summaryrefslogtreecommitdiff
path: root/libc/src/string/memory_utils/op_generic.h
blob: 663f42809ecc956d06fd85778547688fdda32e59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===-- Generic implementation of memory function building blocks ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides generic C++ building blocks.
// Depending on the requested size, the block operation uses unsigned integral
// types, vector types or an array of the type with the maximum size.
//
// The maximum size is passed as a template argument. For instance, on x86
// platforms that only supports integral types the maximum size would be 8
// (corresponding to uint64_t). On this platform if we request the size 32, this
// would be treated as a cpp::array<uint64_t, 4>.
//
// On the other hand, if the platform is x86 with support for AVX the maximum
// size is 32 and the operation can be handled with a single native operation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H
#define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H

#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/common.h"
#include "src/__support/endian.h"
#include "src/__support/macros/optimization.h"
#include "src/string/memory_utils/op_builtin.h"
#include "src/string/memory_utils/utils.h"

#include <stdint.h>

namespace __llvm_libc {
// Compiler types using the vector attributes.
using uint8x1_t = uint8_t __attribute__((__vector_size__(1)));
using uint8x2_t = uint8_t __attribute__((__vector_size__(2)));
using uint8x4_t = uint8_t __attribute__((__vector_size__(4)));
using uint8x8_t = uint8_t __attribute__((__vector_size__(8)));
using uint8x16_t = uint8_t __attribute__((__vector_size__(16)));
using uint8x32_t = uint8_t __attribute__((__vector_size__(32)));
using uint8x64_t = uint8_t __attribute__((__vector_size__(64)));
} // namespace __llvm_libc

namespace __llvm_libc::generic {
// We accept three types of values as elements for generic operations:
// - scalar : unsigned integral types
// - vector : compiler types using the vector attributes
// - array  : a cpp::array<T, N> where T is itself either a scalar or a vector.
// The following traits help discriminate between these cases.
template <typename T>
constexpr bool is_scalar_v = cpp::is_integral_v<T> && cpp::is_unsigned_v<T>;

template <typename T>
constexpr bool is_vector_v =
    cpp::details::is_unqualified_any_of<T, uint8x1_t, uint8x2_t, uint8x4_t,
                                        uint8x8_t, uint8x16_t, uint8x32_t,
                                        uint8x64_t>();

template <class T> struct is_array : cpp::false_type {};
template <class T, size_t N> struct is_array<cpp::array<T, N>> {
  static constexpr bool value = is_scalar_v<T> || is_vector_v<T>;
};
template <typename T> constexpr bool is_array_v = is_array<T>::value;

template <typename T>
constexpr bool is_element_type_v =
    is_scalar_v<T> || is_vector_v<T> || is_array_v<T>;

//
template <class T> struct array_size {};
template <class T, size_t N>
struct array_size<cpp::array<T, N>> : cpp::integral_constant<size_t, N> {};
template <typename T> constexpr size_t array_size_v = array_size<T>::value;

// Generic operations for the above type categories.

template <typename T> T load(CPtr src) {
  static_assert(is_element_type_v<T>);
  if constexpr (is_scalar_v<T> || is_vector_v<T>) {
    return ::__llvm_libc::load<T>(src);
  } else if constexpr (is_array_v<T>) {
    using value_type = typename T::value_type;
    T Value;
    for (size_t I = 0; I < array_size_v<T>; ++I)
      Value[I] = load<value_type>(src + (I * sizeof(value_type)));
    return Value;
  }
}

template <typename T> void store(Ptr dst, T value) {
  static_assert(is_element_type_v<T>);
  if constexpr (is_scalar_v<T> || is_vector_v<T>) {
    ::__llvm_libc::store<T>(dst, value);
  } else if constexpr (is_array_v<T>) {
    using value_type = typename T::value_type;
    for (size_t I = 0; I < array_size_v<T>; ++I)
      store<value_type>(dst + (I * sizeof(value_type)), value[I]);
  }
}

template <typename T> T splat(uint8_t value) {
  static_assert(is_scalar_v<T> || is_vector_v<T>);
  if constexpr (is_scalar_v<T>)
    return T(~0) / T(0xFF) * T(value);
  else if constexpr (is_vector_v<T>) {
    T Out;
    // This for loop is optimized out for vector types.
    for (size_t i = 0; i < sizeof(T); ++i)
      Out[i] = value;
    return Out;
  }
}

static_assert((UINTPTR_MAX == 4294967295U) ||
                  (UINTPTR_MAX == 18446744073709551615UL),
              "We currently only support 32- or 64-bit platforms");

#if defined(LIBC_TARGET_ARCH_IS_X86_64) || defined(LIBC_TARGET_ARCH_IS_AARCH64)
#define LLVM_LIBC_HAS_UINT64
#endif

namespace details {
// Checks that each type is sorted in strictly decreasing order of size.
// i.e. sizeof(First) > sizeof(Second) > ... > sizeof(Last)
template <typename First> constexpr bool is_decreasing_size() {
  return sizeof(First) == 1;
}
template <typename First, typename Second, typename... Next>
constexpr bool is_decreasing_size() {
  if constexpr (sizeof...(Next) > 0)
    return sizeof(First) > sizeof(Second) && is_decreasing_size<Next...>();
  else
    return sizeof(First) > sizeof(Second) && is_decreasing_size<Second>();
}

template <size_t Size, typename... Ts> struct Largest;
template <size_t Size> struct Largest<Size> : cpp::type_identity<uint8_t> {};
template <size_t Size, typename T, typename... Ts>
struct Largest<Size, T, Ts...> {
  using next = Largest<Size, Ts...>;
  using type = cpp::conditional_t<(Size >= sizeof(T)), T, typename next::type>;
};

} // namespace details

// 'SupportedTypes' holds a list of natively supported types.
// The types are instanciations of ScalarType or VectorType.
// They should be ordered in strictly decreasing order.
// The 'TypeFor<Size>' type retrieves is the largest supported type that can
// handle 'Size' bytes. e.g.
//
// using ST = SupportedTypes<ScalarType<uint16_t>, ScalarType<uint8_t>>;
// using Type = ST::TypeFor<10>;
// static_assert(cpp:is_same_v<Type, ScalarType<uint16_t>>);

template <typename First, typename... Ts> struct SupportedTypes {
  static_assert(details::is_decreasing_size<First, Ts...>());

  using MaxType = First;

  template <size_t Size>
  using TypeFor = typename details::Largest<Size, First, Ts...>::type;
};

// Map from sizes to structures offering static load, store and splat methods.
// Note: On platforms lacking vector support, we use the ArrayType below and
// decompose the operation in smaller pieces.

// Lists a generic native types to use for Memset and Memmove operations.
// TODO: Inject the native types within Memset and Memmove depending on the
// target architectures and derive MaxSize from it.
using NativeTypeMap = SupportedTypes<uint8x64_t, //
                                     uint8x32_t, //
                                     uint8x16_t,
#if defined(LLVM_LIBC_HAS_UINT64)
                                     uint64_t, // Not available on 32bit
#endif
                                     uint32_t, //
                                     uint16_t, //
                                     uint8_t>;

namespace details {

// Helper to test if a type is void.
template <typename T> inline constexpr bool is_void_v = cpp::is_same_v<T, void>;

// In case the 'Size' is not supported we can fall back to a sequence of smaller
// operations using the largest natively supported type.
template <size_t Size, size_t MaxSize> static constexpr bool useArrayType() {
  return (Size > MaxSize) && ((Size % MaxSize) == 0) &&
         !details::is_void_v<NativeTypeMap::TypeFor<MaxSize>>;
}

// Compute the type to handle an operation of 'Size' bytes knowing that the
// underlying platform only support native types up to MaxSize bytes.
template <size_t Size, size_t MaxSize>
using getTypeFor = cpp::conditional_t<
    useArrayType<Size, MaxSize>(),
    cpp::array<NativeTypeMap::TypeFor<MaxSize>, Size / MaxSize>,
    NativeTypeMap::TypeFor<Size>>;

} // namespace details

///////////////////////////////////////////////////////////////////////////////
// Memset
///////////////////////////////////////////////////////////////////////////////

template <typename T> struct Memset {
  static constexpr size_t SIZE = sizeof(T);

  LIBC_INLINE static void block(Ptr dst, uint8_t value) {
    static_assert(is_element_type_v<T>);
    if constexpr (is_scalar_v<T> || is_vector_v<T>) {
      store<T>(dst, splat<T>(value));
    } else if constexpr (is_array_v<T>) {
      using value_type = typename T::value_type;
      const auto Splat = splat<value_type>(value);
      for (size_t I = 0; I < array_size_v<T>; ++I)
        store<value_type>(dst + (I * sizeof(value_type)), Splat);
    }
  }

  LIBC_INLINE static void tail(Ptr dst, uint8_t value, size_t count) {
    block(dst + count - SIZE, value);
  }

  LIBC_INLINE static void head_tail(Ptr dst, uint8_t value, size_t count) {
    block(dst, value);
    tail(dst, value, count);
  }

  LIBC_INLINE static void loop_and_tail(Ptr dst, uint8_t value, size_t count) {
    static_assert(SIZE > 1, "a loop of size 1 does not need tail");
    size_t offset = 0;
    do {
      block(dst + offset, value);
      offset += SIZE;
    } while (offset < count - SIZE);
    tail(dst, value, count);
  }
};

template <typename T, typename... TS> struct MemsetSequence {
  static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS));
  LIBC_INLINE static void block(Ptr dst, uint8_t value) {
    Memset<T>::block(dst, value);
    if constexpr (sizeof...(TS) > 0) {
      return MemsetSequence<TS...>::block(dst + sizeof(T), value);
    }
  }
};

///////////////////////////////////////////////////////////////////////////////
// Memmove
///////////////////////////////////////////////////////////////////////////////

template <typename T> struct Memmove {
  static constexpr size_t SIZE = sizeof(T);

  LIBC_INLINE static void block(Ptr dst, CPtr src) {
    store<T>(dst, load<T>(src));
  }

  LIBC_INLINE static void head_tail(Ptr dst, CPtr src, size_t count) {
    const size_t offset = count - SIZE;
    // The load and store operations can be performed in any order as long as
    // they are not interleaved. More investigations are needed to determine
    // the best order.
    const auto head = load<T>(src);
    const auto tail = load<T>(src + offset);
    store<T>(dst, head);
    store<T>(dst + offset, tail);
  }

  // Align forward suitable when dst < src. The alignment is performed with
  // an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
  //
  // e.g. Moving two bytes forward, we make sure src is aligned.
  // [  |       |       |       |      ]
  // [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
  // [____LLLLLLLL_____________________]
  // [___________LLLLLLLA______________]
  // [_SSSSSSSS________________________]
  // [________SSSSSSSS_________________]
  //
  // e.g. Moving two bytes forward, we make sure dst is aligned.
  // [  |       |       |       |      ]
  // [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
  // [____LLLLLLLL_____________________]
  // [______LLLLLLLL___________________]
  // [_SSSSSSSS________________________]
  // [___SSSSSSSA______________________]
  template <Arg AlignOn>
  LIBC_INLINE static void align_forward(Ptr &dst, CPtr &src, size_t &count) {
    Ptr prev_dst = dst;
    CPtr prev_src = src;
    size_t prev_count = count;
    align_to_next_boundary<SIZE, AlignOn>(dst, src, count);
    adjust(SIZE, dst, src, count);
    head_tail(prev_dst, prev_src, prev_count - count);
  }

  // Align backward suitable when dst > src. The alignment is performed with
  // an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
  //
  // e.g. Moving two bytes backward, we make sure src is aligned.
  // [  |       |       |       |      ]
  // [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
  // [ _________________ALLLLLLL_______]
  // [ ___________________LLLLLLLL_____]
  // [____________________SSSSSSSS_____]
  // [______________________SSSSSSSS___]
  //
  // e.g. Moving two bytes backward, we make sure dst is aligned.
  // [  |       |       |       |      ]
  // [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
  // [ _______________LLLLLLLL_________]
  // [ ___________________LLLLLLLL_____]
  // [__________________ASSSSSSS_______]
  // [______________________SSSSSSSS___]
  template <Arg AlignOn>
  LIBC_INLINE static void align_backward(Ptr &dst, CPtr &src, size_t &count) {
    Ptr headtail_dst = dst + count;
    CPtr headtail_src = src + count;
    size_t headtail_size = 0;
    align_to_next_boundary<SIZE, AlignOn>(headtail_dst, headtail_src,
                                          headtail_size);
    adjust(-2 * SIZE, headtail_dst, headtail_src, headtail_size);
    head_tail(headtail_dst, headtail_src, headtail_size);
    count -= headtail_size;
  }

  // Move forward suitable when dst < src. We load the tail bytes before
  // handling the loop.
  //
  // e.g. Moving two bytes
  // [   |       |       |       |       |]
  // [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
  // [_________________________LLLLLLLL___]
  // [___LLLLLLLL_________________________]
  // [_SSSSSSSS___________________________]
  // [___________LLLLLLLL_________________]
  // [_________SSSSSSSS___________________]
  // [___________________LLLLLLLL_________]
  // [_________________SSSSSSSS___________]
  // [_______________________SSSSSSSS_____]
  LIBC_INLINE static void loop_and_tail_forward(Ptr dst, CPtr src,
                                                size_t count) {
    static_assert(SIZE > 1, "a loop of size 1 does not need tail");
    const size_t tail_offset = count - SIZE;
    const auto tail_value = load<T>(src + tail_offset);
    size_t offset = 0;
    LIBC_LOOP_NOUNROLL
    do {
      block(dst + offset, src + offset);
      offset += SIZE;
    } while (offset < count - SIZE);
    store<T>(dst + tail_offset, tail_value);
  }

  // Move backward suitable when dst > src. We load the head bytes before
  // handling the loop.
  //
  // e.g. Moving two bytes
  // [   |       |       |       |       |]
  // [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
  // [___LLLLLLLL_________________________]
  // [_________________________LLLLLLLL___]
  // [___________________________SSSSSSSS_]
  // [_________________LLLLLLLL___________]
  // [___________________SSSSSSSS_________]
  // [_________LLLLLLLL___________________]
  // [___________SSSSSSSS_________________]
  // [_____SSSSSSSS_______________________]
  LIBC_INLINE static void loop_and_tail_backward(Ptr dst, CPtr src,
                                                 size_t count) {
    static_assert(SIZE > 1, "a loop of size 1 does not need tail");
    const auto head_value = load<T>(src);
    ptrdiff_t offset = count - SIZE;
    LIBC_LOOP_NOUNROLL
    do {
      block(dst + offset, src + offset);
      offset -= SIZE;
    } while (offset >= 0);
    store<T>(dst, head_value);
  }
};

///////////////////////////////////////////////////////////////////////////////
// Bcmp
///////////////////////////////////////////////////////////////////////////////
template <size_t Size> struct Bcmp {
  static constexpr size_t SIZE = Size;
  static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64)
                                        ? sizeof(uint64_t)
                                        : sizeof(uint32_t);

  template <typename T> LIBC_INLINE static uint32_t load_xor(CPtr p1, CPtr p2) {
    static_assert(sizeof(T) <= sizeof(uint32_t));
    return load<T>(p1) ^ load<T>(p2);
  }

  template <typename T>
  LIBC_INLINE static uint32_t load_not_equal(CPtr p1, CPtr p2) {
    return load<T>(p1) != load<T>(p2);
  }

  LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) {
    if constexpr (Size == 1) {
      return load_xor<uint8_t>(p1, p2);
    } else if constexpr (Size == 2) {
      return load_xor<uint16_t>(p1, p2);
    } else if constexpr (Size == 4) {
      return load_xor<uint32_t>(p1, p2);
    } else if constexpr (Size == 8) {
      return load_not_equal<uint64_t>(p1, p2);
    } else if constexpr (details::useArrayType<Size, MaxSize>()) {
      for (size_t offset = 0; offset < Size; offset += MaxSize)
        if (auto value = Bcmp<MaxSize>::block(p1 + offset, p2 + offset))
          return value;
    } else {
      deferred_static_assert("Unimplemented Size");
    }
    return BcmpReturnType::ZERO();
  }

  LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
    return block(p1 + count - SIZE, p2 + count - SIZE);
  }

  LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) {
    return block(p1, p2) | tail(p1, p2, count);
  }

  LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
                                                  size_t count) {
    static_assert(Size > 1, "a loop of size 1 does not need tail");
    size_t offset = 0;
    do {
      if (auto value = block(p1 + offset, p2 + offset))
        return value;
      offset += SIZE;
    } while (offset < count - SIZE);
    return tail(p1, p2, count);
  }
};

///////////////////////////////////////////////////////////////////////////////
// Memcmp
///////////////////////////////////////////////////////////////////////////////
template <size_t Size> struct Memcmp {
  static constexpr size_t SIZE = Size;
  static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64)
                                        ? sizeof(uint64_t)
                                        : sizeof(uint32_t);

  template <typename T> LIBC_INLINE static T load_be(CPtr ptr) {
    return Endian::to_big_endian(load<T>(ptr));
  }

  template <typename T>
  LIBC_INLINE static MemcmpReturnType load_be_diff(CPtr p1, CPtr p2) {
    return load_be<T>(p1) - load_be<T>(p2);
  }

  template <typename T>
  LIBC_INLINE static MemcmpReturnType load_be_cmp(CPtr p1, CPtr p2) {
    const auto la = load_be<T>(p1);
    const auto lb = load_be<T>(p2);
    return la > lb ? 1 : la < lb ? -1 : 0;
  }

  LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) {
    if constexpr (Size == 1) {
      return load_be_diff<uint8_t>(p1, p2);
    } else if constexpr (Size == 2) {
      return load_be_diff<uint16_t>(p1, p2);
    } else if constexpr (Size == 4) {
      return load_be_cmp<uint32_t>(p1, p2);
    } else if constexpr (Size == 8) {
      return load_be_cmp<uint64_t>(p1, p2);
    } else if constexpr (details::useArrayType<Size, MaxSize>()) {
      for (size_t offset = 0; offset < Size; offset += MaxSize)
        if (Bcmp<MaxSize>::block(p1 + offset, p2 + offset))
          return Memcmp<MaxSize>::block(p1 + offset, p2 + offset);
      return MemcmpReturnType::ZERO();
    } else if constexpr (Size == 3) {
      if (auto value = Memcmp<2>::block(p1, p2))
        return value;
      return Memcmp<1>::block(p1 + 2, p2 + 2);
    } else {
      deferred_static_assert("Unimplemented Size");
    }
  }

  LIBC_INLINE static MemcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
    return block(p1 + count - SIZE, p2 + count - SIZE);
  }

  LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2,
                                                size_t count) {
    if (auto value = block(p1, p2))
      return value;
    return tail(p1, p2, count);
  }

  LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
                                                    size_t count) {
    static_assert(Size > 1, "a loop of size 1 does not need tail");
    size_t offset = 0;
    do {
      if (auto value = block(p1 + offset, p2 + offset))
        return value;
      offset += SIZE;
    } while (offset < count - SIZE);
    return tail(p1, p2, count);
  }
};

} // namespace __llvm_libc::generic

#endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H