summaryrefslogtreecommitdiff
path: root/bolt/lib/Passes/SplitFunctions.cpp
blob: 34973cecdf49161658bb46409ec1e645ccf52db2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SplitFunctions pass.
//
//===----------------------------------------------------------------------===//

#include "bolt/Passes/SplitFunctions.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <numeric>
#include <random>
#include <vector>

#define DEBUG_TYPE "bolt-opts"

using namespace llvm;
using namespace bolt;

namespace {
class DeprecatedSplitFunctionOptionParser : public cl::parser<bool> {
public:
  explicit DeprecatedSplitFunctionOptionParser(cl::Option &O)
      : cl::parser<bool>(O) {}

  bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) {
    if (Arg == "2" || Arg == "3") {
      Value = true;
      errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" "
                        "for option -{1} is deprecated\n",
                        Arg, ArgName);
      return false;
    }
    return cl::parser<bool>::parse(O, ArgName, Arg, Value);
  }
};
} // namespace

namespace opts {

extern cl::OptionCategory BoltOptCategory;

extern cl::opt<bool> SplitEH;
extern cl::opt<unsigned> ExecutionCountThreshold;
extern cl::opt<uint32_t> RandomSeed;

static cl::opt<bool> AggressiveSplitting(
    "split-all-cold", cl::desc("outline as many cold basic blocks as possible"),
    cl::cat(BoltOptCategory));

static cl::opt<unsigned> SplitAlignThreshold(
    "split-align-threshold",
    cl::desc("when deciding to split a function, apply this alignment "
             "while doing the size comparison (see -split-threshold). "
             "Default value: 2."),
    cl::init(2),

    cl::Hidden, cl::cat(BoltOptCategory));

static cl::opt<bool, false, DeprecatedSplitFunctionOptionParser>
    SplitFunctions("split-functions",
                   cl::desc("split functions into fragments"),
                   cl::cat(BoltOptCategory));

static cl::opt<unsigned> SplitThreshold(
    "split-threshold",
    cl::desc("split function only if its main size is reduced by more than "
             "given amount of bytes. Default value: 0, i.e. split iff the "
             "size is reduced. Note that on some architectures the size can "
             "increase after splitting."),
    cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));

static cl::opt<SplitFunctionsStrategy> SplitStrategy(
    "split-strategy", cl::init(SplitFunctionsStrategy::Profile2),
    cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2",
                          "split each function into a hot and cold fragment "
                          "using profiling information")),
    cl::values(clEnumValN(
        SplitFunctionsStrategy::Random2, "random2",
        "split each function into a hot and cold fragment at a randomly chosen "
        "split point (ignoring any available profiling information)")),
    cl::values(clEnumValN(
        SplitFunctionsStrategy::RandomN, "randomN",
        "split each function into N fragments at a randomly chosen split "
        "points (ignoring any available profiling information)")),
    cl::values(clEnumValN(
        SplitFunctionsStrategy::All, "all",
        "split all basic blocks of each function into fragments such that each "
        "fragment contains exactly a single basic block")),
    cl::desc("strategy used to partition blocks into fragments"),
    cl::cat(BoltOptCategory));
} // namespace opts

namespace {
bool hasFullProfile(const BinaryFunction &BF) {
  return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
    return BB.getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE;
  });
}

bool allBlocksCold(const BinaryFunction &BF) {
  return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
    return BB.getExecutionCount() == 0;
  });
}

struct SplitProfile2 final : public SplitStrategy {
  bool canSplit(const BinaryFunction &BF) override {
    return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
  }

  bool keepEmpty() override { return false; }

  void fragment(const BlockIt Start, const BlockIt End) override {
    for (BinaryBasicBlock *const BB : llvm::make_range(Start, End)) {
      if (BB->getExecutionCount() == 0)
        BB->setFragmentNum(FragmentNum::cold());
    }
  }
};

struct SplitRandom2 final : public SplitStrategy {
  std::minstd_rand0 Gen;

  SplitRandom2() : Gen(opts::RandomSeed.getValue()) {}

  bool canSplit(const BinaryFunction &BF) override { return true; }

  bool keepEmpty() override { return false; }

  void fragment(const BlockIt Start, const BlockIt End) override {
    using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
    const DiffT NumBlocks = End - Start;
    assert(NumBlocks > 0 && "Cannot fragment empty function");

    // We want to split at least one block
    const auto LastSplitPoint = std::max<DiffT>(NumBlocks - 1, 1);
    std::uniform_int_distribution<DiffT> Dist(1, LastSplitPoint);
    const DiffT SplitPoint = Dist(Gen);
    for (BinaryBasicBlock *BB : llvm::make_range(Start + SplitPoint, End))
      BB->setFragmentNum(FragmentNum::cold());

    LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of "
                                 "{1} possible) blocks to split\n",
                                 NumBlocks - SplitPoint, End - Start));
  }
};

struct SplitRandomN final : public SplitStrategy {
  std::minstd_rand0 Gen;

  SplitRandomN() : Gen(opts::RandomSeed.getValue()) {}

  bool canSplit(const BinaryFunction &BF) override { return true; }

  bool keepEmpty() override { return false; }

  void fragment(const BlockIt Start, const BlockIt End) override {
    using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
    const DiffT NumBlocks = End - Start;
    assert(NumBlocks > 0 && "Cannot fragment empty function");

    // With n blocks, there are n-1 places to split them.
    const DiffT MaximumSplits = NumBlocks - 1;
    // We want to generate at least two fragment if possible, but if there is
    // only one block, no splits are possible.
    const auto MinimumSplits = std::min<DiffT>(MaximumSplits, 1);
    std::uniform_int_distribution<DiffT> Dist(MinimumSplits, MaximumSplits);
    // Choose how many splits to perform
    const DiffT NumSplits = Dist(Gen);

    // Draw split points from a lottery
    SmallVector<unsigned, 0> Lottery(MaximumSplits);
    // Start lottery at 1, because there is no meaningful splitpoint before the
    // first block.
    std::iota(Lottery.begin(), Lottery.end(), 1u);
    std::shuffle(Lottery.begin(), Lottery.end(), Gen);
    Lottery.resize(NumSplits);
    llvm::sort(Lottery);

    // Add one past the end entry to lottery
    Lottery.push_back(NumBlocks);

    unsigned LotteryIndex = 0;
    unsigned BBPos = 0;
    for (BinaryBasicBlock *const BB : make_range(Start, End)) {
      // Check whether to start new fragment
      if (BBPos >= Lottery[LotteryIndex])
        ++LotteryIndex;

      // Because LotteryIndex is 0 based and cold fragments are 1 based, we can
      // use the index to assign fragments.
      BB->setFragmentNum(FragmentNum(LotteryIndex));

      ++BBPos;
    }
  }
};

struct SplitAll final : public SplitStrategy {
  bool canSplit(const BinaryFunction &BF) override { return true; }

  bool keepEmpty() override {
    // Keeping empty fragments allows us to test, that empty fragments do not
    // generate symbols.
    return true;
  }

  void fragment(const BlockIt Start, const BlockIt End) override {
    unsigned Fragment = 0;
    for (BinaryBasicBlock *const BB : llvm::make_range(Start, End))
      BB->setFragmentNum(FragmentNum(Fragment++));
  }
};
} // namespace

namespace llvm {
namespace bolt {

bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const {
  // Apply execution count threshold
  if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold)
    return false;

  return BinaryFunctionPass::shouldOptimize(BF);
}

void SplitFunctions::runOnFunctions(BinaryContext &BC) {
  if (!opts::SplitFunctions)
    return;

  std::unique_ptr<SplitStrategy> Strategy;
  bool ForceSequential = false;

  switch (opts::SplitStrategy) {
  case SplitFunctionsStrategy::Profile2:
    Strategy = std::make_unique<SplitProfile2>();
    break;
  case SplitFunctionsStrategy::Random2:
    Strategy = std::make_unique<SplitRandom2>();
    // If we split functions randomly, we need to ensure that across runs with
    // the same input, we generate random numbers for each function in the same
    // order.
    ForceSequential = true;
    break;
  case SplitFunctionsStrategy::RandomN:
    Strategy = std::make_unique<SplitRandomN>();
    ForceSequential = true;
    break;
  case SplitFunctionsStrategy::All:
    Strategy = std::make_unique<SplitAll>();
    break;
  }

  ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
    return !shouldOptimize(BF);
  };

  ParallelUtilities::runOnEachFunction(
      BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR,
      [&](BinaryFunction &BF) { splitFunction(BF, *Strategy); }, SkipFunc,
      "SplitFunctions", ForceSequential);

  if (SplitBytesHot + SplitBytesCold > 0)
    outs() << "BOLT-INFO: splitting separates " << SplitBytesHot
           << " hot bytes from " << SplitBytesCold << " cold bytes "
           << format("(%.2lf%% of split functions is hot).\n",
                     100.0 * SplitBytesHot / (SplitBytesHot + SplitBytesCold));
}

void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {
  if (BF.empty())
    return;

  if (!S.canSplit(BF))
    return;

  FunctionLayout &Layout = BF.getLayout();
  BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),
                                                     Layout.block_end());

  BinaryContext &BC = BF.getBinaryContext();
  size_t OriginalHotSize;
  size_t HotSize;
  size_t ColdSize;
  if (BC.isX86()) {
    std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF);
    LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
                      << " pre-split is <0x"
                      << Twine::utohexstr(OriginalHotSize) << ", 0x"
                      << Twine::utohexstr(ColdSize) << ">\n");
  }

  BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),
                                                Layout.block_end());
  // Never outline the first basic block.
  NewLayout.front()->setCanOutline(false);
  for (BinaryBasicBlock *const BB : NewLayout) {
    if (!BB->canOutline())
      continue;

    // Do not split extra entry points in aarch64. They can be referred by
    // using ADRs and when this happens, these blocks cannot be placed far
    // away due to the limited range in ADR instruction.
    if (BC.isAArch64() && BB->isEntryPoint()) {
      BB->setCanOutline(false);
      continue;
    }

    if (BF.hasEHRanges() && !opts::SplitEH) {
      // We cannot move landing pads (or rather entry points for landing pads).
      if (BB->isLandingPad()) {
        BB->setCanOutline(false);
        continue;
      }
      // We cannot move a block that can throw since exception-handling
      // runtime cannot deal with split functions. However, if we can guarantee
      // that the block never throws, it is safe to move the block to
      // decrease the size of the function.
      for (MCInst &Instr : *BB) {
        if (BC.MIB->isInvoke(Instr)) {
          BB->setCanOutline(false);
          break;
        }
      }
    }
  }

  BF.getLayout().updateLayoutIndices();
  S.fragment(NewLayout.begin(), NewLayout.end());

  // Make sure all non-outlineable blocks are in the main-fragment.
  for (BinaryBasicBlock *const BB : NewLayout) {
    if (!BB->canOutline())
      BB->setFragmentNum(FragmentNum::main());
  }

  if (opts::AggressiveSplitting) {
    // All blocks with 0 count that we can move go to the end of the function.
    // Even if they were natural to cluster formation and were seen in-between
    // hot basic blocks.
    llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,
                                     const BinaryBasicBlock *const B) {
      return A->getFragmentNum() < B->getFragmentNum();
    });
  } else if (BF.hasEHRanges() && !opts::SplitEH) {
    // Typically functions with exception handling have landing pads at the end.
    // We cannot move beginning of landing pads, but we can move 0-count blocks
    // comprising landing pads to the end and thus facilitate splitting.
    auto FirstLP = NewLayout.begin();
    while ((*FirstLP)->isLandingPad())
      ++FirstLP;

    std::stable_sort(FirstLP, NewLayout.end(),
                     [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
                       return A->getFragmentNum() < B->getFragmentNum();
                     });
  }

  // Make sure that fragments are increasing.
  FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();
  for (BinaryBasicBlock *const BB : reverse(NewLayout)) {
    if (BB->getFragmentNum() > CurrentFragment)
      BB->setFragmentNum(CurrentFragment);
    CurrentFragment = BB->getFragmentNum();
  }

  if (!S.keepEmpty()) {
    FragmentNum CurrentFragment = FragmentNum::main();
    FragmentNum NewFragment = FragmentNum::main();
    for (BinaryBasicBlock *const BB : NewLayout) {
      if (BB->getFragmentNum() > CurrentFragment) {
        CurrentFragment = BB->getFragmentNum();
        NewFragment = FragmentNum(NewFragment.get() + 1);
      }
      BB->setFragmentNum(NewFragment);
    }
  }

  BF.getLayout().update(NewLayout);

  // For shared objects, invoke instructions and corresponding landing pads
  // have to be placed in the same fragment. When we split them, create
  // trampoline landing pads that will redirect the execution to real LPs.
  TrampolineSetType Trampolines;
  if (!BC.HasFixedLoadAddress && BF.hasEHRanges() && BF.isSplit())
    Trampolines = createEHTrampolines(BF);

  // Check the new size to see if it's worth splitting the function.
  if (BC.isX86() && BF.isSplit()) {
    std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF);
    LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
                      << " post-split is <0x" << Twine::utohexstr(HotSize)
                      << ", 0x" << Twine::utohexstr(ColdSize) << ">\n");
    if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <=
        alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) {
      if (opts::Verbosity >= 2) {
        outs() << "BOLT-INFO: Reversing splitting of function "
               << formatv("{0}:\n  {1:x}, {2:x} -> {3:x}\n", BF, HotSize,
                          ColdSize, OriginalHotSize);
      }

      // Reverse the action of createEHTrampolines(). The trampolines will be
      // placed immediately before the matching destination resulting in no
      // extra code.
      if (PreSplitLayout.size() != BF.size())
        PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines);

      for (BinaryBasicBlock &BB : BF)
        BB.setFragmentNum(FragmentNum::main());
      BF.getLayout().update(PreSplitLayout);
    } else {
      SplitBytesHot += HotSize;
      SplitBytesCold += ColdSize;
    }
  }
}

SplitFunctions::TrampolineSetType
SplitFunctions::createEHTrampolines(BinaryFunction &BF) const {
  const auto &MIB = BF.getBinaryContext().MIB;

  // Map real landing pads to the corresponding trampolines.
  TrampolineSetType LPTrampolines;

  // Iterate over the copy of basic blocks since we are adding new blocks to the
  // function which will invalidate its iterators.
  std::vector<BinaryBasicBlock *> Blocks(BF.pbegin(), BF.pend());
  for (BinaryBasicBlock *BB : Blocks) {
    for (MCInst &Instr : *BB) {
      const std::optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instr);
      if (!EHInfo || !EHInfo->first)
        continue;

      const MCSymbol *LPLabel = EHInfo->first;
      BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel);
      if (BB->getFragmentNum() == LPBlock->getFragmentNum())
        continue;

      const MCSymbol *TrampolineLabel = nullptr;
      const TrampolineKey Key(BB->getFragmentNum(), LPLabel);
      auto Iter = LPTrampolines.find(Key);
      if (Iter != LPTrampolines.end()) {
        TrampolineLabel = Iter->second;
      } else {
        // Create a trampoline basic block in the same fragment as the thrower.
        // Note: there's no need to insert the jump instruction, it will be
        // added by fixBranches().
        BinaryBasicBlock *TrampolineBB = BF.addBasicBlock();
        TrampolineBB->setFragmentNum(BB->getFragmentNum());
        TrampolineBB->setExecutionCount(LPBlock->getExecutionCount());
        TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount());
        TrampolineBB->setCFIState(LPBlock->getCFIState());
        TrampolineLabel = TrampolineBB->getLabel();
        LPTrampolines.insert(std::make_pair(Key, TrampolineLabel));
      }

      // Substitute the landing pad with the trampoline.
      MIB->updateEHInfo(Instr,
                        MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second));
    }
  }

  if (LPTrampolines.empty())
    return LPTrampolines;

  // All trampoline blocks were added to the end of the function. Place them at
  // the end of corresponding fragments.
  BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(),
                                                BF.getLayout().block_end());
  stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
    return A->getFragmentNum() < B->getFragmentNum();
  });
  BF.getLayout().update(NewLayout);

  // Conservatively introduce branch instructions.
  BF.fixBranches();

  // Update exception-handling CFG for the function.
  BF.recomputeLandingPads();

  return LPTrampolines;
}

SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines(
    BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout,
    const SplitFunctions::TrampolineSetType &Trampolines) const {
  DenseMap<const MCSymbol *, SmallVector<const MCSymbol *, 0>>
      IncomingTrampolines;
  for (const auto &Entry : Trampolines) {
    IncomingTrampolines[Entry.getFirst().Target].emplace_back(
        Entry.getSecond());
  }

  BasicBlockOrderType MergedLayout;
  for (BinaryBasicBlock *BB : Layout) {
    auto Iter = IncomingTrampolines.find(BB->getLabel());
    if (Iter != IncomingTrampolines.end()) {
      for (const MCSymbol *const Trampoline : Iter->getSecond()) {
        BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Trampoline);
        assert(LPBlock && "Could not find matching landing pad block.");
        MergedLayout.push_back(LPBlock);
      }
    }
    MergedLayout.push_back(BB);
  }

  return MergedLayout;
}

} // namespace bolt
} // namespace llvm