summaryrefslogtreecommitdiff
path: root/bolt/lib/Passes/HFSortPlus.cpp
blob: 70b9a4d51e6ee58a66a92a3358cc9bc7b1946997 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
//===- bolt/Passes/HFSortPlus.cpp - Order functions by hotness ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// hfsort+ - layout of hot functions with i-TLB cache optimization.
//
// Given an ordering of hot functions (and hence, their assignment to the
// i-TLB pages), we can divide all functions calls Into two categories:
// - 'short' ones that have a caller-callee distance less than a page;
// - 'long' ones where the distance exceeds a page.
// The short calls are likely to result in a i-TLB cache hit. For the long ones,
// the hit/miss result depends on the 'hotness' of the page (i.e., how often
// the page is accessed). Assuming that functions are sent to the i-TLB cache
// in a random order, the probability that a page is present in the cache is
// proportional to the number of samples corresponding to the functions on the
// page. The following algorithm detects short and long calls, and optimizes
// the expected number of cache misses for the long ones.
//
//===----------------------------------------------------------------------===//

#include "bolt/Passes/HFSort.h"
#include "llvm/Support/CommandLine.h"
#include <cmath>
#include <set>
#include <vector>

#define DEBUG_TYPE "hfsort"

using namespace llvm;
using namespace bolt;

namespace opts {

extern cl::OptionCategory BoltOptCategory;

cl::opt<unsigned> ITLBPageSize("itlb-page-size",
                               cl::desc("The size of i-tlb cache page"),
                               cl::init(4096), cl::ReallyHidden,
                               cl::cat(BoltOptCategory));

cl::opt<unsigned> ITLBEntries("itlb-entries",
                              cl::desc("The number of entries in i-tlb cache"),
                              cl::init(16), cl::ReallyHidden,
                              cl::cat(BoltOptCategory));

static cl::opt<unsigned> ITLBDensity("itlb-density",
                                     cl::desc("The density of i-tlb cache"),
                                     cl::init(4096), cl::ReallyHidden,
                                     cl::cat(BoltOptCategory));

static cl::opt<double> MergeProbability(
    "merge-probability",
    cl::desc("The minimum probability of a call for merging two clusters"),
    cl::init(0.9), cl::ReallyHidden, cl::cat(BoltOptCategory));

static cl::opt<double> ArcThreshold(
    "arc-threshold",
    cl::desc("The threshold for ignoring arcs with a small relative weight"),
    cl::init(0.00000001), cl::ReallyHidden, cl::cat(BoltOptCategory));

} // namespace opts

namespace llvm {
namespace bolt {

using NodeId = CallGraph::NodeId;
using Arc = CallGraph::Arc;

namespace {

class Edge;
using ArcList = std::vector<const Arc *>;

// A chain (ordered sequence) of nodes (functions) in the call graph
class Chain {
public:
  Chain(const Chain &) = delete;
  Chain(Chain &&) = default;
  Chain &operator=(const Chain &) = delete;
  Chain &operator=(Chain &&) = default;

  explicit Chain(size_t Id_, NodeId Node, size_t Samples_, size_t Size_)
      : Id(Id_), Samples(Samples_), Size(Size_), Nodes(1, Node) {}

  double density() const { return static_cast<double>(Samples) / Size; }

  Edge *getEdge(Chain *Other) const {
    for (std::pair<Chain *, Edge *> It : Edges)
      if (It.first == Other)
        return It.second;
    return nullptr;
  }

  void removeEdge(Chain *Other) {
    auto It = Edges.begin();
    while (It != Edges.end()) {
      if (It->first == Other) {
        Edges.erase(It);
        return;
      }
      It++;
    }
  }

  void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }

  void merge(Chain *Other) {
    Nodes.insert(Nodes.end(), Other->Nodes.begin(), Other->Nodes.end());
    Samples += Other->Samples;
    Size += Other->Size;
  }

  void mergeEdges(Chain *Other);

  void clear() {
    Nodes.clear();
    Edges.clear();
  }

public:
  size_t Id;
  uint64_t Samples;
  uint64_t Size;
  // Cached score for the chain
  double Score{0};
  // Cached short-calls for the chain
  double ShortCalls{0};
  // Nodes in the chain
  std::vector<NodeId> Nodes;
  // Adjacent chains and corresponding edges (lists of arcs)
  std::vector<std::pair<Chain *, Edge *>> Edges;
};

// An edge in the call graph representing Arcs between two Chains.
// When functions are merged Into chains, the edges are combined too so that
// there is always at most one edge between a pair of chains
class Edge {
public:
  Edge(const Edge &) = delete;
  Edge(Edge &&) = default;
  Edge &operator=(const Edge &) = delete;
  Edge &operator=(Edge &&) = default;

  explicit Edge(Chain *SrcChain_, Chain *DstChain_, const Arc *A)
      : SrcChain(SrcChain_), DstChain(DstChain_), Arcs(1, A) {}

  void changeEndpoint(Chain *From, Chain *To) {
    if (From == SrcChain)
      SrcChain = To;
    if (From == DstChain)
      DstChain = To;
  }

  void moveArcs(Edge *Other) {
    Arcs.insert(Arcs.end(), Other->Arcs.begin(), Other->Arcs.end());
    Other->Arcs.clear();
  }

  void setMergeGain(Chain *PredChain, double ForwardGain, double BackwardGain) {
    // When forward and backward gains are the same, prioritize merging that
    // preserves the original order of the functions in the binary
    if (std::abs(ForwardGain - BackwardGain) < 1e-8) {
      if (SrcChain->Id < DstChain->Id) {
        IsGainForward = true;
        CachedGain = PredChain == SrcChain ? ForwardGain : BackwardGain;
      } else {
        IsGainForward = false;
        CachedGain = PredChain == SrcChain ? BackwardGain : ForwardGain;
      }
    } else if (ForwardGain > BackwardGain) {
      IsGainForward = PredChain == SrcChain;
      CachedGain = ForwardGain;
    } else {
      IsGainForward = PredChain != SrcChain;
      CachedGain = BackwardGain;
    }
  }

  double gain() const { return CachedGain; }

  Chain *predChain() const { return IsGainForward ? SrcChain : DstChain; }

  Chain *succChain() const { return IsGainForward ? DstChain : SrcChain; }

private:
  Chain *SrcChain{nullptr};
  Chain *DstChain{nullptr};

public:
  // Original arcs in the binary with corresponding execution counts
  ArcList Arcs;
  // Cached gain of merging the pair of chains
  double CachedGain{-1.0};
  // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
  // we store a flag indicating which of the options results in a higher gain
  bool IsGainForward;
};

void Chain::mergeEdges(Chain *Other) {
  // Update edges adjacent to chain other
  for (auto EdgeIt : Other->Edges) {
    Chain *const DstChain = EdgeIt.first;
    Edge *const DstEdge = EdgeIt.second;
    Chain *const TargetChain = DstChain == Other ? this : DstChain;

    // Find the corresponding edge in the current chain
    Edge *CurEdge = getEdge(TargetChain);
    if (CurEdge == nullptr) {
      DstEdge->changeEndpoint(Other, this);
      this->addEdge(TargetChain, DstEdge);
      if (DstChain != this && DstChain != Other)
        DstChain->addEdge(this, DstEdge);
    } else {
      CurEdge->moveArcs(DstEdge);
    }
    // Cleanup leftover edge
    if (DstChain != Other)
      DstChain->removeEdge(Other);
  }
}

class HFSortPlus {
public:
  explicit HFSortPlus(const CallGraph &Cg) : Cg(Cg) { initialize(); }

  /// Run the algorithm and return ordered set of function clusters.
  std::vector<Cluster> run() {
    // Pass 1
    runPassOne();

    // Pass 2
    runPassTwo();

    outs() << "BOLT-INFO: hfsort+ reduced the number of chains from "
           << Cg.numNodes() << " to " << HotChains.size() << "\n";

    // Sorting chains by density in decreasing order
    auto DensityComparator = [](const Chain *L, const Chain *R) {
      if (L->density() != R->density())
        return L->density() > R->density();
      // Making sure the comparison is deterministic
      return L->Id < R->Id;
    };
    llvm::stable_sort(HotChains, DensityComparator);

    // Return the set of clusters that are left, which are the ones that
    // didn't get merged (so their first func is its original func)
    std::vector<Cluster> Clusters;
    Clusters.reserve(HotChains.size());
    for (Chain *Chain : HotChains)
      Clusters.emplace_back(Cluster(Chain->Nodes, Cg));
    return Clusters;
  }

private:
  /// Initialize the set of active chains, function id to chain mapping,
  /// total number of samples and function addresses.
  void initialize() {
    OutWeight.resize(Cg.numNodes(), 0);
    InWeight.resize(Cg.numNodes(), 0);
    AllChains.reserve(Cg.numNodes());
    HotChains.reserve(Cg.numNodes());
    NodeChain.resize(Cg.numNodes(), nullptr);
    Addr.resize(Cg.numNodes(), 0);

    // Initialize chains
    for (NodeId F = 0; F < Cg.numNodes(); ++F) {
      AllChains.emplace_back(F, F, Cg.samples(F), Cg.size(F));
      HotChains.push_back(&AllChains.back());
      NodeChain[F] = &AllChains.back();
      TotalSamples += Cg.samples(F);
      for (NodeId Succ : Cg.successors(F)) {
        if (F == Succ)
          continue;
        const Arc &Arc = *Cg.findArc(F, Succ);
        OutWeight[F] += Arc.weight();
        InWeight[Succ] += Arc.weight();
      }
    }

    AllEdges.reserve(Cg.numArcs());
    for (NodeId F = 0; F < Cg.numNodes(); ++F) {
      for (NodeId Succ : Cg.successors(F)) {
        if (F == Succ)
          continue;
        const Arc &Arc = *Cg.findArc(F, Succ);
        if (Arc.weight() == 0.0 ||
            Arc.weight() / TotalSamples < opts::ArcThreshold) {
          continue;
        }

        Edge *CurEdge = NodeChain[F]->getEdge(NodeChain[Succ]);
        if (CurEdge != nullptr) {
          // This edge is already present in the graph
          assert(NodeChain[Succ]->getEdge(NodeChain[F]) != nullptr);
          CurEdge->Arcs.push_back(&Arc);
        } else {
          // This is a new edge
          AllEdges.emplace_back(NodeChain[F], NodeChain[Succ], &Arc);
          NodeChain[F]->addEdge(NodeChain[Succ], &AllEdges.back());
          NodeChain[Succ]->addEdge(NodeChain[F], &AllEdges.back());
        }
      }
    }

    for (Chain *&Chain : HotChains) {
      Chain->ShortCalls = shortCalls(Chain);
      Chain->Score = score(Chain);
    }
  }

  /// The probability that a page with a given density is not in the cache.
  ///
  /// Assume that the hot functions are called in a random order; then the
  /// probability of an i-TLB page being accessed after a function call is
  /// p = pageSamples / TotalSamples. The probability that the page is not
  /// accessed is (1 - p), and the probability that it is not in the cache
  /// (i.e. not accessed during the last kCacheEntries function calls)
  /// is (1 - p)^kCacheEntries
  double missProbability(double ChainDensity) const {
    double PageSamples = ChainDensity * opts::ITLBDensity;

    if (PageSamples >= TotalSamples)
      return 0;

    double P = PageSamples / TotalSamples;
    return pow(1.0 - P, double(opts::ITLBEntries));
  }

  /// The expected number of calls on different i-TLB pages for an arc of the
  /// call graph with a specified weight
  double expectedCalls(uint64_t SrcAddr, uint64_t DstAddr,
                       double Weight) const {
    uint64_t Dist = SrcAddr >= DstAddr ? SrcAddr - DstAddr : DstAddr - SrcAddr;
    if (Dist >= opts::ITLBPageSize)
      return 0;

    double D = double(Dist) / double(opts::ITLBPageSize);
    // Increasing the importance of shorter calls
    return (1.0 - D * D) * Weight;
  }

  /// The expected number of calls within a given chain with both endpoints on
  /// the same cache page
  double shortCalls(Chain *Chain) const {
    Edge *Edge = Chain->getEdge(Chain);
    if (Edge == nullptr)
      return 0;

    double Calls = 0;
    for (const Arc *Arc : Edge->Arcs) {
      uint64_t SrcAddr = Addr[Arc->src()] + uint64_t(Arc->avgCallOffset());
      uint64_t DstAddr = Addr[Arc->dst()];
      Calls += expectedCalls(SrcAddr, DstAddr, Arc->weight());
    }
    return Calls;
  }

  /// The number of calls between the two chains with both endpoints on
  /// the same i-TLB page, assuming that a given pair of chains gets merged
  double shortCalls(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
    double Calls = 0;
    for (const Arc *Arc : Edge->Arcs) {
      Chain *SrcChain = NodeChain[Arc->src()];
      uint64_t SrcAddr;
      uint64_t DstAddr;
      if (SrcChain == ChainPred) {
        SrcAddr = Addr[Arc->src()] + uint64_t(Arc->avgCallOffset());
        DstAddr = Addr[Arc->dst()] + ChainPred->Size;
      } else {
        SrcAddr =
            Addr[Arc->src()] + uint64_t(Arc->avgCallOffset()) + ChainPred->Size;
        DstAddr = Addr[Arc->dst()];
      }
      Calls += expectedCalls(SrcAddr, DstAddr, Arc->weight());
    }

    Calls += ChainPred->ShortCalls;
    Calls += ChainSucc->ShortCalls;

    return Calls;
  }

  double score(Chain *Chain) const {
    double LongCalls = Chain->Samples - Chain->ShortCalls;
    return LongCalls * missProbability(Chain->density());
  }

  /// The gain of merging two chains.
  ///
  /// We assume that the final chains are sorted by their density, and hence
  /// every chain is likely to be adjacent with chains of the same density.
  /// Thus, the 'hotness' of every chain can be estimated by density*pageSize,
  /// which is used to compute the probability of cache misses for long calls
  /// of a given chain.
  /// The result is also scaled by the size of the resulting chain in order to
  /// increase the chance of merging short chains, which is helpful for
  /// the i-cache performance.
  double mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
    // Cache misses on the chains before merging
    double CurScore = ChainPred->Score + ChainSucc->Score;

    // Cache misses on the merged chain
    double LongCalls = ChainPred->Samples + ChainSucc->Samples -
                       shortCalls(ChainPred, ChainSucc, Edge);
    const double MergedSamples = ChainPred->Samples + ChainSucc->Samples;
    const double MergedSize = ChainPred->Size + ChainSucc->Size;
    double NewScore = LongCalls * missProbability(MergedSamples / MergedSize);

    double Gain = CurScore - NewScore;
    // Scale the result to increase the importance of merging short chains
    Gain /= std::min(ChainPred->Size, ChainSucc->Size);

    return Gain;
  }

  /// Run the first optimization pass of the algorithm:
  /// Merge chains that call each other with a high probability.
  void runPassOne() {
    // Find candidate pairs of chains for merging
    std::vector<const Arc *> ArcsToMerge;
    for (Chain *ChainPred : HotChains) {
      NodeId F = ChainPred->Nodes.back();
      for (NodeId Succ : Cg.successors(F)) {
        if (F == Succ)
          continue;

        const Arc &Arc = *Cg.findArc(F, Succ);
        if (Arc.weight() == 0.0 ||
            Arc.weight() / TotalSamples < opts::ArcThreshold)
          continue;

        const double CallsFromPred = OutWeight[F];
        const double CallsToSucc = InWeight[Succ];
        const double CallsPredSucc = Arc.weight();

        // Probability that the first chain is calling the second one
        const double ProbOut =
            CallsFromPred > 0 ? CallsPredSucc / CallsFromPred : 0;
        assert(0.0 <= ProbOut && ProbOut <= 1.0 && "incorrect out-probability");

        // Probability that the second chain is called From the first one
        const double ProbIn = CallsToSucc > 0 ? CallsPredSucc / CallsToSucc : 0;
        assert(0.0 <= ProbIn && ProbIn <= 1.0 && "incorrect in-probability");

        if (std::min(ProbOut, ProbIn) >= opts::MergeProbability)
          ArcsToMerge.push_back(&Arc);
      }
    }

    // Sort the pairs by the weight in reverse order
    llvm::sort(ArcsToMerge, [](const Arc *L, const Arc *R) {
      return L->weight() > R->weight();
    });

    // Merge the pairs of chains
    for (const Arc *Arc : ArcsToMerge) {
      Chain *ChainPred = NodeChain[Arc->src()];
      Chain *ChainSucc = NodeChain[Arc->dst()];
      if (ChainPred == ChainSucc)
        continue;
      if (ChainPred->Nodes.back() == Arc->src() &&
          ChainSucc->Nodes.front() == Arc->dst())
        mergeChains(ChainPred, ChainSucc);
    }
  }

  /// Run the second optimization pass of the hfsort+ algorithm:
  /// Merge pairs of chains while there is an improvement in the
  /// expected cache miss ratio.
  void runPassTwo() {
    // Creating a priority queue containing all edges ordered by the merge gain
    auto GainComparator = [](Edge *L, Edge *R) {
      if (std::abs(L->gain() - R->gain()) > 1e-8)
        return L->gain() > R->gain();

      // Making sure the comparison is deterministic
      if (L->predChain()->Id != R->predChain()->Id)
        return L->predChain()->Id < R->predChain()->Id;

      return L->succChain()->Id < R->succChain()->Id;
    };
    std::set<Edge *, decltype(GainComparator)> Queue(GainComparator);

    // Inserting the edges Into the queue
    for (Chain *ChainPred : HotChains) {
      for (auto EdgeIt : ChainPred->Edges) {
        Chain *ChainSucc = EdgeIt.first;
        Edge *ChainEdge = EdgeIt.second;
        // Ignore loop edges
        if (ChainPred == ChainSucc)
          continue;
        // Ignore already processed edges
        if (ChainEdge->gain() != -1.0)
          continue;

        // Compute the gain of merging the two chains
        auto ForwardGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
        auto BackwardGain = mergeGain(ChainSucc, ChainPred, ChainEdge);
        ChainEdge->setMergeGain(ChainPred, ForwardGain, BackwardGain);
        if (ChainEdge->gain() > 0.0)
          Queue.insert(ChainEdge);
      }
    }

    // Merge the chains while the gain of merging is positive
    while (!Queue.empty()) {
      // Extract the best (top) edge for merging
      Edge *It = *Queue.begin();
      Queue.erase(Queue.begin());
      Edge *BestEdge = It;
      Chain *BestChainPred = BestEdge->predChain();
      Chain *BestChainSucc = BestEdge->succChain();
      if (BestChainPred == BestChainSucc || BestEdge->gain() <= 0.0)
        continue;

      // Remove outdated edges
      for (std::pair<Chain *, Edge *> EdgeIt : BestChainPred->Edges)
        Queue.erase(EdgeIt.second);
      for (std::pair<Chain *, Edge *> EdgeIt : BestChainSucc->Edges)
        Queue.erase(EdgeIt.second);

      // Merge the best pair of chains
      mergeChains(BestChainPred, BestChainSucc);

      // Insert newly created edges Into the queue
      for (auto EdgeIt : BestChainPred->Edges) {
        Chain *ChainSucc = EdgeIt.first;
        Edge *ChainEdge = EdgeIt.second;
        // Ignore loop edges
        if (BestChainPred == ChainSucc)
          continue;

        // Compute the gain of merging the two chains
        auto ForwardGain = mergeGain(BestChainPred, ChainSucc, ChainEdge);
        auto BackwardGain = mergeGain(ChainSucc, BestChainPred, ChainEdge);
        ChainEdge->setMergeGain(BestChainPred, ForwardGain, BackwardGain);
        if (ChainEdge->gain() > 0.0)
          Queue.insert(ChainEdge);
      }
    }
  }

  /// Merge chain From into chain Into and update the list of active chains.
  void mergeChains(Chain *Into, Chain *From) {
    assert(Into != From && "cannot merge a chain with itself");
    Into->merge(From);

    // Update the chains and addresses for functions merged from From
    size_t CurAddr = 0;
    for (NodeId F : Into->Nodes) {
      NodeChain[F] = Into;
      Addr[F] = CurAddr;
      CurAddr += Cg.size(F);
    }

    // Merge edges
    Into->mergeEdges(From);
    From->clear();

    // Update cached scores for the new chain
    Into->ShortCalls = shortCalls(Into);
    Into->Score = score(Into);

    // Remove chain From From the list of active chains
    llvm::erase_value(HotChains, From);
  }

private:
  // The call graph
  const CallGraph &Cg;

  // All chains of functions
  std::vector<Chain> AllChains;

  // Active chains. The vector gets updated at runtime when chains are merged
  std::vector<Chain *> HotChains;

  // All edges between chains
  std::vector<Edge> AllEdges;

  // Node_id => chain
  std::vector<Chain *> NodeChain;

  // Current address of the function From the beginning of its chain
  std::vector<uint64_t> Addr;

  // Total weight of outgoing arcs for each function
  std::vector<double> OutWeight;

  // Total weight of incoming arcs for each function
  std::vector<double> InWeight;
  // The total number of samples in the graph
  double TotalSamples{0};
};

} // end anonymous namespace

std::vector<Cluster> hfsortPlus(CallGraph &Cg) {
  // It is required that the sum of incoming arc weights is not greater
  // than the number of samples for every function.
  // Ensuring the call graph obeys the property before running the algorithm.
  Cg.adjustArcWeights();
  return HFSortPlus(Cg).run();
}

} // namespace bolt
} // namespace llvm