diff options
author | David L. Jones <dlj@google.com> | 2017-11-15 01:40:05 +0000 |
---|---|---|
committer | David L. Jones <dlj@google.com> | 2017-11-15 01:40:05 +0000 |
commit | d5c2cca72463233df77a065f201db31b140eb44d (patch) | |
tree | 3f9a978131033302a58b7db7db1ecf2a4622bad2 /lib/Transforms/Scalar/LoopPredication.cpp | |
parent | ce7676b8db6bac096dad4c4ad62e9e6bb8aa1064 (diff) | |
parent | dcf64df89bc6d775e266ebd6b0134d135f47a35b (diff) | |
download | llvm-testing.tar.gz |
Creating branches/google/testing and tags/google/testing/2017-11-14 from r317716testing
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/google/testing@318248 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Scalar/LoopPredication.cpp')
-rw-r--r-- | lib/Transforms/Scalar/LoopPredication.cpp | 234 |
1 files changed, 175 insertions, 59 deletions
diff --git a/lib/Transforms/Scalar/LoopPredication.cpp b/lib/Transforms/Scalar/LoopPredication.cpp index 9a623be234fe..52dea3254e79 100644 --- a/lib/Transforms/Scalar/LoopPredication.cpp +++ b/lib/Transforms/Scalar/LoopPredication.cpp @@ -174,6 +174,9 @@ using namespace llvm; +static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", + cl::Hidden, cl::init(true)); + namespace { class LoopPredication { /// Represents an induction variable check: @@ -186,6 +189,10 @@ class LoopPredication { const SCEV *Limit) : Pred(Pred), IV(IV), Limit(Limit) {} LoopICmp() {} + void dump() { + dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV + << ", Limit = " << *Limit << "\n"; + } }; ScalarEvolution *SE; @@ -195,6 +202,7 @@ class LoopPredication { BasicBlock *Preheader; LoopICmp LatchCheck; + bool isSupportedStep(const SCEV* Step); Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), ICI->getOperand(1)); @@ -204,14 +212,36 @@ class LoopPredication { Optional<LoopICmp> parseLoopLatchICmp(); + bool CanExpand(const SCEV* S); Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, Instruction *InsertAt); Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, IRBuilder<> &Builder); + Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, + LoopICmp RangeCheck, + SCEVExpander &Expander, + IRBuilder<> &Builder); + bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); + // When the IV type is wider than the range operand type, we can still do loop + // predication, by generating SCEVs for the range and latch that are of the + // same type. We achieve this by generating a SCEV truncate expression for the + // latch IV. This is done iff truncation of the IV is a safe operation, + // without loss of information. + // Another way to achieve this is by generating a wider type SCEV for the + // range check operand, however, this needs a more involved check that + // operands do not overflow. This can lead to loss of information when the + // range operand is of the form: add i32 %offset, %iv. We need to prove that + // sext(x + y) is same as sext(x) + sext(y). + // This function returns true if we can safely represent the IV type in + // the RangeCheckType without loss of information. + bool isSafeToTruncateWideIVType(Type *RangeCheckType); + // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do + // so. + Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); public: LoopPredication(ScalarEvolution *SE) : SE(SE){}; bool runOnLoop(Loop *L); @@ -301,53 +331,54 @@ Value *LoopPredication::expandCheck(SCEVExpander &Expander, return Builder.CreateICmp(Pred, LHSV, RHSV); } -/// If ICI can be widened to a loop invariant condition emits the loop -/// invariant condition in the loop preheader and return it, otherwise -/// returns None. -Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, - SCEVExpander &Expander, - IRBuilder<> &Builder) { - DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); - DEBUG(ICI->dump()); +Optional<LoopPredication::LoopICmp> +LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { - // parseLoopStructure guarantees that the latch condition is: - // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. - // We are looking for the range checks of the form: - // i u< guardLimit - auto RangeCheck = parseLoopICmp(ICI); - if (!RangeCheck) { - DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); + auto *LatchType = LatchCheck.IV->getType(); + if (RangeCheckType == LatchType) + return LatchCheck; + // For now, bail out if latch type is narrower than range type. + if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) return None; - } - if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { - DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred - << ")!\n"); + if (!isSafeToTruncateWideIVType(RangeCheckType)) return None; - } - auto *RangeCheckIV = RangeCheck->IV; - auto *Ty = RangeCheckIV->getType(); - if (Ty != LatchCheck.IV->getType()) { - DEBUG(dbgs() << "Type mismatch between range check and latch IVs!\n"); + // We can now safely identify the truncated version of the IV and limit for + // RangeCheckType. + LoopICmp NewLatchCheck; + NewLatchCheck.Pred = LatchCheck.Pred; + NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( + SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); + if (!NewLatchCheck.IV) return None; - } - if (!RangeCheckIV->isAffine()) { - DEBUG(dbgs() << "Range check IV is not affine!\n"); - return None; - } - auto *Step = RangeCheckIV->getStepRecurrence(*SE); - if (Step != LatchCheck.IV->getStepRecurrence(*SE)) { - DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); - return None; - } - assert(Step->isOne() && "must be one"); + NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); + DEBUG(dbgs() << "IV of type: " << *LatchType + << "can be represented as range check type:" << *RangeCheckType + << "\n"); + DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); + DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); + return NewLatchCheck; +} + +bool LoopPredication::isSupportedStep(const SCEV* Step) { + return Step->isOne(); +} - // Generate the widened condition: +bool LoopPredication::CanExpand(const SCEV* S) { + return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); +} + +Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( + LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, + SCEVExpander &Expander, IRBuilder<> &Builder) { + auto *Ty = RangeCheck.IV->getType(); + // Generate the widened condition for the forward loop: // guardStart u< guardLimit && // latchLimit <pred> guardLimit - 1 - guardStart + latchStart // where <pred> depends on the latch condition predicate. See the file // header comment for the reasoning. - const SCEV *GuardStart = RangeCheckIV->getStart(); - const SCEV *GuardLimit = RangeCheck->Limit; + // guardLimit - guardStart + latchStart - 1 + const SCEV *GuardStart = RangeCheck.IV->getStart(); + const SCEV *GuardLimit = RangeCheck.Limit; const SCEV *LatchStart = LatchCheck.IV->getStart(); const SCEV *LatchLimit = LatchCheck.Limit; @@ -355,7 +386,11 @@ Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, const SCEV *RHS = SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); - + if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || + !CanExpand(LatchLimit) || !CanExpand(RHS)) { + DEBUG(dbgs() << "Can't expand limit check!\n"); + return None; + } ICmpInst::Predicate LimitCheckPred; switch (LatchCheck.Pred) { case ICmpInst::ICMP_ULT: @@ -378,22 +413,68 @@ Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, DEBUG(dbgs() << "RHS: " << *RHS << "\n"); DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); - auto CanExpand = [this](const SCEV *S) { - return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); - }; - if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || - !CanExpand(LatchLimit) || !CanExpand(RHS)) { - DEBUG(dbgs() << "Can't expand limit check!\n"); - return None; - } - Instruction *InsertAt = Preheader->getTerminator(); auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); - auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred, + auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, GuardStart, GuardLimit, InsertAt); return Builder.CreateAnd(FirstIterationCheck, LimitCheck); } +/// If ICI can be widened to a loop invariant condition emits the loop +/// invariant condition in the loop preheader and return it, otherwise +/// returns None. +Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, + SCEVExpander &Expander, + IRBuilder<> &Builder) { + DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); + DEBUG(ICI->dump()); + + // parseLoopStructure guarantees that the latch condition is: + // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. + // We are looking for the range checks of the form: + // i u< guardLimit + auto RangeCheck = parseLoopICmp(ICI); + if (!RangeCheck) { + DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); + return None; + } + DEBUG(dbgs() << "Guard check:\n"); + DEBUG(RangeCheck->dump()); + if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { + DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred + << ")!\n"); + return None; + } + auto *RangeCheckIV = RangeCheck->IV; + if (!RangeCheckIV->isAffine()) { + DEBUG(dbgs() << "Range check IV is not affine!\n"); + return None; + } + auto *Step = RangeCheckIV->getStepRecurrence(*SE); + // We cannot just compare with latch IV step because the latch and range IVs + // may have different types. + if (!isSupportedStep(Step)) { + DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); + return None; + } + auto *Ty = RangeCheckIV->getType(); + auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); + if (!CurrLatchCheckOpt) { + DEBUG(dbgs() << "Failed to generate a loop latch check " + "corresponding to range type: " + << *Ty << "\n"); + return None; + } + + LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; + // At this point the range check step and latch step should have the same + // value and type. + assert(Step == CurrLatchCheck.IV->getStepRecurrence(*SE) && + "Range and latch should have same step recurrence!"); + + return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, + Expander, Builder); +} bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, SCEVExpander &Expander) { @@ -485,15 +566,6 @@ Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { return None; } - if (Result->Pred != ICmpInst::ICMP_ULT && - Result->Pred != ICmpInst::ICMP_SLT && - Result->Pred != ICmpInst::ICMP_ULE && - Result->Pred != ICmpInst::ICMP_SLE) { - DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred - << ")!\n"); - return None; - } - // Check affine first, so if it's not we don't try to compute the step // recurrence. if (!Result->IV->isAffine()) { @@ -502,14 +574,55 @@ Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { } auto *Step = Result->IV->getStepRecurrence(*SE); - if (!Step->isOne()) { + if (!isSupportedStep(Step)) { DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); return None; } + auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { + assert(Step->isOne() && "expected Step to be one!"); + return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && + Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; + }; + + if (IsUnsupportedPredicate(Step, Result->Pred)) { + DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred + << ")!\n"); + return None; + } return Result; } +// Returns true if its safe to truncate the IV to RangeCheckType. +bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { + if (!EnableIVTruncation) + return false; + assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > + DL->getTypeSizeInBits(RangeCheckType) && + "Expected latch check IV type to be larger than range check operand " + "type!"); + // The start and end values of the IV should be known. This is to guarantee + // that truncating the wide type will not lose information. + auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); + auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); + if (!Limit || !Start) + return false; + // This check makes sure that the IV does not change sign during loop + // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, + // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the + // IV wraps around, and the truncation of the IV would lose the range of + // iterations between 2^32 and 2^64. + bool Increasing; + if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) + return false; + // The active bits should be less than the bits in the RangeCheckType. This + // guarantees that truncating the latch check to RangeCheckType is a safe + // operation. + auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); + return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && + Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; +} + bool LoopPredication::runOnLoop(Loop *Loop) { L = Loop; @@ -535,6 +648,9 @@ bool LoopPredication::runOnLoop(Loop *Loop) { return false; LatchCheck = *LatchCheckOpt; + DEBUG(dbgs() << "Latch check:\n"); + DEBUG(LatchCheck.dump()); + // Collect all the guards into a vector and process later, so as not // to invalidate the instruction iterator. SmallVector<IntrinsicInst *, 4> Guards; |