);
assert(p.string<char32_t>() == u32str);
}
{
const fs::path p = fs::u8path(str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.string<char16_t>() == u16str);
assert(p.string<char32_t>() == u32str);
}
#if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t)
{
// In C++20, the path constructor can unambiguously handle UTF-8 input,
// even if the plain char constructor would treat it as something else.
const fs::path p(u8str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.string<char8_t>() == u8str);
assert(p.string<char16_t>() == u16str);
assert(p.string<char32_t>() == u32str);
}
// Check reading various inputs with string<char8_t>()
{
const fs::path p(u16str);
assert(p.string<char8_t>() == u8str);
}
{
const fs::path p(u32str);
assert(p.string<char8_t>() == u8str);
}
{
const fs::path p = fs::u8path(str);
assert(p.string<char8_t>() == u8str);
}
#endif
#ifndef TEST_HAS_NO_WIDE_CHARACTERS
// Test conversion to/from wchar_t.
{
const fs::path p(u16str);
assert(p.wstring() == wstr);
assert(p.string<wchar_t>() == wstr);
}
{
const fs::path p = fs::u8path(str);
assert(p.wstring() == wstr);
assert(p.string<wchar_t>() == wstr);
}
{
const fs::path p(wstr);
assert(p.wstring() == wstr);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.string<wchar_t>() == wstr);
}
#endif // TEST_HAS_NO_WIDE_CHARACTERS
#ifndef _WIN32
// Test conversion to/from regular char-based string. On POSIX, this
// is implied to convert to/from UTF-8.
{
const fs::path p(str);
assert(p.string() == str);
assert(p.u16string() == u16str);
assert(p.string<char>() == str);
}
{
const fs::path p(u16str);
assert(p.string() == str);
assert(p.string<char>() == str);
}
#else
// On windows, the narrow char-based input/output is supposed to be
// in the charset that narrow file IO APIs use. This can either be the
// current active code page (ACP) or the OEM code page, exposed by
// the AreFileApisANSI() function, and settable with SetFileApisToANSI() and
// SetFileApisToOEM(). We can't set which codepage is active within
// the process, but for some specific known ones, we can check if they
// behave as expected.
SetFileApisToANSI();
if (GetACP() == 1252) {
const char latin1[] = { char(0xe5), char(0xe4), char(0xf6), 0x00 };
{
const fs::path p(wstr);
assert(p.string() == latin1);
assert(p.string<char>() == latin1);
}
{
const fs::path p(latin1);
assert(p.string() == latin1);
assert(p.wstring() == wstr);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.string<char>() == latin1);
assert(p.string<wchar_t>() == wstr);
}
}
SetFileApisToOEM();
if (GetOEMCP() == 850 || GetOEMCP() == 437) {
// These chars are identical in both CP 850 and 437
const char cp850[] = { char(0x86), char(0x84), char(0x94), 0x00 };
{
const fs::path p(wstr);
assert(p.string() == cp850);
assert(p.string<char>() == cp850);
}
{
const fs::path p(cp850);
assert(p.string() == cp850);
assert(p.wstring() == wstr);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.string<char>() == cp850);
assert(p.string<wchar_t>() == wstr);
}
}
#endif
}
// Test conversion with strings that don't fit within one UTF-16 code point.
// Here, wchar_t can be either UTF-16 or UTF-32 depending on the size on the
// particular platform.
static void test_wide_unicode()
{
const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 };
const char32_t u32str[] = { 0x10437, 0x00 };
#if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t)
const char8_t u8str[] = { 0xf0, 0x90, 0x90, 0xb7, 0x00 };
#else
const char u8str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 };
#endif
const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 };
{
const fs::path p = fs::u8path(str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
}
{
const fs::path p(u16str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
}
{
const fs::path p(u32str);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
}
#if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
# if __SIZEOF_WCHAR_T__ == 2
const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 };
# else
const wchar_t wstr[] = { 0x10437, 0x00 };
# endif
// Test conversion to/from wchar_t.
{
const fs::path p = fs::u8path(str);
assert(p.wstring() == wstr);
}
{
const fs::path p(u16str);
assert(p.wstring() == wstr);
}
{
const fs::path p(u32str);
assert(p.wstring() == wstr);
}
{
const fs::path p(wstr);
assert(p.u8string() == u8str);
assert(p.u16string() == u16str);
assert(p.u32string() == u32str);
assert(p.wstring() == wstr);
}
#endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
}
// Test appending paths in different encodings.
static void test_append()
{
const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 };
const char32_t u32str[] = { 0x10437, 0x00 };
const char32_t u32ref[] = { 0x10437, fs::path::preferred_separator, 0x10437, fs::path::preferred_separator, 0x10437, 0x00 };
const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 };
{
fs::path p = fs::u8path(str) / u16str / u32str;
assert(p.u32string() == u32ref);
p = fs::u8path(str).append(u16str).append(u32str);
assert(p.u32string() == u32ref);
p = fs::u8path(str);
p /= u16str;
p /= u32str;
assert(p.u32string() == u32ref);
}
#if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
# if __SIZEOF_WCHAR_T__ == 2
const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 };
# else
const wchar_t wstr[] = { 0x10437, 0x00 };
# endif
// Test conversion from wchar_t.
{
fs::path p = fs::path(u16str) / wstr / u32str;
assert(p.u32string() == u32ref);
p = fs::path(u16str).append(wstr).append(u32str);
assert(p.u32string() == u32ref);
p = fs::path(u16str);
p /= wstr;
p /= u32str;
assert(p.u32string() == u32ref);
}
#endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
}
static void test_concat()
{
const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 };
const char32_t u32str[] = { 0x10437, 0x00 };
const char32_t u32ref[] = { 0x10437, 0x10437, 0x10437, 0x00 };
const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 };
{
fs::path p = fs::u8path(str);
p += u16str;
p += u32str;
assert(p.u32string() == u32ref);
p = fs::u8path(str).concat(u16str).concat(u32str);
assert(p.u32string() == u32ref);
}
#if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
# if __SIZEOF_WCHAR_T__ == 2
const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 };
# else
const wchar_t wstr[] = { 0x10437, 0x00 };
# endif
// Test conversion from wchar_t.
{
fs::path p = fs::path(u16str);
p += wstr;
p += u32str;
assert(p.u32string() == u32ref);
p = fs::path(u16str).concat(wstr).concat(u32str);
assert(p.u32string() == u32ref);
}
#endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__)
}
static void test_append_concat_narrow()
{
const char16_t u16str[] = { 0xe5, 0x00 };
const char32_t u32ref_append[] = { 0xe5, fs::path::preferred_separator, 0xe5, 0x00 };
const char32_t u32ref_concat[] = { 0xe5, 0xe5, 0x00 };
#if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t)
{
const char8_t u8str[] = { 0xc3, 0xa5, 0x00 };
// In C++20, appends of a char8_t string is unambiguously treated as
// UTF-8.
fs::path p = fs::path(u16str) / u8str;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).append(u8str);
assert(p.u32string() == u32ref_append);
p = fs::path(u16str);
p /= u8str;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).concat(u8str);
assert(p.u32string() == u32ref_concat);
p = fs::path(u16str);
p += u8str;
assert(p.u32string() == u32ref_concat);
}
#endif
#ifndef _WIN32
// Test appending a regular char-based string. On POSIX, this
// is implied to convert to/from UTF-8.
{
const char str[] = { char(0xc3), char(0xa5), 0x00 }; // UTF8, in a regular char string
fs::path p = fs::path(u16str) / str;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).append(str);
assert(p.u32string() == u32ref_append);
p = fs::path(u16str);
p /= str;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).concat(str);
assert(p.u32string() == u32ref_concat);
p = fs::path(u16str);
p += str;
assert(p.u32string() == u32ref_concat);
}
#else
SetFileApisToANSI();
if (GetACP() == 1252) {
const char latin1[] = { char(0xe5), 0x00 };
fs::path p = fs::path(u16str) / latin1;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).append(latin1);
assert(p.u32string() == u32ref_append);
p = fs::path(u16str);
p /= latin1;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).concat(latin1);
assert(p.u32string() == u32ref_concat);
p = fs::path(u16str);
p += latin1;
assert(p.u32string() == u32ref_concat);
}
SetFileApisToOEM();
if (GetOEMCP() == 850 || GetOEMCP() == 437) {
// This chars is identical in both CP 850 and 437
const char cp850[] = { char(0x86), 0x00 };
fs::path p = fs::path(u16str) / cp850;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).append(cp850);
assert(p.u32string() == u32ref_append);
p = fs::path(u16str);
p /= cp850;
assert(p.u32string() == u32ref_append);
p = fs::path(u16str).concat(cp850);
assert(p.u32string() == u32ref_concat);
p = fs::path(u16str);
p += cp850;
assert(p.u32string() == u32ref_concat);
}
#endif
}
int main(int, char**)
{
test_latin_unicode();
test_wide_unicode();
test_append();
test_concat();
test_append_concat_narrow();
return 0;
}
|