diff options
author | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2013-10-08 20:23:47 -0700 |
---|---|---|
committer | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2013-10-15 12:53:31 -0700 |
commit | 4102adab9189c8ea2f0cdd2f88345fd25d2790f1 (patch) | |
tree | 235964cfd9c09a5c642a2d0d8745a651a0d4bcfa /kernel/rcutree_plugin.h | |
parent | 252997330908cb8ee3d5714539ed967b977c2eae (diff) | |
download | linux-4102adab9189c8ea2f0cdd2f88345fd25d2790f1.tar.gz |
rcu: Move RCU-related source code to kernel/rcu directory
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/rcutree_plugin.h')
-rw-r--r-- | kernel/rcutree_plugin.h | 2831 |
1 files changed, 0 insertions, 2831 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h deleted file mode 100644 index 8d85a5ce093a..000000000000 --- a/kernel/rcutree_plugin.h +++ /dev/null @@ -1,2831 +0,0 @@ -/* - * Read-Copy Update mechanism for mutual exclusion (tree-based version) - * Internal non-public definitions that provide either classic - * or preemptible semantics. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - * Copyright Red Hat, 2009 - * Copyright IBM Corporation, 2009 - * - * Author: Ingo Molnar <mingo@elte.hu> - * Paul E. McKenney <paulmck@linux.vnet.ibm.com> - */ - -#include <linux/delay.h> -#include <linux/gfp.h> -#include <linux/oom.h> -#include <linux/smpboot.h> -#include "time/tick-internal.h" - -#define RCU_KTHREAD_PRIO 1 - -#ifdef CONFIG_RCU_BOOST -#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO -#else -#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO -#endif - -#ifdef CONFIG_RCU_NOCB_CPU -static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ -static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ -static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ -static char __initdata nocb_buf[NR_CPUS * 5]; -#endif /* #ifdef CONFIG_RCU_NOCB_CPU */ - -/* - * Check the RCU kernel configuration parameters and print informative - * messages about anything out of the ordinary. If you like #ifdef, you - * will love this function. - */ -static void __init rcu_bootup_announce_oddness(void) -{ -#ifdef CONFIG_RCU_TRACE - pr_info("\tRCU debugfs-based tracing is enabled.\n"); -#endif -#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) - pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", - CONFIG_RCU_FANOUT); -#endif -#ifdef CONFIG_RCU_FANOUT_EXACT - pr_info("\tHierarchical RCU autobalancing is disabled.\n"); -#endif -#ifdef CONFIG_RCU_FAST_NO_HZ - pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); -#endif -#ifdef CONFIG_PROVE_RCU - pr_info("\tRCU lockdep checking is enabled.\n"); -#endif -#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE - pr_info("\tRCU torture testing starts during boot.\n"); -#endif -#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) - pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n"); -#endif -#if defined(CONFIG_RCU_CPU_STALL_INFO) - pr_info("\tAdditional per-CPU info printed with stalls.\n"); -#endif -#if NUM_RCU_LVL_4 != 0 - pr_info("\tFour-level hierarchy is enabled.\n"); -#endif - if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) - pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); - if (nr_cpu_ids != NR_CPUS) - pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); -#ifdef CONFIG_RCU_NOCB_CPU -#ifndef CONFIG_RCU_NOCB_CPU_NONE - if (!have_rcu_nocb_mask) { - zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL); - have_rcu_nocb_mask = true; - } -#ifdef CONFIG_RCU_NOCB_CPU_ZERO - pr_info("\tOffload RCU callbacks from CPU 0\n"); - cpumask_set_cpu(0, rcu_nocb_mask); -#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ -#ifdef CONFIG_RCU_NOCB_CPU_ALL - pr_info("\tOffload RCU callbacks from all CPUs\n"); - cpumask_copy(rcu_nocb_mask, cpu_possible_mask); -#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ -#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ - if (have_rcu_nocb_mask) { - if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { - pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); - cpumask_and(rcu_nocb_mask, cpu_possible_mask, - rcu_nocb_mask); - } - cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask); - pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf); - if (rcu_nocb_poll) - pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); - } -#endif /* #ifdef CONFIG_RCU_NOCB_CPU */ -} - -#ifdef CONFIG_TREE_PREEMPT_RCU - -RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); -static struct rcu_state *rcu_state = &rcu_preempt_state; - -static int rcu_preempted_readers_exp(struct rcu_node *rnp); - -/* - * Tell them what RCU they are running. - */ -static void __init rcu_bootup_announce(void) -{ - pr_info("Preemptible hierarchical RCU implementation.\n"); - rcu_bootup_announce_oddness(); -} - -/* - * Return the number of RCU-preempt batches processed thus far - * for debug and statistics. - */ -long rcu_batches_completed_preempt(void) -{ - return rcu_preempt_state.completed; -} -EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); - -/* - * Return the number of RCU batches processed thus far for debug & stats. - */ -long rcu_batches_completed(void) -{ - return rcu_batches_completed_preempt(); -} -EXPORT_SYMBOL_GPL(rcu_batches_completed); - -/* - * Force a quiescent state for preemptible RCU. - */ -void rcu_force_quiescent_state(void) -{ - force_quiescent_state(&rcu_preempt_state); -} -EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); - -/* - * Record a preemptible-RCU quiescent state for the specified CPU. Note - * that this just means that the task currently running on the CPU is - * not in a quiescent state. There might be any number of tasks blocked - * while in an RCU read-side critical section. - * - * Unlike the other rcu_*_qs() functions, callers to this function - * must disable irqs in order to protect the assignment to - * ->rcu_read_unlock_special. - */ -static void rcu_preempt_qs(int cpu) -{ - struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); - - if (rdp->passed_quiesce == 0) - trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs")); - rdp->passed_quiesce = 1; - current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; -} - -/* - * We have entered the scheduler, and the current task might soon be - * context-switched away from. If this task is in an RCU read-side - * critical section, we will no longer be able to rely on the CPU to - * record that fact, so we enqueue the task on the blkd_tasks list. - * The task will dequeue itself when it exits the outermost enclosing - * RCU read-side critical section. Therefore, the current grace period - * cannot be permitted to complete until the blkd_tasks list entries - * predating the current grace period drain, in other words, until - * rnp->gp_tasks becomes NULL. - * - * Caller must disable preemption. - */ -static void rcu_preempt_note_context_switch(int cpu) -{ - struct task_struct *t = current; - unsigned long flags; - struct rcu_data *rdp; - struct rcu_node *rnp; - - if (t->rcu_read_lock_nesting > 0 && - (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { - - /* Possibly blocking in an RCU read-side critical section. */ - rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); - rnp = rdp->mynode; - raw_spin_lock_irqsave(&rnp->lock, flags); - t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; - t->rcu_blocked_node = rnp; - - /* - * If this CPU has already checked in, then this task - * will hold up the next grace period rather than the - * current grace period. Queue the task accordingly. - * If the task is queued for the current grace period - * (i.e., this CPU has not yet passed through a quiescent - * state for the current grace period), then as long - * as that task remains queued, the current grace period - * cannot end. Note that there is some uncertainty as - * to exactly when the current grace period started. - * We take a conservative approach, which can result - * in unnecessarily waiting on tasks that started very - * slightly after the current grace period began. C'est - * la vie!!! - * - * But first, note that the current CPU must still be - * on line! - */ - WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); - WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); - if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { - list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); - rnp->gp_tasks = &t->rcu_node_entry; -#ifdef CONFIG_RCU_BOOST - if (rnp->boost_tasks != NULL) - rnp->boost_tasks = rnp->gp_tasks; -#endif /* #ifdef CONFIG_RCU_BOOST */ - } else { - list_add(&t->rcu_node_entry, &rnp->blkd_tasks); - if (rnp->qsmask & rdp->grpmask) - rnp->gp_tasks = &t->rcu_node_entry; - } - trace_rcu_preempt_task(rdp->rsp->name, - t->pid, - (rnp->qsmask & rdp->grpmask) - ? rnp->gpnum - : rnp->gpnum + 1); - raw_spin_unlock_irqrestore(&rnp->lock, flags); - } else if (t->rcu_read_lock_nesting < 0 && - t->rcu_read_unlock_special) { - - /* - * Complete exit from RCU read-side critical section on - * behalf of preempted instance of __rcu_read_unlock(). - */ - rcu_read_unlock_special(t); - } - - /* - * Either we were not in an RCU read-side critical section to - * begin with, or we have now recorded that critical section - * globally. Either way, we can now note a quiescent state - * for this CPU. Again, if we were in an RCU read-side critical - * section, and if that critical section was blocking the current - * grace period, then the fact that the task has been enqueued - * means that we continue to block the current grace period. - */ - local_irq_save(flags); - rcu_preempt_qs(cpu); - local_irq_restore(flags); -} - -/* - * Check for preempted RCU readers blocking the current grace period - * for the specified rcu_node structure. If the caller needs a reliable - * answer, it must hold the rcu_node's ->lock. - */ -static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) -{ - return rnp->gp_tasks != NULL; -} - -/* - * Record a quiescent state for all tasks that were previously queued - * on the specified rcu_node structure and that were blocking the current - * RCU grace period. The caller must hold the specified rnp->lock with - * irqs disabled, and this lock is released upon return, but irqs remain - * disabled. - */ -static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) - __releases(rnp->lock) -{ - unsigned long mask; - struct rcu_node *rnp_p; - - if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - return; /* Still need more quiescent states! */ - } - - rnp_p = rnp->parent; - if (rnp_p == NULL) { - /* - * Either there is only one rcu_node in the tree, - * or tasks were kicked up to root rcu_node due to - * CPUs going offline. - */ - rcu_report_qs_rsp(&rcu_preempt_state, flags); - return; - } - - /* Report up the rest of the hierarchy. */ - mask = rnp->grpmask; - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ - raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ - rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); -} - -/* - * Advance a ->blkd_tasks-list pointer to the next entry, instead - * returning NULL if at the end of the list. - */ -static struct list_head *rcu_next_node_entry(struct task_struct *t, - struct rcu_node *rnp) -{ - struct list_head *np; - - np = t->rcu_node_entry.next; - if (np == &rnp->blkd_tasks) - np = NULL; - return np; -} - -/* - * Handle special cases during rcu_read_unlock(), such as needing to - * notify RCU core processing or task having blocked during the RCU - * read-side critical section. - */ -void rcu_read_unlock_special(struct task_struct *t) -{ - int empty; - int empty_exp; - int empty_exp_now; - unsigned long flags; - struct list_head *np; -#ifdef CONFIG_RCU_BOOST - struct rt_mutex *rbmp = NULL; -#endif /* #ifdef CONFIG_RCU_BOOST */ - struct rcu_node *rnp; - int special; - - /* NMI handlers cannot block and cannot safely manipulate state. */ - if (in_nmi()) - return; - - local_irq_save(flags); - - /* - * If RCU core is waiting for this CPU to exit critical section, - * let it know that we have done so. - */ - special = t->rcu_read_unlock_special; - if (special & RCU_READ_UNLOCK_NEED_QS) { - rcu_preempt_qs(smp_processor_id()); - } - - /* Hardware IRQ handlers cannot block. */ - if (in_irq() || in_serving_softirq()) { - local_irq_restore(flags); - return; - } - - /* Clean up if blocked during RCU read-side critical section. */ - if (special & RCU_READ_UNLOCK_BLOCKED) { - t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; - - /* - * Remove this task from the list it blocked on. The - * task can migrate while we acquire the lock, but at - * most one time. So at most two passes through loop. - */ - for (;;) { - rnp = t->rcu_blocked_node; - raw_spin_lock(&rnp->lock); /* irqs already disabled. */ - if (rnp == t->rcu_blocked_node) - break; - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ - } - empty = !rcu_preempt_blocked_readers_cgp(rnp); - empty_exp = !rcu_preempted_readers_exp(rnp); - smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ - np = rcu_next_node_entry(t, rnp); - list_del_init(&t->rcu_node_entry); - t->rcu_blocked_node = NULL; - trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), - rnp->gpnum, t->pid); - if (&t->rcu_node_entry == rnp->gp_tasks) - rnp->gp_tasks = np; - if (&t->rcu_node_entry == rnp->exp_tasks) - rnp->exp_tasks = np; -#ifdef CONFIG_RCU_BOOST - if (&t->rcu_node_entry == rnp->boost_tasks) - rnp->boost_tasks = np; - /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */ - if (t->rcu_boost_mutex) { - rbmp = t->rcu_boost_mutex; - t->rcu_boost_mutex = NULL; - } -#endif /* #ifdef CONFIG_RCU_BOOST */ - - /* - * If this was the last task on the current list, and if - * we aren't waiting on any CPUs, report the quiescent state. - * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, - * so we must take a snapshot of the expedited state. - */ - empty_exp_now = !rcu_preempted_readers_exp(rnp); - if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { - trace_rcu_quiescent_state_report(TPS("preempt_rcu"), - rnp->gpnum, - 0, rnp->qsmask, - rnp->level, - rnp->grplo, - rnp->grphi, - !!rnp->gp_tasks); - rcu_report_unblock_qs_rnp(rnp, flags); - } else { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - } - -#ifdef CONFIG_RCU_BOOST - /* Unboost if we were boosted. */ - if (rbmp) - rt_mutex_unlock(rbmp); -#endif /* #ifdef CONFIG_RCU_BOOST */ - - /* - * If this was the last task on the expedited lists, - * then we need to report up the rcu_node hierarchy. - */ - if (!empty_exp && empty_exp_now) - rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); - } else { - local_irq_restore(flags); - } -} - -#ifdef CONFIG_RCU_CPU_STALL_VERBOSE - -/* - * Dump detailed information for all tasks blocking the current RCU - * grace period on the specified rcu_node structure. - */ -static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) -{ - unsigned long flags; - struct task_struct *t; - - raw_spin_lock_irqsave(&rnp->lock, flags); - if (!rcu_preempt_blocked_readers_cgp(rnp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - return; - } - t = list_entry(rnp->gp_tasks, - struct task_struct, rcu_node_entry); - list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) - sched_show_task(t); - raw_spin_unlock_irqrestore(&rnp->lock, flags); -} - -/* - * Dump detailed information for all tasks blocking the current RCU - * grace period. - */ -static void rcu_print_detail_task_stall(struct rcu_state *rsp) -{ - struct rcu_node *rnp = rcu_get_root(rsp); - - rcu_print_detail_task_stall_rnp(rnp); - rcu_for_each_leaf_node(rsp, rnp) - rcu_print_detail_task_stall_rnp(rnp); -} - -#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ - -static void rcu_print_detail_task_stall(struct rcu_state *rsp) -{ -} - -#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ - -#ifdef CONFIG_RCU_CPU_STALL_INFO - -static void rcu_print_task_stall_begin(struct rcu_node *rnp) -{ - pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", - rnp->level, rnp->grplo, rnp->grphi); -} - -static void rcu_print_task_stall_end(void) -{ - pr_cont("\n"); -} - -#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ - -static void rcu_print_task_stall_begin(struct rcu_node *rnp) -{ -} - -static void rcu_print_task_stall_end(void) -{ -} - -#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ - -/* - * Scan the current list of tasks blocked within RCU read-side critical - * sections, printing out the tid of each. - */ -static int rcu_print_task_stall(struct rcu_node *rnp) -{ - struct task_struct *t; - int ndetected = 0; - - if (!rcu_preempt_blocked_readers_cgp(rnp)) - return 0; - rcu_print_task_stall_begin(rnp); - t = list_entry(rnp->gp_tasks, - struct task_struct, rcu_node_entry); - list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { - pr_cont(" P%d", t->pid); - ndetected++; - } - rcu_print_task_stall_end(); - return ndetected; -} - -/* - * Check that the list of blocked tasks for the newly completed grace - * period is in fact empty. It is a serious bug to complete a grace - * period that still has RCU readers blocked! This function must be - * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock - * must be held by the caller. - * - * Also, if there are blocked tasks on the list, they automatically - * block the newly created grace period, so set up ->gp_tasks accordingly. - */ -static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) -{ - WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); - if (!list_empty(&rnp->blkd_tasks)) - rnp->gp_tasks = rnp->blkd_tasks.next; - WARN_ON_ONCE(rnp->qsmask); -} - -#ifdef CONFIG_HOTPLUG_CPU - -/* - * Handle tasklist migration for case in which all CPUs covered by the - * specified rcu_node have gone offline. Move them up to the root - * rcu_node. The reason for not just moving them to the immediate - * parent is to remove the need for rcu_read_unlock_special() to - * make more than two attempts to acquire the target rcu_node's lock. - * Returns true if there were tasks blocking the current RCU grace - * period. - * - * Returns 1 if there was previously a task blocking the current grace - * period on the specified rcu_node structure. - * - * The caller must hold rnp->lock with irqs disabled. - */ -static int rcu_preempt_offline_tasks(struct rcu_state *rsp, - struct rcu_node *rnp, - struct rcu_data *rdp) -{ - struct list_head *lp; - struct list_head *lp_root; - int retval = 0; - struct rcu_node *rnp_root = rcu_get_root(rsp); - struct task_struct *t; - - if (rnp == rnp_root) { - WARN_ONCE(1, "Last CPU thought to be offlined?"); - return 0; /* Shouldn't happen: at least one CPU online. */ - } - - /* If we are on an internal node, complain bitterly. */ - WARN_ON_ONCE(rnp != rdp->mynode); - - /* - * Move tasks up to root rcu_node. Don't try to get fancy for - * this corner-case operation -- just put this node's tasks - * at the head of the root node's list, and update the root node's - * ->gp_tasks and ->exp_tasks pointers to those of this node's, - * if non-NULL. This might result in waiting for more tasks than - * absolutely necessary, but this is a good performance/complexity - * tradeoff. - */ - if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) - retval |= RCU_OFL_TASKS_NORM_GP; - if (rcu_preempted_readers_exp(rnp)) - retval |= RCU_OFL_TASKS_EXP_GP; - lp = &rnp->blkd_tasks; - lp_root = &rnp_root->blkd_tasks; - while (!list_empty(lp)) { - t = list_entry(lp->next, typeof(*t), rcu_node_entry); - raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ - list_del(&t->rcu_node_entry); - t->rcu_blocked_node = rnp_root; - list_add(&t->rcu_node_entry, lp_root); - if (&t->rcu_node_entry == rnp->gp_tasks) - rnp_root->gp_tasks = rnp->gp_tasks; - if (&t->rcu_node_entry == rnp->exp_tasks) - rnp_root->exp_tasks = rnp->exp_tasks; -#ifdef CONFIG_RCU_BOOST - if (&t->rcu_node_entry == rnp->boost_tasks) - rnp_root->boost_tasks = rnp->boost_tasks; -#endif /* #ifdef CONFIG_RCU_BOOST */ - raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ - } - - rnp->gp_tasks = NULL; - rnp->exp_tasks = NULL; -#ifdef CONFIG_RCU_BOOST - rnp->boost_tasks = NULL; - /* - * In case root is being boosted and leaf was not. Make sure - * that we boost the tasks blocking the current grace period - * in this case. - */ - raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ - if (rnp_root->boost_tasks != NULL && - rnp_root->boost_tasks != rnp_root->gp_tasks && - rnp_root->boost_tasks != rnp_root->exp_tasks) - rnp_root->boost_tasks = rnp_root->gp_tasks; - raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ -#endif /* #ifdef CONFIG_RCU_BOOST */ - - return retval; -} - -#endif /* #ifdef CONFIG_HOTPLUG_CPU */ - -/* - * Check for a quiescent state from the current CPU. When a task blocks, - * the task is recorded in the corresponding CPU's rcu_node structure, - * which is checked elsewhere. - * - * Caller must disable hard irqs. - */ -static void rcu_preempt_check_callbacks(int cpu) -{ - struct task_struct *t = current; - - if (t->rcu_read_lock_nesting == 0) { - rcu_preempt_qs(cpu); - return; - } - if (t->rcu_read_lock_nesting > 0 && - per_cpu(rcu_preempt_data, cpu).qs_pending) - t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; -} - -#ifdef CONFIG_RCU_BOOST - -static void rcu_preempt_do_callbacks(void) -{ - rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); -} - -#endif /* #ifdef CONFIG_RCU_BOOST */ - -/* - * Queue a preemptible-RCU callback for invocation after a grace period. - */ -void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) -{ - __call_rcu(head, func, &rcu_preempt_state, -1, 0); -} -EXPORT_SYMBOL_GPL(call_rcu); - -/* - * Queue an RCU callback for lazy invocation after a grace period. - * This will likely be later named something like "call_rcu_lazy()", - * but this change will require some way of tagging the lazy RCU - * callbacks in the list of pending callbacks. Until then, this - * function may only be called from __kfree_rcu(). - */ -void kfree_call_rcu(struct rcu_head *head, - void (*func)(struct rcu_head *rcu)) -{ - __call_rcu(head, func, &rcu_preempt_state, -1, 1); -} -EXPORT_SYMBOL_GPL(kfree_call_rcu); - -/** - * synchronize_rcu - wait until a grace period has elapsed. - * - * Control will return to the caller some time after a full grace - * period has elapsed, in other words after all currently executing RCU - * read-side critical sections have completed. Note, however, that - * upon return from synchronize_rcu(), the caller might well be executing - * concurrently with new RCU read-side critical sections that began while - * synchronize_rcu() was waiting. RCU read-side critical sections are - * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. - * - * See the description of synchronize_sched() for more detailed information - * on memory ordering guarantees. - */ -void synchronize_rcu(void) -{ - rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && - !lock_is_held(&rcu_lock_map) && - !lock_is_held(&rcu_sched_lock_map), - "Illegal synchronize_rcu() in RCU read-side critical section"); - if (!rcu_scheduler_active) - return; - if (rcu_expedited) - synchronize_rcu_expedited(); - else - wait_rcu_gp(call_rcu); -} -EXPORT_SYMBOL_GPL(synchronize_rcu); - -static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); -static unsigned long sync_rcu_preempt_exp_count; -static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); - -/* - * Return non-zero if there are any tasks in RCU read-side critical - * sections blocking the current preemptible-RCU expedited grace period. - * If there is no preemptible-RCU expedited grace period currently in - * progress, returns zero unconditionally. - */ -static int rcu_preempted_readers_exp(struct rcu_node *rnp) -{ - return rnp->exp_tasks != NULL; -} - -/* - * return non-zero if there is no RCU expedited grace period in progress - * for the specified rcu_node structure, in other words, if all CPUs and - * tasks covered by the specified rcu_node structure have done their bit - * for the current expedited grace period. Works only for preemptible - * RCU -- other RCU implementation use other means. - * - * Caller must hold sync_rcu_preempt_exp_mutex. - */ -static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) -{ - return !rcu_preempted_readers_exp(rnp) && - ACCESS_ONCE(rnp->expmask) == 0; -} - -/* - * Report the exit from RCU read-side critical section for the last task - * that queued itself during or before the current expedited preemptible-RCU - * grace period. This event is reported either to the rcu_node structure on - * which the task was queued or to one of that rcu_node structure's ancestors, - * recursively up the tree. (Calm down, calm down, we do the recursion - * iteratively!) - * - * Most callers will set the "wake" flag, but the task initiating the - * expedited grace period need not wake itself. - * - * Caller must hold sync_rcu_preempt_exp_mutex. - */ -static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, - bool wake) -{ - unsigned long flags; - unsigned long mask; - - raw_spin_lock_irqsave(&rnp->lock, flags); - for (;;) { - if (!sync_rcu_preempt_exp_done(rnp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - break; - } - if (rnp->parent == NULL) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - if (wake) - wake_up(&sync_rcu_preempt_exp_wq); - break; - } - mask = rnp->grpmask; - raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ - rnp = rnp->parent; - raw_spin_lock(&rnp->lock); /* irqs already disabled */ - rnp->expmask &= ~mask; - } -} - -/* - * Snapshot the tasks blocking the newly started preemptible-RCU expedited - * grace period for the specified rcu_node structure. If there are no such - * tasks, report it up the rcu_node hierarchy. - * - * Caller must hold sync_rcu_preempt_exp_mutex and must exclude - * CPU hotplug operations. - */ -static void -sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) -{ - unsigned long flags; - int must_wait = 0; - - raw_spin_lock_irqsave(&rnp->lock, flags); - if (list_empty(&rnp->blkd_tasks)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - } else { - rnp->exp_tasks = rnp->blkd_tasks.next; - rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ - must_wait = 1; - } - if (!must_wait) - rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ -} - -/** - * synchronize_rcu_expedited - Brute-force RCU grace period - * - * Wait for an RCU-preempt grace period, but expedite it. The basic - * idea is to invoke synchronize_sched_expedited() to push all the tasks to - * the ->blkd_tasks lists and wait for this list to drain. This consumes - * significant time on all CPUs and is unfriendly to real-time workloads, - * so is thus not recommended for any sort of common-case code. - * In fact, if you are using synchronize_rcu_expedited() in a loop, - * please restructure your code to batch your updates, and then Use a - * single synchronize_rcu() instead. - * - * Note that it is illegal to call this function while holding any lock - * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal - * to call this function from a CPU-hotplug notifier. Failing to observe - * these restriction will result in deadlock. - */ -void synchronize_rcu_expedited(void) -{ - unsigned long flags; - struct rcu_node *rnp; - struct rcu_state *rsp = &rcu_preempt_state; - unsigned long snap; - int trycount = 0; - - smp_mb(); /* Caller's modifications seen first by other CPUs. */ - snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; - smp_mb(); /* Above access cannot bleed into critical section. */ - - /* - * Block CPU-hotplug operations. This means that any CPU-hotplug - * operation that finds an rcu_node structure with tasks in the - * process of being boosted will know that all tasks blocking - * this expedited grace period will already be in the process of - * being boosted. This simplifies the process of moving tasks - * from leaf to root rcu_node structures. - */ - get_online_cpus(); - - /* - * Acquire lock, falling back to synchronize_rcu() if too many - * lock-acquisition failures. Of course, if someone does the - * expedited grace period for us, just leave. - */ - while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { - if (ULONG_CMP_LT(snap, - ACCESS_ONCE(sync_rcu_preempt_exp_count))) { - put_online_cpus(); - goto mb_ret; /* Others did our work for us. */ - } - if (trycount++ < 10) { - udelay(trycount * num_online_cpus()); - } else { - put_online_cpus(); - wait_rcu_gp(call_rcu); - return; - } - } - if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { - put_online_cpus(); - goto unlock_mb_ret; /* Others did our work for us. */ - } - - /* force all RCU readers onto ->blkd_tasks lists. */ - synchronize_sched_expedited(); - - /* Initialize ->expmask for all non-leaf rcu_node structures. */ - rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { - raw_spin_lock_irqsave(&rnp->lock, flags); - rnp->expmask = rnp->qsmaskinit; - raw_spin_unlock_irqrestore(&rnp->lock, flags); - } - - /* Snapshot current state of ->blkd_tasks lists. */ - rcu_for_each_leaf_node(rsp, rnp) - sync_rcu_preempt_exp_init(rsp, rnp); - if (NUM_RCU_NODES > 1) - sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); - - put_online_cpus(); - - /* Wait for snapshotted ->blkd_tasks lists to drain. */ - rnp = rcu_get_root(rsp); - wait_event(sync_rcu_preempt_exp_wq, - sync_rcu_preempt_exp_done(rnp)); - - /* Clean up and exit. */ - smp_mb(); /* ensure expedited GP seen before counter increment. */ - ACCESS_ONCE(sync_rcu_preempt_exp_count)++; -unlock_mb_ret: - mutex_unlock(&sync_rcu_preempt_exp_mutex); -mb_ret: - smp_mb(); /* ensure subsequent action seen after grace period. */ -} -EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); - -/** - * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. - * - * Note that this primitive does not necessarily wait for an RCU grace period - * to complete. For example, if there are no RCU callbacks queued anywhere - * in the system, then rcu_barrier() is within its rights to return - * immediately, without waiting for anything, much less an RCU grace period. - */ -void rcu_barrier(void) -{ - _rcu_barrier(&rcu_preempt_state); -} -EXPORT_SYMBOL_GPL(rcu_barrier); - -/* - * Initialize preemptible RCU's state structures. - */ -static void __init __rcu_init_preempt(void) -{ - rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); -} - -/* - * Check for a task exiting while in a preemptible-RCU read-side - * critical section, clean up if so. No need to issue warnings, - * as debug_check_no_locks_held() already does this if lockdep - * is enabled. - */ -void exit_rcu(void) -{ - struct task_struct *t = current; - - if (likely(list_empty(¤t->rcu_node_entry))) - return; - t->rcu_read_lock_nesting = 1; - barrier(); - t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED; - __rcu_read_unlock(); -} - -#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ - -static struct rcu_state *rcu_state = &rcu_sched_state; - -/* - * Tell them what RCU they are running. - */ -static void __init rcu_bootup_announce(void) -{ - pr_info("Hierarchical RCU implementation.\n"); - rcu_bootup_announce_oddness(); -} - -/* - * Return the number of RCU batches processed thus far for debug & stats. - */ -long rcu_batches_completed(void) -{ - return rcu_batches_completed_sched(); -} -EXPORT_SYMBOL_GPL(rcu_batches_completed); - -/* - * Force a quiescent state for RCU, which, because there is no preemptible - * RCU, becomes the same as rcu-sched. - */ -void rcu_force_quiescent_state(void) -{ - rcu_sched_force_quiescent_state(); -} -EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); - -/* - * Because preemptible RCU does not exist, we never have to check for - * CPUs being in quiescent states. - */ -static void rcu_preempt_note_context_switch(int cpu) -{ -} - -/* - * Because preemptible RCU does not exist, there are never any preempted - * RCU readers. - */ -static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) -{ - return 0; -} - -#ifdef CONFIG_HOTPLUG_CPU - -/* Because preemptible RCU does not exist, no quieting of tasks. */ -static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) -{ - raw_spin_unlock_irqrestore(&rnp->lock, flags); -} - -#endif /* #ifdef CONFIG_HOTPLUG_CPU */ - -/* - * Because preemptible RCU does not exist, we never have to check for - * tasks blocked within RCU read-side critical sections. - */ -static void rcu_print_detail_task_stall(struct rcu_state *rsp) -{ -} - -/* - * Because preemptible RCU does not exist, we never have to check for - * tasks blocked within RCU read-side critical sections. - */ -static int rcu_print_task_stall(struct rcu_node *rnp) -{ - return 0; -} - -/* - * Because there is no preemptible RCU, there can be no readers blocked, - * so there is no need to check for blocked tasks. So check only for - * bogus qsmask values. - */ -static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) -{ - WARN_ON_ONCE(rnp->qsmask); -} - -#ifdef CONFIG_HOTPLUG_CPU - -/* - * Because preemptible RCU does not exist, it never needs to migrate - * tasks that were blocked within RCU read-side critical sections, and - * such non-existent tasks cannot possibly have been blocking the current - * grace period. - */ -static int rcu_preempt_offline_tasks(struct rcu_state *rsp, - struct rcu_node *rnp, - struct rcu_data *rdp) -{ - return 0; -} - -#endif /* #ifdef CONFIG_HOTPLUG_CPU */ - -/* - * Because preemptible RCU does not exist, it never has any callbacks - * to check. - */ -static void rcu_preempt_check_callbacks(int cpu) -{ -} - -/* - * Queue an RCU callback for lazy invocation after a grace period. - * This will likely be later named something like "call_rcu_lazy()", - * but this change will require some way of tagging the lazy RCU - * callbacks in the list of pending callbacks. Until then, this - * function may only be called from __kfree_rcu(). - * - * Because there is no preemptible RCU, we use RCU-sched instead. - */ -void kfree_call_rcu(struct rcu_head *head, - void (*func)(struct rcu_head *rcu)) -{ - __call_rcu(head, func, &rcu_sched_state, -1, 1); -} -EXPORT_SYMBOL_GPL(kfree_call_rcu); - -/* - * Wait for an rcu-preempt grace period, but make it happen quickly. - * But because preemptible RCU does not exist, map to rcu-sched. - */ -void synchronize_rcu_expedited(void) -{ - synchronize_sched_expedited(); -} -EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); - -#ifdef CONFIG_HOTPLUG_CPU - -/* - * Because preemptible RCU does not exist, there is never any need to - * report on tasks preempted in RCU read-side critical sections during - * expedited RCU grace periods. - */ -static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, - bool wake) -{ -} - -#endif /* #ifdef CONFIG_HOTPLUG_CPU */ - -/* - * Because preemptible RCU does not exist, rcu_barrier() is just - * another name for rcu_barrier_sched(). - */ -void rcu_barrier(void) -{ - rcu_barrier_sched(); -} -EXPORT_SYMBOL_GPL(rcu_barrier); - -/* - * Because preemptible RCU does not exist, it need not be initialized. - */ -static void __init __rcu_init_preempt(void) -{ -} - -/* - * Because preemptible RCU does not exist, tasks cannot possibly exit - * while in preemptible RCU read-side critical sections. - */ -void exit_rcu(void) -{ -} - -#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ - -#ifdef CONFIG_RCU_BOOST - -#include "rtmutex_common.h" - -#ifdef CONFIG_RCU_TRACE - -static void rcu_initiate_boost_trace(struct rcu_node *rnp) -{ - if (list_empty(&rnp->blkd_tasks)) - rnp->n_balk_blkd_tasks++; - else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) - rnp->n_balk_exp_gp_tasks++; - else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) - rnp->n_balk_boost_tasks++; - else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) - rnp->n_balk_notblocked++; - else if (rnp->gp_tasks != NULL && - ULONG_CMP_LT(jiffies, rnp->boost_time)) - rnp->n_balk_notyet++; - else - rnp->n_balk_nos++; -} - -#else /* #ifdef CONFIG_RCU_TRACE */ - -static void rcu_initiate_boost_trace(struct rcu_node *rnp) -{ -} - -#endif /* #else #ifdef CONFIG_RCU_TRACE */ - -static void rcu_wake_cond(struct task_struct *t, int status) -{ - /* - * If the thread is yielding, only wake it when this - * is invoked from idle - */ - if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) - wake_up_process(t); -} - -/* - * Carry out RCU priority boosting on the task indicated by ->exp_tasks - * or ->boost_tasks, advancing the pointer to the next task in the - * ->blkd_tasks list. - * - * Note that irqs must be enabled: boosting the task can block. - * Returns 1 if there are more tasks needing to be boosted. - */ -static int rcu_boost(struct rcu_node *rnp) -{ - unsigned long flags; - struct rt_mutex mtx; - struct task_struct *t; - struct list_head *tb; - - if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) - return 0; /* Nothing left to boost. */ - - raw_spin_lock_irqsave(&rnp->lock, flags); - - /* - * Recheck under the lock: all tasks in need of boosting - * might exit their RCU read-side critical sections on their own. - */ - if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); - return 0; - } - - /* - * Preferentially boost tasks blocking expedited grace periods. - * This cannot starve the normal grace periods because a second - * expedited grace period must boost all blocked tasks, including - * those blocking the pre-existing normal grace period. - */ - if (rnp->exp_tasks != NULL) { - tb = rnp->exp_tasks; - rnp->n_exp_boosts++; - } else { - tb = rnp->boost_tasks; - rnp->n_normal_boosts++; - } - rnp->n_tasks_boosted++; - - /* - * We boost task t by manufacturing an rt_mutex that appears to - * be held by task t. We leave a pointer to that rt_mutex where - * task t can find it, and task t will release the mutex when it - * exits its outermost RCU read-side critical section. Then - * simply acquiring this artificial rt_mutex will boost task - * t's priority. (Thanks to tglx for suggesting this approach!) - * - * Note that task t must acquire rnp->lock to remove itself from - * the ->blkd_tasks list, which it will do from exit() if from - * nowhere else. We therefore are guaranteed that task t will - * stay around at least until we drop rnp->lock. Note that - * rnp->lock also resolves races between our priority boosting - * and task t's exiting its outermost RCU read-side critical - * section. - */ - t = container_of(tb, struct task_struct, rcu_node_entry); - rt_mutex_init_proxy_locked(&mtx, t); - t->rcu_boost_mutex = &mtx; - raw_spin_unlock_irqrestore(&rnp->lock, flags); - rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */ - rt_mutex_unlock(&mtx); /* Keep lockdep happy. */ - - return ACCESS_ONCE(rnp->exp_tasks) != NULL || - ACCESS_ONCE(rnp->boost_tasks) != NULL; -} - -/* - * Priority-boosting kthread. One per leaf rcu_node and one for the - * root rcu_node. - */ -static int rcu_boost_kthread(void *arg) -{ - struct rcu_node *rnp = (struct rcu_node *)arg; - int spincnt = 0; - int more2boost; - - trace_rcu_utilization(TPS("Start boost kthread@init")); - for (;;) { - rnp->boost_kthread_status = RCU_KTHREAD_WAITING; - trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); - rcu_wait(rnp->boost_tasks || rnp->exp_tasks); - trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); - rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; - more2boost = rcu_boost(rnp); - if (more2boost) - spincnt++; - else - spincnt = 0; - if (spincnt > 10) { - rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; - trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); - schedule_timeout_interruptible(2); - trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); - spincnt = 0; - } - } - /* NOTREACHED */ - trace_rcu_utilization(TPS("End boost kthread@notreached")); - return 0; -} - -/* - * Check to see if it is time to start boosting RCU readers that are - * blocking the current grace period, and, if so, tell the per-rcu_node - * kthread to start boosting them. If there is an expedited grace - * period in progress, it is always time to boost. - * - * The caller must hold rnp->lock, which this function releases. - * The ->boost_kthread_task is immortal, so we don't need to worry - * about it going away. - */ -static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) -{ - struct task_struct *t; - - if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { - rnp->n_balk_exp_gp_tasks++; - raw_spin_unlock_irqrestore(&rnp->lock, flags); - return; - } - if (rnp->exp_tasks != NULL || - (rnp->gp_tasks != NULL && - rnp->boost_tasks == NULL && - rnp->qsmask == 0 && - ULONG_CMP_GE(jiffies, rnp->boost_time))) { - if (rnp->exp_tasks == NULL) - rnp->boost_tasks = rnp->gp_tasks; - raw_spin_unlock_irqrestore(&rnp->lock, flags); - t = rnp->boost_kthread_task; - if (t) - rcu_wake_cond(t, rnp->boost_kthread_status); - } else { - rcu_initiate_boost_trace(rnp); - raw_spin_unlock_irqrestore(&rnp->lock, flags); - } -} - -/* - * Wake up the per-CPU kthread to invoke RCU callbacks. - */ -static void invoke_rcu_callbacks_kthread(void) -{ - unsigned long flags; - - local_irq_save(flags); - __this_cpu_write(rcu_cpu_has_work, 1); - if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && - current != __this_cpu_read(rcu_cpu_kthread_task)) { - rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), - __this_cpu_read(rcu_cpu_kthread_status)); - } - local_irq_restore(flags); -} - -/* - * Is the current CPU running the RCU-callbacks kthread? - * Caller must have preemption disabled. - */ -static bool rcu_is_callbacks_kthread(void) -{ - return __this_cpu_read(rcu_cpu_kthread_task) == current; -} - -#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) - -/* - * Do priority-boost accounting for the start of a new grace period. - */ -static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) -{ - rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; -} - -/* - * Create an RCU-boost kthread for the specified node if one does not - * already exist. We only create this kthread for preemptible RCU. - * Returns zero if all is well, a negated errno otherwise. - */ -static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, - struct rcu_node *rnp) -{ - int rnp_index = rnp - &rsp->node[0]; - unsigned long flags; - struct sched_param sp; - struct task_struct *t; - - if (&rcu_preempt_state != rsp) - return 0; - - if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) - return 0; - - rsp->boost = 1; - if (rnp->boost_kthread_task != NULL) - return 0; - t = kthread_create(rcu_boost_kthread, (void *)rnp, - "rcub/%d", rnp_index); - if (IS_ERR(t)) - return PTR_ERR(t); - raw_spin_lock_irqsave(&rnp->lock, flags); - rnp->boost_kthread_task = t; - raw_spin_unlock_irqrestore(&rnp->lock, flags); - sp.sched_priority = RCU_BOOST_PRIO; - sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); - wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ - return 0; -} - -static void rcu_kthread_do_work(void) -{ - rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); - rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); - rcu_preempt_do_callbacks(); -} - -static void rcu_cpu_kthread_setup(unsigned int cpu) -{ - struct sched_param sp; - - sp.sched_priority = RCU_KTHREAD_PRIO; - sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); -} - -static void rcu_cpu_kthread_park(unsigned int cpu) -{ - per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; -} - -static int rcu_cpu_kthread_should_run(unsigned int cpu) -{ - return __this_cpu_read(rcu_cpu_has_work); -} - -/* - * Per-CPU kernel thread that invokes RCU callbacks. This replaces the - * RCU softirq used in flavors and configurations of RCU that do not - * support RCU priority boosting. - */ -static void rcu_cpu_kthread(unsigned int cpu) -{ - unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); - char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); - int spincnt; - - for (spincnt = 0; spincnt < 10; spincnt++) { - trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); - local_bh_disable(); - *statusp = RCU_KTHREAD_RUNNING; - this_cpu_inc(rcu_cpu_kthread_loops); - local_irq_disable(); - work = *workp; - *workp = 0; - local_irq_enable(); - if (work) - rcu_kthread_do_work(); - local_bh_enable(); - if (*workp == 0) { - trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); - *statusp = RCU_KTHREAD_WAITING; - return; - } - } - *statusp = RCU_KTHREAD_YIELDING; - trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); - schedule_timeout_interruptible(2); - trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); - *statusp = RCU_KTHREAD_WAITING; -} - -/* - * Set the per-rcu_node kthread's affinity to cover all CPUs that are - * served by the rcu_node in question. The CPU hotplug lock is still - * held, so the value of rnp->qsmaskinit will be stable. - * - * We don't include outgoingcpu in the affinity set, use -1 if there is - * no outgoing CPU. If there are no CPUs left in the affinity set, - * this function allows the kthread to execute on any CPU. - */ -static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) -{ - struct task_struct *t = rnp->boost_kthread_task; - unsigned long mask = rnp->qsmaskinit; - cpumask_var_t cm; - int cpu; - - if (!t) - return; - if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) - return; - for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) - if ((mask & 0x1) && cpu != outgoingcpu) - cpumask_set_cpu(cpu, cm); - if (cpumask_weight(cm) == 0) { - cpumask_setall(cm); - for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) - cpumask_clear_cpu(cpu, cm); - WARN_ON_ONCE(cpumask_weight(cm) == 0); - } - set_cpus_allowed_ptr(t, cm); - free_cpumask_var(cm); -} - -static struct smp_hotplug_thread rcu_cpu_thread_spec = { - .store = &rcu_cpu_kthread_task, - .thread_should_run = rcu_cpu_kthread_should_run, - .thread_fn = rcu_cpu_kthread, - .thread_comm = "rcuc/%u", - .setup = rcu_cpu_kthread_setup, - .park = rcu_cpu_kthread_park, -}; - -/* - * Spawn all kthreads -- called as soon as the scheduler is running. - */ -static int __init rcu_spawn_kthreads(void) -{ - struct rcu_node *rnp; - int cpu; - - rcu_scheduler_fully_active = 1; - for_each_possible_cpu(cpu) - per_cpu(rcu_cpu_has_work, cpu) = 0; - BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); - rnp = rcu_get_root(rcu_state); - (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); - if (NUM_RCU_NODES > 1) { - rcu_for_each_leaf_node(rcu_state, rnp) - (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); - } - return 0; -} -early_initcall(rcu_spawn_kthreads); - -static void rcu_prepare_kthreads(int cpu) -{ - struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); - struct rcu_node *rnp = rdp->mynode; - - /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ - if (rcu_scheduler_fully_active) - (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); -} - -#else /* #ifdef CONFIG_RCU_BOOST */ - -static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) -{ - raw_spin_unlock_irqrestore(&rnp->lock, flags); -} - -static void invoke_rcu_callbacks_kthread(void) -{ - WARN_ON_ONCE(1); -} - -static bool rcu_is_callbacks_kthread(void) -{ - return false; -} - -static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) -{ -} - -static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) -{ -} - -static int __init rcu_scheduler_really_started(void) -{ - rcu_scheduler_fully_active = 1; - return 0; -} -early_initcall(rcu_scheduler_really_started); - -static void rcu_prepare_kthreads(int cpu) -{ -} - -#endif /* #else #ifdef CONFIG_RCU_BOOST */ - -#if !defined(CONFIG_RCU_FAST_NO_HZ) - -/* - * Check to see if any future RCU-related work will need to be done - * by the current CPU, even if none need be done immediately, returning - * 1 if so. This function is part of the RCU implementation; it is -not- - * an exported member of the RCU API. - * - * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs - * any flavor of RCU. - */ -int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) -{ - *delta_jiffies = ULONG_MAX; - return rcu_cpu_has_callbacks(cpu, NULL); -} - -/* - * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up - * after it. - */ -static void rcu_cleanup_after_idle(int cpu) -{ -} - -/* - * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, - * is nothing. - */ -static void rcu_prepare_for_idle(int cpu) -{ -} - -/* - * Don't bother keeping a running count of the number of RCU callbacks - * posted because CONFIG_RCU_FAST_NO_HZ=n. - */ -static void rcu_idle_count_callbacks_posted(void) -{ -} - -#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ - -/* - * This code is invoked when a CPU goes idle, at which point we want - * to have the CPU do everything required for RCU so that it can enter - * the energy-efficient dyntick-idle mode. This is handled by a - * state machine implemented by rcu_prepare_for_idle() below. - * - * The following three proprocessor symbols control this state machine: - * - * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted - * to sleep in dyntick-idle mode with RCU callbacks pending. This - * is sized to be roughly one RCU grace period. Those energy-efficiency - * benchmarkers who might otherwise be tempted to set this to a large - * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your - * system. And if you are -that- concerned about energy efficiency, - * just power the system down and be done with it! - * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is - * permitted to sleep in dyntick-idle mode with only lazy RCU - * callbacks pending. Setting this too high can OOM your system. - * - * The values below work well in practice. If future workloads require - * adjustment, they can be converted into kernel config parameters, though - * making the state machine smarter might be a better option. - */ -#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ -#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ - -static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; -module_param(rcu_idle_gp_delay, int, 0644); -static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; -module_param(rcu_idle_lazy_gp_delay, int, 0644); - -extern int tick_nohz_enabled; - -/* - * Try to advance callbacks for all flavors of RCU on the current CPU, but - * only if it has been awhile since the last time we did so. Afterwards, - * if there are any callbacks ready for immediate invocation, return true. - */ -static bool rcu_try_advance_all_cbs(void) -{ - bool cbs_ready = false; - struct rcu_data *rdp; - struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); - struct rcu_node *rnp; - struct rcu_state *rsp; - - /* Exit early if we advanced recently. */ - if (jiffies == rdtp->last_advance_all) - return 0; - rdtp->last_advance_all = jiffies; - - for_each_rcu_flavor(rsp) { - rdp = this_cpu_ptr(rsp->rda); - rnp = rdp->mynode; - - /* - * Don't bother checking unless a grace period has - * completed since we last checked and there are - * callbacks not yet ready to invoke. - */ - if (rdp->completed != rnp->completed && - rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) - note_gp_changes(rsp, rdp); - - if (cpu_has_callbacks_ready_to_invoke(rdp)) - cbs_ready = true; - } - return cbs_ready; -} - -/* - * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready - * to invoke. If the CPU has callbacks, try to advance them. Tell the - * caller to set the timeout based on whether or not there are non-lazy - * callbacks. - * - * The caller must have disabled interrupts. - */ -int rcu_needs_cpu(int cpu, unsigned long *dj) -{ - struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); - - /* Snapshot to detect later posting of non-lazy callback. */ - rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; - - /* If no callbacks, RCU doesn't need the CPU. */ - if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) { - *dj = ULONG_MAX; - return 0; - } - - /* Attempt to advance callbacks. */ - if (rcu_try_advance_all_cbs()) { - /* Some ready to invoke, so initiate later invocation. */ - invoke_rcu_core(); - return 1; - } - rdtp->last_accelerate = jiffies; - - /* Request timer delay depending on laziness, and round. */ - if (!rdtp->all_lazy) { - *dj = round_up(rcu_idle_gp_delay + jiffies, - rcu_idle_gp_delay) - jiffies; - } else { - *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; - } - return 0; -} - -/* - * Prepare a CPU for idle from an RCU perspective. The first major task - * is to sense whether nohz mode has been enabled or disabled via sysfs. - * The second major task is to check to see if a non-lazy callback has - * arrived at a CPU that previously had only lazy callbacks. The third - * major task is to accelerate (that is, assign grace-period numbers to) - * any recently arrived callbacks. - * - * The caller must have disabled interrupts. - */ -static void rcu_prepare_for_idle(int cpu) -{ - struct rcu_data *rdp; - struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); - struct rcu_node *rnp; - struct rcu_state *rsp; - int tne; - - /* Handle nohz enablement switches conservatively. */ - tne = ACCESS_ONCE(tick_nohz_enabled); - if (tne != rdtp->tick_nohz_enabled_snap) { - if (rcu_cpu_has_callbacks(cpu, NULL)) - invoke_rcu_core(); /* force nohz to see update. */ - rdtp->tick_nohz_enabled_snap = tne; - return; - } - if (!tne) - return; - - /* If this is a no-CBs CPU, no callbacks, just return. */ - if (rcu_is_nocb_cpu(cpu)) - return; - - /* - * If a non-lazy callback arrived at a CPU having only lazy - * callbacks, invoke RCU core for the side-effect of recalculating - * idle duration on re-entry to idle. - */ - if (rdtp->all_lazy && - rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { - rdtp->all_lazy = false; - rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; - invoke_rcu_core(); - return; - } - - /* - * If we have not yet accelerated this jiffy, accelerate all - * callbacks on this CPU. - */ - if (rdtp->last_accelerate == jiffies) - return; - rdtp->last_accelerate = jiffies; - for_each_rcu_flavor(rsp) { - rdp = per_cpu_ptr(rsp->rda, cpu); - if (!*rdp->nxttail[RCU_DONE_TAIL]) - continue; - rnp = rdp->mynode; - raw_spin_lock(&rnp->lock); /* irqs already disabled. */ - rcu_accelerate_cbs(rsp, rnp, rdp); - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ - } -} - -/* - * Clean up for exit from idle. Attempt to advance callbacks based on - * any grace periods that elapsed while the CPU was idle, and if any - * callbacks are now ready to invoke, initiate invocation. - */ -static void rcu_cleanup_after_idle(int cpu) -{ - - if (rcu_is_nocb_cpu(cpu)) - return; - if (rcu_try_advance_all_cbs()) - invoke_rcu_core(); -} - -/* - * Keep a running count of the number of non-lazy callbacks posted - * on this CPU. This running counter (which is never decremented) allows - * rcu_prepare_for_idle() to detect when something out of the idle loop - * posts a callback, even if an equal number of callbacks are invoked. - * Of course, callbacks should only be posted from within a trace event - * designed to be called from idle or from within RCU_NONIDLE(). - */ -static void rcu_idle_count_callbacks_posted(void) -{ - __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); -} - -/* - * Data for flushing lazy RCU callbacks at OOM time. - */ -static atomic_t oom_callback_count; -static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); - -/* - * RCU OOM callback -- decrement the outstanding count and deliver the - * wake-up if we are the last one. - */ -static void rcu_oom_callback(struct rcu_head *rhp) -{ - if (atomic_dec_and_test(&oom_callback_count)) - wake_up(&oom_callback_wq); -} - -/* - * Post an rcu_oom_notify callback on the current CPU if it has at - * least one lazy callback. This will unnecessarily post callbacks - * to CPUs that already have a non-lazy callback at the end of their - * callback list, but this is an infrequent operation, so accept some - * extra overhead to keep things simple. - */ -static void rcu_oom_notify_cpu(void *unused) -{ - struct rcu_state *rsp; - struct rcu_data *rdp; - - for_each_rcu_flavor(rsp) { - rdp = __this_cpu_ptr(rsp->rda); - if (rdp->qlen_lazy != 0) { - atomic_inc(&oom_callback_count); - rsp->call(&rdp->oom_head, rcu_oom_callback); - } - } -} - -/* - * If low on memory, ensure that each CPU has a non-lazy callback. - * This will wake up CPUs that have only lazy callbacks, in turn - * ensuring that they free up the corresponding memory in a timely manner. - * Because an uncertain amount of memory will be freed in some uncertain - * timeframe, we do not claim to have freed anything. - */ -static int rcu_oom_notify(struct notifier_block *self, - unsigned long notused, void *nfreed) -{ - int cpu; - - /* Wait for callbacks from earlier instance to complete. */ - wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); - - /* - * Prevent premature wakeup: ensure that all increments happen - * before there is a chance of the counter reaching zero. - */ - atomic_set(&oom_callback_count, 1); - - get_online_cpus(); - for_each_online_cpu(cpu) { - smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); - cond_resched(); - } - put_online_cpus(); - - /* Unconditionally decrement: no need to wake ourselves up. */ - atomic_dec(&oom_callback_count); - - return NOTIFY_OK; -} - -static struct notifier_block rcu_oom_nb = { - .notifier_call = rcu_oom_notify -}; - -static int __init rcu_register_oom_notifier(void) -{ - register_oom_notifier(&rcu_oom_nb); - return 0; -} -early_initcall(rcu_register_oom_notifier); - -#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ - -#ifdef CONFIG_RCU_CPU_STALL_INFO - -#ifdef CONFIG_RCU_FAST_NO_HZ - -static void print_cpu_stall_fast_no_hz(char *cp, int cpu) -{ - struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); - unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; - - sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", - rdtp->last_accelerate & 0xffff, jiffies & 0xffff, - ulong2long(nlpd), - rdtp->all_lazy ? 'L' : '.', - rdtp->tick_nohz_enabled_snap ? '.' : 'D'); -} - -#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ - -static void print_cpu_stall_fast_no_hz(char *cp, int cpu) -{ - *cp = '\0'; -} - -#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ - -/* Initiate the stall-info list. */ -static void print_cpu_stall_info_begin(void) -{ - pr_cont("\n"); -} - -/* - * Print out diagnostic information for the specified stalled CPU. - * - * If the specified CPU is aware of the current RCU grace period - * (flavor specified by rsp), then print the number of scheduling - * clock interrupts the CPU has taken during the time that it has - * been aware. Otherwise, print the number of RCU grace periods - * that this CPU is ignorant of, for example, "1" if the CPU was - * aware of the previous grace period. - * - * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. - */ -static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) -{ - char fast_no_hz[72]; - struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); - struct rcu_dynticks *rdtp = rdp->dynticks; - char *ticks_title; - unsigned long ticks_value; - - if (rsp->gpnum == rdp->gpnum) { - ticks_title = "ticks this GP"; - ticks_value = rdp->ticks_this_gp; - } else { - ticks_title = "GPs behind"; - ticks_value = rsp->gpnum - rdp->gpnum; - } - print_cpu_stall_fast_no_hz(fast_no_hz, cpu); - pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n", - cpu, ticks_value, ticks_title, - atomic_read(&rdtp->dynticks) & 0xfff, - rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, - rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), - fast_no_hz); -} - -/* Terminate the stall-info list. */ -static void print_cpu_stall_info_end(void) -{ - pr_err("\t"); -} - -/* Zero ->ticks_this_gp for all flavors of RCU. */ -static void zero_cpu_stall_ticks(struct rcu_data *rdp) -{ - rdp->ticks_this_gp = 0; - rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); -} - -/* Increment ->ticks_this_gp for all flavors of RCU. */ -static void increment_cpu_stall_ticks(void) -{ - struct rcu_state *rsp; - - for_each_rcu_flavor(rsp) - __this_cpu_ptr(rsp->rda)->ticks_this_gp++; -} - -#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ - -static void print_cpu_stall_info_begin(void) -{ - pr_cont(" {"); -} - -static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) -{ - pr_cont(" %d", cpu); -} - -static void print_cpu_stall_info_end(void) -{ - pr_cont("} "); -} - -static void zero_cpu_stall_ticks(struct rcu_data *rdp) -{ -} - -static void increment_cpu_stall_ticks(void) -{ -} - -#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ - -#ifdef CONFIG_RCU_NOCB_CPU - -/* - * Offload callback processing from the boot-time-specified set of CPUs - * specified by rcu_nocb_mask. For each CPU in the set, there is a - * kthread created that pulls the callbacks from the corresponding CPU, - * waits for a grace period to elapse, and invokes the callbacks. - * The no-CBs CPUs do a wake_up() on their kthread when they insert - * a callback into any empty list, unless the rcu_nocb_poll boot parameter - * has been specified, in which case each kthread actively polls its - * CPU. (Which isn't so great for energy efficiency, but which does - * reduce RCU's overhead on that CPU.) - * - * This is intended to be used in conjunction with Frederic Weisbecker's - * adaptive-idle work, which would seriously reduce OS jitter on CPUs - * running CPU-bound user-mode computations. - * - * Offloading of callback processing could also in theory be used as - * an energy-efficiency measure because CPUs with no RCU callbacks - * queued are more aggressive about entering dyntick-idle mode. - */ - - -/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ -static int __init rcu_nocb_setup(char *str) -{ - alloc_bootmem_cpumask_var(&rcu_nocb_mask); - have_rcu_nocb_mask = true; - cpulist_parse(str, rcu_nocb_mask); - return 1; -} -__setup("rcu_nocbs=", rcu_nocb_setup); - -static int __init parse_rcu_nocb_poll(char *arg) -{ - rcu_nocb_poll = 1; - return 0; -} -early_param("rcu_nocb_poll", parse_rcu_nocb_poll); - -/* - * Do any no-CBs CPUs need another grace period? - * - * Interrupts must be disabled. If the caller does not hold the root - * rnp_node structure's ->lock, the results are advisory only. - */ -static int rcu_nocb_needs_gp(struct rcu_state *rsp) -{ - struct rcu_node *rnp = rcu_get_root(rsp); - - return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1]; -} - -/* - * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended - * grace period. - */ -static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) -{ - wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); -} - -/* - * Set the root rcu_node structure's ->need_future_gp field - * based on the sum of those of all rcu_node structures. This does - * double-count the root rcu_node structure's requests, but this - * is necessary to handle the possibility of a rcu_nocb_kthread() - * having awakened during the time that the rcu_node structures - * were being updated for the end of the previous grace period. - */ -static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) -{ - rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; -} - -static void rcu_init_one_nocb(struct rcu_node *rnp) -{ - init_waitqueue_head(&rnp->nocb_gp_wq[0]); - init_waitqueue_head(&rnp->nocb_gp_wq[1]); -} - -/* Is the specified CPU a no-CPUs CPU? */ -bool rcu_is_nocb_cpu(int cpu) -{ - if (have_rcu_nocb_mask) - return cpumask_test_cpu(cpu, rcu_nocb_mask); - return false; -} - -/* - * Enqueue the specified string of rcu_head structures onto the specified - * CPU's no-CBs lists. The CPU is specified by rdp, the head of the - * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy - * counts are supplied by rhcount and rhcount_lazy. - * - * If warranted, also wake up the kthread servicing this CPUs queues. - */ -static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, - struct rcu_head *rhp, - struct rcu_head **rhtp, - int rhcount, int rhcount_lazy) -{ - int len; - struct rcu_head **old_rhpp; - struct task_struct *t; - - /* Enqueue the callback on the nocb list and update counts. */ - old_rhpp = xchg(&rdp->nocb_tail, rhtp); - ACCESS_ONCE(*old_rhpp) = rhp; - atomic_long_add(rhcount, &rdp->nocb_q_count); - atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); - - /* If we are not being polled and there is a kthread, awaken it ... */ - t = ACCESS_ONCE(rdp->nocb_kthread); - if (rcu_nocb_poll || !t) { - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("WakeNotPoll")); - return; - } - len = atomic_long_read(&rdp->nocb_q_count); - if (old_rhpp == &rdp->nocb_head) { - wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */ - rdp->qlen_last_fqs_check = 0; - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeEmpty")); - } else if (len > rdp->qlen_last_fqs_check + qhimark) { - wake_up_process(t); /* ... or if many callbacks queued. */ - rdp->qlen_last_fqs_check = LONG_MAX / 2; - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf")); - } else { - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); - } - return; -} - -/* - * This is a helper for __call_rcu(), which invokes this when the normal - * callback queue is inoperable. If this is not a no-CBs CPU, this - * function returns failure back to __call_rcu(), which can complain - * appropriately. - * - * Otherwise, this function queues the callback where the corresponding - * "rcuo" kthread can find it. - */ -static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, - bool lazy) -{ - - if (!rcu_is_nocb_cpu(rdp->cpu)) - return 0; - __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy); - if (__is_kfree_rcu_offset((unsigned long)rhp->func)) - trace_rcu_kfree_callback(rdp->rsp->name, rhp, - (unsigned long)rhp->func, - -atomic_long_read(&rdp->nocb_q_count_lazy), - -atomic_long_read(&rdp->nocb_q_count)); - else - trace_rcu_callback(rdp->rsp->name, rhp, - -atomic_long_read(&rdp->nocb_q_count_lazy), - -atomic_long_read(&rdp->nocb_q_count)); - return 1; -} - -/* - * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is - * not a no-CBs CPU. - */ -static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, - struct rcu_data *rdp) -{ - long ql = rsp->qlen; - long qll = rsp->qlen_lazy; - - /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ - if (!rcu_is_nocb_cpu(smp_processor_id())) - return 0; - rsp->qlen = 0; - rsp->qlen_lazy = 0; - - /* First, enqueue the donelist, if any. This preserves CB ordering. */ - if (rsp->orphan_donelist != NULL) { - __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, - rsp->orphan_donetail, ql, qll); - ql = qll = 0; - rsp->orphan_donelist = NULL; - rsp->orphan_donetail = &rsp->orphan_donelist; - } - if (rsp->orphan_nxtlist != NULL) { - __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, - rsp->orphan_nxttail, ql, qll); - ql = qll = 0; - rsp->orphan_nxtlist = NULL; - rsp->orphan_nxttail = &rsp->orphan_nxtlist; - } - return 1; -} - -/* - * If necessary, kick off a new grace period, and either way wait - * for a subsequent grace period to complete. - */ -static void rcu_nocb_wait_gp(struct rcu_data *rdp) -{ - unsigned long c; - bool d; - unsigned long flags; - struct rcu_node *rnp = rdp->mynode; - - raw_spin_lock_irqsave(&rnp->lock, flags); - c = rcu_start_future_gp(rnp, rdp); - raw_spin_unlock_irqrestore(&rnp->lock, flags); - - /* - * Wait for the grace period. Do so interruptibly to avoid messing - * up the load average. - */ - trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); - for (;;) { - wait_event_interruptible( - rnp->nocb_gp_wq[c & 0x1], - (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); - if (likely(d)) - break; - flush_signals(current); - trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); - } - trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); - smp_mb(); /* Ensure that CB invocation happens after GP end. */ -} - -/* - * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes - * callbacks queued by the corresponding no-CBs CPU. - */ -static int rcu_nocb_kthread(void *arg) -{ - int c, cl; - bool firsttime = 1; - struct rcu_head *list; - struct rcu_head *next; - struct rcu_head **tail; - struct rcu_data *rdp = arg; - - /* Each pass through this loop invokes one batch of callbacks */ - for (;;) { - /* If not polling, wait for next batch of callbacks. */ - if (!rcu_nocb_poll) { - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("Sleep")); - wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head); - } else if (firsttime) { - firsttime = 0; - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("Poll")); - } - list = ACCESS_ONCE(rdp->nocb_head); - if (!list) { - if (!rcu_nocb_poll) - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("WokeEmpty")); - schedule_timeout_interruptible(1); - flush_signals(current); - continue; - } - firsttime = 1; - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("WokeNonEmpty")); - - /* - * Extract queued callbacks, update counts, and wait - * for a grace period to elapse. - */ - ACCESS_ONCE(rdp->nocb_head) = NULL; - tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); - c = atomic_long_xchg(&rdp->nocb_q_count, 0); - cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0); - ACCESS_ONCE(rdp->nocb_p_count) += c; - ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl; - rcu_nocb_wait_gp(rdp); - - /* Each pass through the following loop invokes a callback. */ - trace_rcu_batch_start(rdp->rsp->name, cl, c, -1); - c = cl = 0; - while (list) { - next = list->next; - /* Wait for enqueuing to complete, if needed. */ - while (next == NULL && &list->next != tail) { - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("WaitQueue")); - schedule_timeout_interruptible(1); - trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, - TPS("WokeQueue")); - next = list->next; - } - debug_rcu_head_unqueue(list); - local_bh_disable(); - if (__rcu_reclaim(rdp->rsp->name, list)) - cl++; - c++; - local_bh_enable(); - list = next; - } - trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); - ACCESS_ONCE(rdp->nocb_p_count) -= c; - ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl; - rdp->n_nocbs_invoked += c; - } - return 0; -} - -/* Initialize per-rcu_data variables for no-CBs CPUs. */ -static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) -{ - rdp->nocb_tail = &rdp->nocb_head; - init_waitqueue_head(&rdp->nocb_wq); -} - -/* Create a kthread for each RCU flavor for each no-CBs CPU. */ -static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) -{ - int cpu; - struct rcu_data *rdp; - struct task_struct *t; - - if (rcu_nocb_mask == NULL) - return; - for_each_cpu(cpu, rcu_nocb_mask) { - rdp = per_cpu_ptr(rsp->rda, cpu); - t = kthread_run(rcu_nocb_kthread, rdp, - "rcuo%c/%d", rsp->abbr, cpu); - BUG_ON(IS_ERR(t)); - ACCESS_ONCE(rdp->nocb_kthread) = t; - } -} - -/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ -static bool init_nocb_callback_list(struct rcu_data *rdp) -{ - if (rcu_nocb_mask == NULL || - !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask)) - return false; - rdp->nxttail[RCU_NEXT_TAIL] = NULL; - return true; -} - -#else /* #ifdef CONFIG_RCU_NOCB_CPU */ - -static int rcu_nocb_needs_gp(struct rcu_state *rsp) -{ - return 0; -} - -static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) -{ -} - -static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) -{ -} - -static void rcu_init_one_nocb(struct rcu_node *rnp) -{ -} - -static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, - bool lazy) -{ - return 0; -} - -static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, - struct rcu_data *rdp) -{ - return 0; -} - -static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) -{ -} - -static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) -{ -} - -static bool init_nocb_callback_list(struct rcu_data *rdp) -{ - return false; -} - -#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ - -/* - * An adaptive-ticks CPU can potentially execute in kernel mode for an - * arbitrarily long period of time with the scheduling-clock tick turned - * off. RCU will be paying attention to this CPU because it is in the - * kernel, but the CPU cannot be guaranteed to be executing the RCU state - * machine because the scheduling-clock tick has been disabled. Therefore, - * if an adaptive-ticks CPU is failing to respond to the current grace - * period and has not be idle from an RCU perspective, kick it. - */ -static void rcu_kick_nohz_cpu(int cpu) -{ -#ifdef CONFIG_NO_HZ_FULL - if (tick_nohz_full_cpu(cpu)) - smp_send_reschedule(cpu); -#endif /* #ifdef CONFIG_NO_HZ_FULL */ -} - - -#ifdef CONFIG_NO_HZ_FULL_SYSIDLE - -/* - * Define RCU flavor that holds sysidle state. This needs to be the - * most active flavor of RCU. - */ -#ifdef CONFIG_PREEMPT_RCU -static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state; -#else /* #ifdef CONFIG_PREEMPT_RCU */ -static struct rcu_state *rcu_sysidle_state = &rcu_sched_state; -#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ - -static int full_sysidle_state; /* Current system-idle state. */ -#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ -#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ -#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ -#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ -#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ - -/* - * Invoked to note exit from irq or task transition to idle. Note that - * usermode execution does -not- count as idle here! After all, we want - * to detect full-system idle states, not RCU quiescent states and grace - * periods. The caller must have disabled interrupts. - */ -static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) -{ - unsigned long j; - - /* Adjust nesting, check for fully idle. */ - if (irq) { - rdtp->dynticks_idle_nesting--; - WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); - if (rdtp->dynticks_idle_nesting != 0) - return; /* Still not fully idle. */ - } else { - if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == - DYNTICK_TASK_NEST_VALUE) { - rdtp->dynticks_idle_nesting = 0; - } else { - rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; - WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); - return; /* Still not fully idle. */ - } - } - - /* Record start of fully idle period. */ - j = jiffies; - ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j; - smp_mb__before_atomic_inc(); - atomic_inc(&rdtp->dynticks_idle); - smp_mb__after_atomic_inc(); - WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); -} - -/* - * Unconditionally force exit from full system-idle state. This is - * invoked when a normal CPU exits idle, but must be called separately - * for the timekeeping CPU (tick_do_timer_cpu). The reason for this - * is that the timekeeping CPU is permitted to take scheduling-clock - * interrupts while the system is in system-idle state, and of course - * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock - * interrupt from any other type of interrupt. - */ -void rcu_sysidle_force_exit(void) -{ - int oldstate = ACCESS_ONCE(full_sysidle_state); - int newoldstate; - - /* - * Each pass through the following loop attempts to exit full - * system-idle state. If contention proves to be a problem, - * a trylock-based contention tree could be used here. - */ - while (oldstate > RCU_SYSIDLE_SHORT) { - newoldstate = cmpxchg(&full_sysidle_state, - oldstate, RCU_SYSIDLE_NOT); - if (oldstate == newoldstate && - oldstate == RCU_SYSIDLE_FULL_NOTED) { - rcu_kick_nohz_cpu(tick_do_timer_cpu); - return; /* We cleared it, done! */ - } - oldstate = newoldstate; - } - smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ -} - -/* - * Invoked to note entry to irq or task transition from idle. Note that - * usermode execution does -not- count as idle here! The caller must - * have disabled interrupts. - */ -static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) -{ - /* Adjust nesting, check for already non-idle. */ - if (irq) { - rdtp->dynticks_idle_nesting++; - WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); - if (rdtp->dynticks_idle_nesting != 1) - return; /* Already non-idle. */ - } else { - /* - * Allow for irq misnesting. Yes, it really is possible - * to enter an irq handler then never leave it, and maybe - * also vice versa. Handle both possibilities. - */ - if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { - rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; - WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); - return; /* Already non-idle. */ - } else { - rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; - } - } - - /* Record end of idle period. */ - smp_mb__before_atomic_inc(); - atomic_inc(&rdtp->dynticks_idle); - smp_mb__after_atomic_inc(); - WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); - - /* - * If we are the timekeeping CPU, we are permitted to be non-idle - * during a system-idle state. This must be the case, because - * the timekeeping CPU has to take scheduling-clock interrupts - * during the time that the system is transitioning to full - * system-idle state. This means that the timekeeping CPU must - * invoke rcu_sysidle_force_exit() directly if it does anything - * more than take a scheduling-clock interrupt. - */ - if (smp_processor_id() == tick_do_timer_cpu) - return; - - /* Update system-idle state: We are clearly no longer fully idle! */ - rcu_sysidle_force_exit(); -} - -/* - * Check to see if the current CPU is idle. Note that usermode execution - * does not count as idle. The caller must have disabled interrupts. - */ -static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, - unsigned long *maxj) -{ - int cur; - unsigned long j; - struct rcu_dynticks *rdtp = rdp->dynticks; - - /* - * If some other CPU has already reported non-idle, if this is - * not the flavor of RCU that tracks sysidle state, or if this - * is an offline or the timekeeping CPU, nothing to do. - */ - if (!*isidle || rdp->rsp != rcu_sysidle_state || - cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) - return; - if (rcu_gp_in_progress(rdp->rsp)) - WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); - - /* Pick up current idle and NMI-nesting counter and check. */ - cur = atomic_read(&rdtp->dynticks_idle); - if (cur & 0x1) { - *isidle = false; /* We are not idle! */ - return; - } - smp_mb(); /* Read counters before timestamps. */ - - /* Pick up timestamps. */ - j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); - /* If this CPU entered idle more recently, update maxj timestamp. */ - if (ULONG_CMP_LT(*maxj, j)) - *maxj = j; -} - -/* - * Is this the flavor of RCU that is handling full-system idle? - */ -static bool is_sysidle_rcu_state(struct rcu_state *rsp) -{ - return rsp == rcu_sysidle_state; -} - -/* - * Bind the grace-period kthread for the sysidle flavor of RCU to the - * timekeeping CPU. - */ -static void rcu_bind_gp_kthread(void) -{ - int cpu = ACCESS_ONCE(tick_do_timer_cpu); - - if (cpu < 0 || cpu >= nr_cpu_ids) - return; - if (raw_smp_processor_id() != cpu) - set_cpus_allowed_ptr(current, cpumask_of(cpu)); -} - -/* - * Return a delay in jiffies based on the number of CPUs, rcu_node - * leaf fanout, and jiffies tick rate. The idea is to allow larger - * systems more time to transition to full-idle state in order to - * avoid the cache thrashing that otherwise occur on the state variable. - * Really small systems (less than a couple of tens of CPUs) should - * instead use a single global atomically incremented counter, and later - * versions of this will automatically reconfigure themselves accordingly. - */ -static unsigned long rcu_sysidle_delay(void) -{ - if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) - return 0; - return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); -} - -/* - * Advance the full-system-idle state. This is invoked when all of - * the non-timekeeping CPUs are idle. - */ -static void rcu_sysidle(unsigned long j) -{ - /* Check the current state. */ - switch (ACCESS_ONCE(full_sysidle_state)) { - case RCU_SYSIDLE_NOT: - - /* First time all are idle, so note a short idle period. */ - ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; - break; - - case RCU_SYSIDLE_SHORT: - - /* - * Idle for a bit, time to advance to next state? - * cmpxchg failure means race with non-idle, let them win. - */ - if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) - (void)cmpxchg(&full_sysidle_state, - RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); - break; - - case RCU_SYSIDLE_LONG: - - /* - * Do an additional check pass before advancing to full. - * cmpxchg failure means race with non-idle, let them win. - */ - if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) - (void)cmpxchg(&full_sysidle_state, - RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); - break; - - default: - break; - } -} - -/* - * Found a non-idle non-timekeeping CPU, so kick the system-idle state - * back to the beginning. - */ -static void rcu_sysidle_cancel(void) -{ - smp_mb(); - ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; -} - -/* - * Update the sysidle state based on the results of a force-quiescent-state - * scan of the CPUs' dyntick-idle state. - */ -static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, - unsigned long maxj, bool gpkt) -{ - if (rsp != rcu_sysidle_state) - return; /* Wrong flavor, ignore. */ - if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) - return; /* Running state machine from timekeeping CPU. */ - if (isidle) - rcu_sysidle(maxj); /* More idle! */ - else - rcu_sysidle_cancel(); /* Idle is over. */ -} - -/* - * Wrapper for rcu_sysidle_report() when called from the grace-period - * kthread's context. - */ -static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, - unsigned long maxj) -{ - rcu_sysidle_report(rsp, isidle, maxj, true); -} - -/* Callback and function for forcing an RCU grace period. */ -struct rcu_sysidle_head { - struct rcu_head rh; - int inuse; -}; - -static void rcu_sysidle_cb(struct rcu_head *rhp) -{ - struct rcu_sysidle_head *rshp; - - /* - * The following memory barrier is needed to replace the - * memory barriers that would normally be in the memory - * allocator. - */ - smp_mb(); /* grace period precedes setting inuse. */ - - rshp = container_of(rhp, struct rcu_sysidle_head, rh); - ACCESS_ONCE(rshp->inuse) = 0; -} - -/* - * Check to see if the system is fully idle, other than the timekeeping CPU. - * The caller must have disabled interrupts. - */ -bool rcu_sys_is_idle(void) -{ - static struct rcu_sysidle_head rsh; - int rss = ACCESS_ONCE(full_sysidle_state); - - if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) - return false; - - /* Handle small-system case by doing a full scan of CPUs. */ - if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { - int oldrss = rss - 1; - - /* - * One pass to advance to each state up to _FULL. - * Give up if any pass fails to advance the state. - */ - while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { - int cpu; - bool isidle = true; - unsigned long maxj = jiffies - ULONG_MAX / 4; - struct rcu_data *rdp; - - /* Scan all the CPUs looking for nonidle CPUs. */ - for_each_possible_cpu(cpu) { - rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu); - rcu_sysidle_check_cpu(rdp, &isidle, &maxj); - if (!isidle) - break; - } - rcu_sysidle_report(rcu_sysidle_state, - isidle, maxj, false); - oldrss = rss; - rss = ACCESS_ONCE(full_sysidle_state); - } - } - - /* If this is the first observation of an idle period, record it. */ - if (rss == RCU_SYSIDLE_FULL) { - rss = cmpxchg(&full_sysidle_state, - RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); - return rss == RCU_SYSIDLE_FULL; - } - - smp_mb(); /* ensure rss load happens before later caller actions. */ - - /* If already fully idle, tell the caller (in case of races). */ - if (rss == RCU_SYSIDLE_FULL_NOTED) - return true; - - /* - * If we aren't there yet, and a grace period is not in flight, - * initiate a grace period. Either way, tell the caller that - * we are not there yet. We use an xchg() rather than an assignment - * to make up for the memory barriers that would otherwise be - * provided by the memory allocator. - */ - if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && - !rcu_gp_in_progress(rcu_sysidle_state) && - !rsh.inuse && xchg(&rsh.inuse, 1) == 0) - call_rcu(&rsh.rh, rcu_sysidle_cb); - return false; -} - -/* - * Initialize dynticks sysidle state for CPUs coming online. - */ -static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) -{ - rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; -} - -#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ - -static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) -{ -} - -static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) -{ -} - -static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, - unsigned long *maxj) -{ -} - -static bool is_sysidle_rcu_state(struct rcu_state *rsp) -{ - return false; -} - -static void rcu_bind_gp_kthread(void) -{ -} - -static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, - unsigned long maxj) -{ -} - -static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) -{ -} - -#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |