1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
.. _log_algorithm:
========================
Log/Log10/Log2 Algorithm
========================
.. default-role:: math
In this short note, we will discuss in detail about the computation of
:math:`\log(x)` function, with double precision inputs, in particular, the range
reduction steps and error analysis. The algorithm is broken down into 2 main
phases as follow:
1. Fast phase:
a. Range reduction
b. Polynomial approximation
c. Ziv's test
2. Accurate phase (if Ziv's test failed):
a. Further range reduction
b. Polynomial approximation
Fast phase
==========
Range reduction
---------------
Let `x = 2^{e_x} (1 + m_x)` be a normalized double precision number, in which
`-1074 \leq e_x \leq 1022` and `0 \leq m_x < 1` such that
`2^{52} m_x \in \mathbb{Z}`.
Then from the properties of logarithm:
.. math::
\log(x) &= \log\left( 2^{e_x} (1 + m_x) \right) \\
&= \log\left( 2^{e_x} \right) + \log(1 + m_x) \\
&= e_x \log(2) + \log(1 + m_x)
the computation of `\log(x)` can be reduced to:
1. compute the product of `e_x` and `\log(2)`,
2. compute `\log(1 + m_x)` for `0 \leq m_x < 1`,
3. add step 1 and 2.
To compute `\log(1 + m_x)` in step 2, we can reduce the range further by finding
`r > 0` such that:
.. math::
| r(1 + m_x) - 1 | < C \quad \quad \text{(R1)}
for small `0 < C < 1`. Then if we let `u = r(1 + m_x) - 1`, `|u| < C`:
.. math::
\log(1 + m_x) &= \log \left( \frac{r (1 + m_x)}{r} \right) \\
&= \log(r (1 + m_x) ) - \log(r) \\
&= \log(1 + u) - \log(r)
and step 2 can be computed with:
a. extract `r` and `-\log(r)` from look-up tables,
b. compute the reduced argument `u = r(1 + m_x) - 1`,
c. compute `\log(1 + u)` by polynomial approximation or further range reduction,
d. add step a and step c results.
How to derive `r`
-----------------
For an efficient implementation, we would like to use the first `M` significant
bits of `m_x` to look up for `r`. In particular, we would like to find a value
of `r` that works for all `m_x` satisfying:
.. math::
k 2^{-M} \leq m_x < (k + 1) 2^{-M} \quad \text{for some} \quad
k = 0..2^{M} - 1. \quad\quad \text{(M1)}
Let `r = 1 + s`, then `u` can be expressed in terms of `s` as:
.. math::
u &= r(1 + m_x) - 1 \\
&= (1 + s)(1 + m_x) - 1 \\
&= s m_x + s + m_x &\quad\quad \text{(U1)} \\
&= s (1 + m_x) + m_x \\
&= m_x (1 + s) + s.
From the condition `\text{(R1)}`, `s` is bounded by:
.. math::
\frac{-C - m_x}{1 + m_x} < s < \frac{C - m_x}{1 + m_x} \quad\quad \text{(S1)}.
Since our reduction constant `s` must work for all `m_x` in the interval
`I = \{ v: k 2^{-M} \leq v < (k + 1) 2^{-M} \}`, `s` is bounded by:
.. math::
\sup_{v \in I} \frac{-C - v}{1 + v} < s < \inf_{v \in I} \frac{C - v}{1 + v}
For a fixed constant `|c| < 1`, let `f(v) = \frac{c - v}{1 + v}`, then its
derivative is:
.. math::
f'(v) = \frac{(-1)(1 + v) - (1)(c - v)}{(1 + v)^2} = \frac{-1 - c}{(1 + v)^2}.
Since `|c| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
.. math::
\sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
= f \left( k 2^{-M} \right) \\
\inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
= f \left( (k + 1) 2^{-M} \right)
Hence we have the following bound on `s`:
.. math::
\frac{-C - k 2^{-M}}{1 + k 2^{-M}} < s \leq
\frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}. \quad\quad \text{(S2)}
In order for `s` to exist, we need that:
.. math::
\frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} >
\frac{-C - k 2^{-M}}{1 + k 2^{-M}}
which is equivalent to:
.. math::
\quad\quad 2C - 2^{-M} + (2k + 1) 2^{-M} C > 0
\iff C > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \quad\quad \text{(C1)}.
Consider the case `C = 2^{-N}`. Since `0 \leq k \leq 2^M - 1,` the right hand
side of `\text{(C1)}` is bounded by:
.. math::
2^{-M - 1} > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \geq
\frac{2^{-M - 1}}{1 + (2^{M + 1} - 1) 2^{-M - 1}} > 2^{-M - 2}.
Hence, from `\text{(C1)}`, being an exact power of 2, `C = 2^{-N}` is bounded below
by:
.. math::
C = 2^{-N} \geq 2^{-M - 1}.
To make the range reduction efficient, we will want to minimize `C` (maximize
`N`) while keeping the required precision of `s`(`r`) as low as possible. And
for that, we will consider the following two cases: `N = M + 1` and `N = M`.
Case 1 - `N = M + 1`
~~~~~~~~~~~~~~~~~~~~
When `N = M + 1`, `\text{(S2)}` becomes:
.. math::
\frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} < s <
\frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}.
\quad\quad \text{(S2')}
This is an interval of length:
.. math::
l &= \frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} -
\frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} \\
&= \frac{(2k + 1)2^{-2M - 1}}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
\quad\quad \text{(L1)}
As a function of `k`, the length `l` has its derivative with respect to `k`:
.. math::
\frac{dl}{dk} =
\frac{2^{2M + 1} - 2k(k + 1) - 1}
{2^{4M}(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
which is always positive for `0 \leq k \leq 2^M - 1`. So for all
`0 < k < 2^{-M}` (`k = 0` will be treated differently in edge cases), and for
`M > 2`, `l` is bounded below by:
.. math::
l > 2^{-2M}.
It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-2M}`.
And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
.. math::
\operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
&= 2^{-2M} \operatorname{ulp}(m_x).
Since:
.. math::
|u| < C = 2^{-N} = 2^{-M - 1},
Its required precision is:
.. math::
\operatorname{prec}(u) &= \log_2(2^{-M-1} / \operatorname{ulp}(u)) \\
&= \log_2(2^{M - 1} / \operatorname{ulp}(m_x)) \\
&= M - 1 - \log_2(\operatorname{ulp}(m_x)).
This means that in this case, we cannot restrict `u` to be exactly representable
in double precision for double precision input `x` with `M > 2`. Nonetheless,
for a reasonable value of `M`, we can have `u` exactly representable in double
precision for single precision input `x` (`\operatorname{ulp}(m_x) = 2^{-23}`)
such that `|u| < 2^{-M - 1}` using a look-up table of size `2^M`.
A particular formula for `s` can be derived from `\text{(S2')}` by the midpoint
formula:
.. math::
s &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \operatorname{midpoint}
\left(-\frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}},
\frac{2^{-M-1} - (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
\frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}} +
\frac{2^{-M - 1} + (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}
\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( \frac{
- \left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \\
&= - 2^{-2M} \operatorname{round}\left( \frac{
\left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3)}
The corresponding range and formula for `r = 1 + s` are:
.. math::
\frac{1 - 2^{-M - 1}}{1 + k 2^{-M}} < r \leq
\frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}
.. math::
r &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot
\operatorname{midpoint}\left( \frac{1 - 2^{-M - 1}}{1 + k 2^{-M}},
\frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
\frac{1 + 2^{-M-1}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M-1}}{1 + k 2^{-M}}
\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{
1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-2} }{(1 + k 2^{-M})
(1 + (k + 1) 2^{-M})} \right)
Case 1 - `N = M`
~~~~~~~~~~~~~~~~
When `N = M`, `\text{(S2)}` becomes:
.. math::
\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} < s < \frac{-k 2^{-M}}{1 + (k + 1) 2^{-M}}
\quad\quad \text{(S2")}
This is an interval of length:
.. math::
l &= \frac{- k 2^{-M}}{1 + (k + 1) 2^{-M}} -
\frac{- (k + 1) 2^{-M}}{1 + k 2^{-M}} \\
&= \frac{2^{-M} (1 + (2k + 1) 2^{-M})}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
\quad\quad \text{(L1')}
As a function of `k`, its derivative with respect to `k`:
.. math::
\frac{dl}{dk} =
-\frac{2^{-2M}(k(k + 1)2^{-M + 1} + 2^{-M} + 2k + 1)}
{(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
which is always negative for `0 \leq k \leq 2^M - 1`. So for `M > 1`, `l` is
bounded below by:
.. math::
l > \frac{2^{-M - 1} (3 - 2^{-M})}{2 - 2^{-M}} > 2^{-M - 1}.
It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-M-1}`.
And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
.. math::
\operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
&= 2^{-M - 1} \operatorname{ulp}(m_x).
Since:
.. math::
|u| < C = 2^{-N} = 2^{-M},
Its required precision is:
.. math::
\operatorname{prec}(u) &= \log_2(2^{-M} / \operatorname{ulp}(u)) \\
&= \log_2(2 / \operatorname{ulp}(m_x)) \\
&= 1 - \log_2(\operatorname{ulp}(m_x)).
Hence, for double precision `x`, `\operatorname{ulp}(m_x) = 2^{-52}`, and the
precision needed for `u` is `\operatorname{prec}(u) = 53`, i.e., `u` can be
exactly representable in double precision. And in this case, `s` can be
derived from `\text{(S2")}` by the midpoint formula:
.. math::
s &= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot
\operatorname{midpoint} \left(-\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}},
\frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} + \frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}
\right) \right) \\
&= -2^{-M - 1} \operatorname{round}\left( \frac{
(2k + 1) + (2k^2 + 2k + 1) 2^{-M} }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3')}
The corresponding range and formula for `r = 1 + s` are:
.. math::
\frac{1 - 2^{-M}}{1 + k 2^{-M}} < r \leq \frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}
.. math::
r &= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot
\operatorname{midpoint}\left( \frac{1 - 2^{-M}}{1 + k 2^{-M}},
\frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
\frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M}}{1 + k 2^{-M}}
\right) \right) \\
&= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{
1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-1} }{(1 + k 2^{-M})
(1 + (k + 1) 2^{-M})} \right)
Edge cases
----------
1. When `k = 0`, notice that:
.. math::
0 = k 2^{-N} \leq m_x < (k + 1) 2^{-N} = 2^{-N} = C,
so we can simply choose `r = 1` so that `\log(r) = 0` is exact, then `u = m_x`.
This will help reduce the accumulated errors when `m_x` is close to 0 while
maintaining the range reduction output's requirements.
2. When `k = 2^{N} - 1`, `\text{(S2)}` becomes:
.. math::
-\frac{1}{2} - \frac{C - 2^{-M-1}}{2 - 2^{-M}} <> s \leq
-\frac{1}{2} + \frac{C}{2}.
so when `C > 2^{-M - 1}` is a power of 2, we can always choose:
.. math::
s = -\frac{1}{2}, \quad \text{i.e.} \quad r = \frac{1}{2}.
This reduction works well to avoid catastropic cancellation happening when
`e_x = -1`.
This also works when `C = 2^{-M - 1}` if we relax the condition on `u` to
`|u| \leq C = 2^{-M-1}`.
Intermediate precision, and Ziv's test
--------------------------------------
In the fast phase, we want extra precision while performant, so we use
double-double precision for most intermediate computation steps, and employ Ziv
test to see if the result is accurate or not. In our case, the Ziv's test can
be described as follow:
1. Let `re = re.hi + re.lo` be the double-double output of the fast phase
computation.
2. Let `err` be an estimated upper bound of the errors of `re`.
3. If `\circ(re.hi + (re.lo - err)) == \circ(re.hi + (r.lo + err))` then the
result is correctly rounded to double precision for the current rounding mode
`\circ`. Otherwise, the accurate phase with extra precision is needed.
For an easy and cheap estimation of the error bound `err`, since the range
reduction step described above is accurate, the errors of the result:
.. math::
\log(x) &= e_x \log(2) - \log(r) + \log(1 + u) \\
&\approx e_x \log(2) - \log(r) + u P(u)
come from 2 parts:
1. the look-up part: `e_x \log(2) - \log(r)`
2. the polynomial approximation part: `u P(u)`
The errors of the first part can be computed with a single `\operatorname{fma}`
operation:
.. math::
err_1 = \operatorname{fma}(e_x, err(\log(2)), err(\log(r))),
and then combining with the errors of the second part for another
`\operatorname{fma}` operation:
.. math::
err = \operatorname{fma}(u, err(P), err_1)
Accurate phase
==============
Extending range reduction
-------------------------
Since the output `u = r(1 + m_x) - 1` of the fast phase's range reduction
is computed exactly, we can apply further range reduction steps by
using the following formula:
.. math::
u_{i + 1} = r_i(1 + u_i) - 1 = u_i \cdot r_i + (r_i - 1),
where `|u_i| < 2^{-N_i}` and `u_0 = u` is representable in double precision.
Let `s_i = r_i - 1`, then we can rewrite it as:
.. math::
u_{i + 1} &= (1 + s_i)(1 + u_i) - 1 \\
&= s_i u_i + u_i + s_i \\
&= u_i (1 + s_i) + s_i
&= s_i (1 + u_i) + u_i.
Then the bound on `u_{i + 1}` is translated to `s_i` as:
.. math::
\frac{-2^{-N_{i + 1}} - u_i}{1 + u_i} < s_i < \frac{2^{-N_{i + 1}} - u_i}{1 + u_i}.
Let say we divide the interval `[0, 2^-{N_i})` into `2^{M_i}` subintervals
evenly and use the index `k` such that:
.. math::
k 2^{-N_i - M_i} \leq u_i < (k + 1) 2^{-N_i - M_i},
to look-up for the reduction constant `s_{i, k}`. In other word, `k` is given
by the formula:
.. math::
k = \left\lfloor 2^{N_i + M_i} u_i \right\rfloor
Notice that our reduction constant `s_{i, k}` must work for all `u_i` in the
interval `I = \{ v: k 2^{-N_i - M_i} \leq v < (k + 1) 2^{-N_i - M_i} \}`,
so it is bounded by:
.. math::
\sup_{v \in I} \frac{-2^{-N_{i + 1}} - v}{1 + v} < s_{i, k} < \inf_{v \in I} \frac{2^{-N_{i + 1}} - v}{1 + v}
For a fixed constant `|C| < 1`, let `f(v) = \frac{C - v}{1 + v}`, then its derivative
is:
.. math::
f'(v) = \frac{(-1)(1 + v) - (1)(C - v)}{(1 + v)^2} = \frac{-1 - C}{(1 + v)^2}.
Since `|C| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
.. math::
\sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
= f \left( k 2^{-N_i - M_i} \right) \\
\inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
= f \left( (k + 1) 2^{-N_i - M_i} \right)
Hence we have the following bound on `s_{i, k}`:
.. math::
\frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} < s_{i, k}
\leq \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}}
This interval is of length:
.. math::
l &= \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}} -
\frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} \\
&= \frac{2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i}}
{(1 + k 2^{-N_i - M_i})(1 + (k + 1) 2^{-N_i -M_i})}
So in order to be able to find `s_{i, k}`, we need that:
.. math::
2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i} > 0
This give us the following bound on `N_{i + 1}`:
.. math::
N_{i + 1} \leq N_i + M_i + 1.
To make the range reduction effective, we will want to maximize `N_{i + 1}`, so
let consider the two cases: `N_{i + 1} = N_i + M_i + 1` and
`N_{i + 1} = N_i + M_i`.
The optimal choice to balance between maximizing `N_{i + 1}` and minimizing the
precision needed for `s_{i, k}` is:
.. math::
N_{i + 1} = N_i + M_i,
and in this case, the optimal `\operatorname{ulp}(s_{i, k})` is:
.. math::
\operatorname{ulp}(s_{i, k}) = 2^{-N_i - M_i}
and the corresponding `\operatorname{ulp}(u_{i + 1})` is:
.. math::
\operatorname{ulp}(u_{i + 1}) &= \operatorname{ulp}(u_i) \operatorname{ulp}(s_{i, k}) \\
&= \operatorname{ulp}(u_i) \cdot 2^{-N_i - M_i} \\
&= \operatorname{ulp}(u_0) \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i} \\
&= 2^{-N_0 - 53} \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i}
Since `|u_{i + 1}| < 2^{-N_{i + 1}} = 2^{-N_0 - M_1 - ... -M_i}`, the precision
of `u_{i + 1}` is:
.. math::
\operatorname{prec}(u_{i + 1}) &= (N_0 + 53) + (N_0 + M_0) + \cdots +
(N_0 + M_0 + \cdots + M_i) - (N_0 + M_0 + \cdots + M_i) \\
&= (i + 1) N_0 + i M_0 + (i - 1) M_1 + \cdots + M_{i - 1} + 53
If we choose to have the same `M_0 = M_1 = \cdots = M_i = M`, this can be
simplified to:
.. math::
\operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53.
We summarize the precision analysis for extending the range reduction in the
table below:
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
| `N_0` | `M` | No. steps | Table size | Output bound | ulp(`s_{i, k}`) | prec(`u_{i + 1}`) |
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
| 7 | 4 | 1 | 32 | `2^{-11}` | `2^{-12}` | 60 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 2 | 64 | `2^{-15}` | `2^{-16}` | 71 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 3 | 96 | `2^{-19}` | `2^{-20}` | 86 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 128 | `2^{-23}` | `2^{-24}` | 105 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 5 | 160 | `2^{-27}` | `2^{-28}` | 128 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 6 | 192 | `2^{-31}` | `2^{-32}` | 155 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 5 | 3 | 192 | `2^{-22}` | `2^{-23}` | 89 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 256 | `2^{-27}` | `2^{-28}` | 111 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 5 | 320 | `2^{-32}` | `2^{-33}` | 138 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 6 | 384 | `2^{-37}` | `2^{-38}` | 170 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 6 | 3 | 384 | `2^{-25}` | `2^{-26}` | 92 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 512 | `2^{-31}` | `2^{-32}` | 117 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 7 | 1 | 256 | `2^{-24}` | `2^{-15}` | 60 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 2 | 512 | `2^{-21}` | `2^{-22}` | 74 |
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
where:
- Number of steps = `i + 1`
- Table size = `(i + 1) 2^{M + 1}`
- Output bound = `2^{-N_{i + 1}} = 2^{-N_0 - (i + 1) M}`
- `\operatorname{ulp}(s_{i, k}) = 2^{-N_{i + 1} - 1}`
- `\operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53`
|