1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for an envelope detector using a DAC and a comparator
*
* Copyright (C) 2016 Axentia Technologies AB
*
* Author: Peter Rosin <peda@axentia.se>
*/
/*
* The DAC is used to find the peak level of an alternating voltage input
* signal by a binary search using the output of a comparator wired to
* an interrupt pin. Like so:
* _
* | \
* input +------>-------|+ \
* | \
* .-------. | }---.
* | | | / |
* | dac|-->--|- / |
* | | |_/ |
* | | |
* | | |
* | irq|------<-------'
* | |
* '-------'
*/
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
struct envelope {
spinlock_t comp_lock; /* protects comp */
int comp;
struct mutex read_lock; /* protects everything else */
int comp_irq;
u32 comp_irq_trigger;
u32 comp_irq_trigger_inv;
struct iio_channel *dac;
struct delayed_work comp_timeout;
unsigned int comp_interval;
bool invert;
u32 dac_max;
int high;
int level;
int low;
struct completion done;
};
/*
* The envelope_detector_comp_latch function works together with the compare
* interrupt service routine below (envelope_detector_comp_isr) as a latch
* (one-bit memory) for if the interrupt has triggered since last calling
* this function.
* The ..._comp_isr function disables the interrupt so that the cpu does not
* need to service a possible interrupt flood from the comparator when no-one
* cares anyway, and this ..._comp_latch function reenables them again if
* needed.
*/
static int envelope_detector_comp_latch(struct envelope *env)
{
int comp;
spin_lock_irq(&env->comp_lock);
comp = env->comp;
env->comp = 0;
spin_unlock_irq(&env->comp_lock);
if (!comp)
return 0;
/*
* The irq was disabled, and is reenabled just now.
* But there might have been a pending irq that
* happened while the irq was disabled that fires
* just as the irq is reenabled. That is not what
* is desired.
*/
enable_irq(env->comp_irq);
/* So, synchronize this possibly pending irq... */
synchronize_irq(env->comp_irq);
/* ...and redo the whole dance. */
spin_lock_irq(&env->comp_lock);
comp = env->comp;
env->comp = 0;
spin_unlock_irq(&env->comp_lock);
if (comp)
enable_irq(env->comp_irq);
return 1;
}
static irqreturn_t envelope_detector_comp_isr(int irq, void *ctx)
{
struct envelope *env = ctx;
spin_lock(&env->comp_lock);
env->comp = 1;
disable_irq_nosync(env->comp_irq);
spin_unlock(&env->comp_lock);
return IRQ_HANDLED;
}
static void envelope_detector_setup_compare(struct envelope *env)
{
int ret;
/*
* Do a binary search for the peak input level, and stop
* when that level is "trapped" between two adjacent DAC
* values.
* When invert is active, use the midpoint floor so that
* env->level ends up as env->low when the termination
* criteria below is fulfilled, and use the midpoint
* ceiling when invert is not active so that env->level
* ends up as env->high in that case.
*/
env->level = (env->high + env->low + !env->invert) / 2;
if (env->high == env->low + 1) {
complete(&env->done);
return;
}
/* Set a "safe" DAC level (if there is such a thing)... */
ret = iio_write_channel_raw(env->dac, env->invert ? 0 : env->dac_max);
if (ret < 0)
goto err;
/* ...clear the comparison result... */
envelope_detector_comp_latch(env);
/* ...set the real DAC level... */
ret = iio_write_channel_raw(env->dac, env->level);
if (ret < 0)
goto err;
/* ...and wait for a bit to see if the latch catches anything. */
schedule_delayed_work(&env->comp_timeout,
msecs_to_jiffies(env->comp_interval));
return;
err:
env->level = ret;
complete(&env->done);
}
static void envelope_detector_timeout(struct work_struct *work)
{
struct envelope *env = container_of(work, struct envelope,
comp_timeout.work);
/* Adjust low/high depending on the latch content... */
if (!envelope_detector_comp_latch(env) ^ !env->invert)
env->low = env->level;
else
env->high = env->level;
/* ...and continue the search. */
envelope_detector_setup_compare(env);
}
static int envelope_detector_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct envelope *env = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
/*
* When invert is active, start with high=max+1 and low=0
* since we will end up with the low value when the
* termination criteria is fulfilled (rounding down). And
* start with high=max and low=-1 when invert is not active
* since we will end up with the high value in that case.
* This ensures that the returned value in both cases are
* in the same range as the DAC and is a value that has not
* triggered the comparator.
*/
mutex_lock(&env->read_lock);
env->high = env->dac_max + env->invert;
env->low = -1 + env->invert;
envelope_detector_setup_compare(env);
wait_for_completion(&env->done);
if (env->level < 0) {
ret = env->level;
goto err_unlock;
}
*val = env->invert ? env->dac_max - env->level : env->level;
mutex_unlock(&env->read_lock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
return iio_read_channel_scale(env->dac, val, val2);
}
return -EINVAL;
err_unlock:
mutex_unlock(&env->read_lock);
return ret;
}
static ssize_t envelope_show_invert(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *ch, char *buf)
{
struct envelope *env = iio_priv(indio_dev);
return sprintf(buf, "%u\n", env->invert);
}
static ssize_t envelope_store_invert(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *ch,
const char *buf, size_t len)
{
struct envelope *env = iio_priv(indio_dev);
unsigned long invert;
int ret;
u32 trigger;
ret = kstrtoul(buf, 0, &invert);
if (ret < 0)
return ret;
if (invert > 1)
return -EINVAL;
trigger = invert ? env->comp_irq_trigger_inv : env->comp_irq_trigger;
mutex_lock(&env->read_lock);
if (invert != env->invert)
ret = irq_set_irq_type(env->comp_irq, trigger);
if (!ret) {
env->invert = invert;
ret = len;
}
mutex_unlock(&env->read_lock);
return ret;
}
static ssize_t envelope_show_comp_interval(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *ch,
char *buf)
{
struct envelope *env = iio_priv(indio_dev);
return sprintf(buf, "%u\n", env->comp_interval);
}
static ssize_t envelope_store_comp_interval(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *ch,
const char *buf, size_t len)
{
struct envelope *env = iio_priv(indio_dev);
unsigned long interval;
int ret;
ret = kstrtoul(buf, 0, &interval);
if (ret < 0)
return ret;
if (interval > 1000)
return -EINVAL;
mutex_lock(&env->read_lock);
env->comp_interval = interval;
mutex_unlock(&env->read_lock);
return len;
}
static const struct iio_chan_spec_ext_info envelope_detector_ext_info[] = {
{ .name = "invert",
.read = envelope_show_invert,
.write = envelope_store_invert, },
{ .name = "compare_interval",
.read = envelope_show_comp_interval,
.write = envelope_store_comp_interval, },
{ /* sentinel */ }
};
static const struct iio_chan_spec envelope_detector_iio_channel = {
.type = IIO_ALTVOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)
| BIT(IIO_CHAN_INFO_SCALE),
.ext_info = envelope_detector_ext_info,
.indexed = 1,
};
static const struct iio_info envelope_detector_info = {
.read_raw = &envelope_detector_read_raw,
};
static int envelope_detector_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct envelope *env;
enum iio_chan_type type;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*env));
if (!indio_dev)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
env = iio_priv(indio_dev);
env->comp_interval = 50; /* some sensible default? */
spin_lock_init(&env->comp_lock);
mutex_init(&env->read_lock);
init_completion(&env->done);
INIT_DELAYED_WORK(&env->comp_timeout, envelope_detector_timeout);
indio_dev->name = dev_name(dev);
indio_dev->dev.parent = dev;
indio_dev->dev.of_node = dev->of_node;
indio_dev->info = &envelope_detector_info;
indio_dev->channels = &envelope_detector_iio_channel;
indio_dev->num_channels = 1;
env->dac = devm_iio_channel_get(dev, "dac");
if (IS_ERR(env->dac)) {
if (PTR_ERR(env->dac) != -EPROBE_DEFER)
dev_err(dev, "failed to get dac input channel\n");
return PTR_ERR(env->dac);
}
env->comp_irq = platform_get_irq_byname(pdev, "comp");
if (env->comp_irq < 0)
return env->comp_irq;
ret = devm_request_irq(dev, env->comp_irq, envelope_detector_comp_isr,
0, "envelope-detector", env);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to request interrupt\n");
return ret;
}
env->comp_irq_trigger = irq_get_trigger_type(env->comp_irq);
if (env->comp_irq_trigger & IRQF_TRIGGER_RISING)
env->comp_irq_trigger_inv |= IRQF_TRIGGER_FALLING;
if (env->comp_irq_trigger & IRQF_TRIGGER_FALLING)
env->comp_irq_trigger_inv |= IRQF_TRIGGER_RISING;
if (env->comp_irq_trigger & IRQF_TRIGGER_HIGH)
env->comp_irq_trigger_inv |= IRQF_TRIGGER_LOW;
if (env->comp_irq_trigger & IRQF_TRIGGER_LOW)
env->comp_irq_trigger_inv |= IRQF_TRIGGER_HIGH;
ret = iio_get_channel_type(env->dac, &type);
if (ret < 0)
return ret;
if (type != IIO_VOLTAGE) {
dev_err(dev, "dac is of the wrong type\n");
return -EINVAL;
}
ret = iio_read_max_channel_raw(env->dac, &env->dac_max);
if (ret < 0) {
dev_err(dev, "dac does not indicate its raw maximum value\n");
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id envelope_detector_match[] = {
{ .compatible = "axentia,tse850-envelope-detector", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, envelope_detector_match);
static struct platform_driver envelope_detector_driver = {
.probe = envelope_detector_probe,
.driver = {
.name = "iio-envelope-detector",
.of_match_table = envelope_detector_match,
},
};
module_platform_driver(envelope_detector_driver);
MODULE_DESCRIPTION("Envelope detector using a DAC and a comparator");
MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
MODULE_LICENSE("GPL v2");
|