summaryrefslogtreecommitdiff
path: root/arch/powerpc/include/asm
diff options
context:
space:
mode:
authorMark Brown <broonie@kernel.org>2021-06-21 19:28:42 +0100
committerMark Brown <broonie@kernel.org>2021-06-21 19:28:42 +0100
commit9d598cd737d15b5770c5bddf35a512f7ab07b78b (patch)
treed0ec62945d9fb27aa1ac7231247c5c1f42813d12 /arch/powerpc/include/asm
parent57c045bc727001c43b6a65adb0418aa7b3e6dbd0 (diff)
parentd55444adedaee5a3024c61637032057fcf38491b (diff)
downloadlinux-9d598cd737d15b5770c5bddf35a512f7ab07b78b.tar.gz
Merge series "Extend regulator notification support" from Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>:
Extend regulator notification support This series extends the regulator notification and error flag support. Initial discussion on the topic can be found here: https://lore.kernel.org/lkml/6046836e22b8252983f08d5621c35ececb97820d.camel@fi.rohmeurope.com/ In a nutshell - the series adds: 1. WARNING level events/error flags. (Patch 3) Current regulator 'ERROR' event notifications for over/under voltage, over current and over temperature are used to indicate condition where monitored entity is so badly "off" that it actually indicates a hardware error which can not be recovered. The most typical hanling for that is believed to be a (graceful) system-shutdown. Here we add set of 'WARNING' level flags to allow sending notifications to consumers before things are 'that badly off' so that consumer drivers can implement recovery-actions. 2. Device-tree properties for specifying limit values. (Patches 1, 5) Add limits for above mentioned 'ERROR' and 'WARNING' levels (which send notifications to consumers) and also for a 'PROTECTION' level (which will be used to immediately shut-down the regulator(s) W/O informing consumer drivers. Typically implemented by hardware). Property parsing is implemented in regulator core which then calls callback operations for limit setting from the IC drivers. A warning is emitted if protection is requested by device tree but the underlying IC does not support configuring requested protection. 3. Helpers which can be registered by IC. (Patch 4) Target is to avoid implementing IRQ handling and IRQ storm protection in each IC driver. (Many of the ICs implementin these IRQs do not allow masking or acking the IRQ but keep the IRQ asserted for the whole duration of problem keeping the processor in IRQ handling loop). 4. Emergency poweroff function (refactored out of the thermal_core to kernel/reboot.c) which is called if IC fires error IRQs but IC reading fails and given retry-count is exceeded. (Patches 2, 4) Please note that the mutex in the emergency shutdown was replaced by a simple atomic in order to allow call from any context. The helper was attempted to be done so it could be used to implement roughly same logic as is used in qcom-labibb regulator. This means amongst other things a safety shut-down if IC registers are not readable. Using these shut-down retry counters are optional. The idea is that the helper could be also used by simpler ICs which do not provide status register(s) which can be used to check if error is still active. ICs which do not have such status register can simply omit the 'renable' callback (and retry-counts etc) - and helper assumes the situation is Ok and re-enables IRQ after given time period. If problem persists the handler is ran again and another notification is sent - but at least the delay allows processor to avoid IRQ loop. Patch 7 takes this notification support in use at BD9576MUF. Patch 8 is related to MFD change which is not really related to the RFC here. It was added to this series in order to avoid potential conflicts. Patch 9 adds a maintainers entry. Changelog v10-RESEND: - rebased on v5.13-rc4 Changelog v10: - rebased on v5.13-rc2 - Move rdev_*() print macros to the internal.h and use rdev_dbg() from irq_helpers.c - Export rdev_get_name() and move it from coupler.h to driver.h for others to use. (It was already in coupler.h but not exported - usage was limited and coupler.h does not sound like optimal place as rdev_name is not only used by coupled regulators) - Send all regulator notifications from irq_helpers.c at one OR'd event for the sake of simplicity. For BD9576 this does not matter as it has own IRQ for each event case. Header defining events says they may be OR'd. - Change WARN() at protection shutdown to pr_emerg as suggested by Petr. Changelog v9: - rebases on v5.13-rc1 - Update thermal documentation - Fix regulator notification event number Changelog v8: - split shutdown API adding and thermal core taking it in use to own patches. - replace the spinlock with atomic when ensuring the emergency shutdown is only called once. Changelog v7: general: - rebased on v5.12-rc7 - new patch for refactoring the hw-failure reboot logic out of thermal_core.c for others to use. notification helpers: - fix regulator error_flags query - grammar/typos - do not BUG() but attempt to shut-down the system - use BITS_PER_TYPE() Changelog v6: Add MAINTAINERS entry Changes to IRQ notifiers - move devm functions to drivers/regulator/devres.c - drop irq validity check - use devm_add_action_or_reset() - fix styling issues - fix kerneldocs Changelog v5: - Fix the badly formatted pr_emerg() call. Changelog v4: - rebased on v5.12-rc6 - dropped RFC - fix external FET DT-binding. - improve prints for cases when expecting HW failure. - styling and typos Changelog v3: Regulator core: - Fix dangling pointer access at regulator_irq_helper() stpmic1_regulator: - fix function prototype (compile error) bd9576-regulator: - Update over current limits to what was given in new data-sheet (REV00K) - Allow over-current monitoring without external FET. Set limits to values given in data-sheet (REV00K). Changelog v2: Generic: - rebase on v5.12-rc2 + BD9576 series - Split devm variant of delayed wq to own series Regulator framework: - Provide non devm variant of IRQ notification helpers - shorten dt-property names as suggested by Rob - unconditionally call map_event in IRQ handling and require it to be populated BD9576 regulators: - change the FET resistance property to micro-ohms - fix voltage computation in OC limit setting
Diffstat (limited to 'arch/powerpc/include/asm')
-rw-r--r--arch/powerpc/include/asm/hvcall.h3
-rw-r--r--arch/powerpc/include/asm/interrupt.h9
-rw-r--r--arch/powerpc/include/asm/kvm_host.h1
-rw-r--r--arch/powerpc/include/asm/paravirt.h22
-rw-r--r--arch/powerpc/include/asm/plpar_wrappers.h6
-rw-r--r--arch/powerpc/include/asm/ptrace.h45
-rw-r--r--arch/powerpc/include/asm/syscall.h42
-rw-r--r--arch/powerpc/include/asm/uaccess.h2
8 files changed, 88 insertions, 42 deletions
diff --git a/arch/powerpc/include/asm/hvcall.h b/arch/powerpc/include/asm/hvcall.h
index 443050906018..e3b29eda8074 100644
--- a/arch/powerpc/include/asm/hvcall.h
+++ b/arch/powerpc/include/asm/hvcall.h
@@ -448,6 +448,9 @@
*/
long plpar_hcall_norets(unsigned long opcode, ...);
+/* Variant which does not do hcall tracing */
+long plpar_hcall_norets_notrace(unsigned long opcode, ...);
+
/**
* plpar_hcall: - Make a pseries hypervisor call
* @opcode: The hypervisor call to make.
diff --git a/arch/powerpc/include/asm/interrupt.h b/arch/powerpc/include/asm/interrupt.h
index 44cde2e129b8..59f704408d65 100644
--- a/arch/powerpc/include/asm/interrupt.h
+++ b/arch/powerpc/include/asm/interrupt.h
@@ -153,8 +153,6 @@ static inline void interrupt_enter_prepare(struct pt_regs *regs, struct interrup
*/
static inline void interrupt_exit_prepare(struct pt_regs *regs, struct interrupt_state *state)
{
- if (user_mode(regs))
- kuep_unlock();
}
static inline void interrupt_async_enter_prepare(struct pt_regs *regs, struct interrupt_state *state)
@@ -222,6 +220,13 @@ static inline void interrupt_nmi_enter_prepare(struct pt_regs *regs, struct inte
local_paca->irq_soft_mask = IRQS_ALL_DISABLED;
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+ if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !(regs->msr & MSR_PR) &&
+ regs->nip < (unsigned long)__end_interrupts) {
+ // Kernel code running below __end_interrupts is
+ // implicitly soft-masked.
+ regs->softe = IRQS_ALL_DISABLED;
+ }
+
/* Don't do any per-CPU operations until interrupt state is fixed */
if (nmi_disables_ftrace(regs)) {
diff --git a/arch/powerpc/include/asm/kvm_host.h b/arch/powerpc/include/asm/kvm_host.h
index 1e83359f286b..7f2e90db2050 100644
--- a/arch/powerpc/include/asm/kvm_host.h
+++ b/arch/powerpc/include/asm/kvm_host.h
@@ -51,6 +51,7 @@
/* PPC-specific vcpu->requests bit members */
#define KVM_REQ_WATCHDOG KVM_ARCH_REQ(0)
#define KVM_REQ_EPR_EXIT KVM_ARCH_REQ(1)
+#define KVM_REQ_PENDING_TIMER KVM_ARCH_REQ(2)
#include <linux/mmu_notifier.h>
diff --git a/arch/powerpc/include/asm/paravirt.h b/arch/powerpc/include/asm/paravirt.h
index 5d1726bb28e7..bcb7b5f917be 100644
--- a/arch/powerpc/include/asm/paravirt.h
+++ b/arch/powerpc/include/asm/paravirt.h
@@ -28,19 +28,35 @@ static inline u32 yield_count_of(int cpu)
return be32_to_cpu(yield_count);
}
+/*
+ * Spinlock code confers and prods, so don't trace the hcalls because the
+ * tracing code takes spinlocks which can cause recursion deadlocks.
+ *
+ * These calls are made while the lock is not held: the lock slowpath yields if
+ * it can not acquire the lock, and unlock slow path might prod if a waiter has
+ * yielded). So this may not be a problem for simple spin locks because the
+ * tracing does not technically recurse on the lock, but we avoid it anyway.
+ *
+ * However the queued spin lock contended path is more strictly ordered: the
+ * H_CONFER hcall is made after the task has queued itself on the lock, so then
+ * recursing on that lock will cause the task to then queue up again behind the
+ * first instance (or worse: queued spinlocks use tricks that assume a context
+ * never waits on more than one spinlock, so such recursion may cause random
+ * corruption in the lock code).
+ */
static inline void yield_to_preempted(int cpu, u32 yield_count)
{
- plpar_hcall_norets(H_CONFER, get_hard_smp_processor_id(cpu), yield_count);
+ plpar_hcall_norets_notrace(H_CONFER, get_hard_smp_processor_id(cpu), yield_count);
}
static inline void prod_cpu(int cpu)
{
- plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
+ plpar_hcall_norets_notrace(H_PROD, get_hard_smp_processor_id(cpu));
}
static inline void yield_to_any(void)
{
- plpar_hcall_norets(H_CONFER, -1, 0);
+ plpar_hcall_norets_notrace(H_CONFER, -1, 0);
}
#else
static inline bool is_shared_processor(void)
diff --git a/arch/powerpc/include/asm/plpar_wrappers.h b/arch/powerpc/include/asm/plpar_wrappers.h
index ece84a430701..83e0f701ebc6 100644
--- a/arch/powerpc/include/asm/plpar_wrappers.h
+++ b/arch/powerpc/include/asm/plpar_wrappers.h
@@ -28,7 +28,11 @@ static inline void set_cede_latency_hint(u8 latency_hint)
static inline long cede_processor(void)
{
- return plpar_hcall_norets(H_CEDE);
+ /*
+ * We cannot call tracepoints inside RCU idle regions which
+ * means we must not trace H_CEDE.
+ */
+ return plpar_hcall_norets_notrace(H_CEDE);
}
static inline long extended_cede_processor(unsigned long latency_hint)
diff --git a/arch/powerpc/include/asm/ptrace.h b/arch/powerpc/include/asm/ptrace.h
index 9c9ab2746168..b476a685f066 100644
--- a/arch/powerpc/include/asm/ptrace.h
+++ b/arch/powerpc/include/asm/ptrace.h
@@ -19,6 +19,7 @@
#ifndef _ASM_POWERPC_PTRACE_H
#define _ASM_POWERPC_PTRACE_H
+#include <linux/err.h>
#include <uapi/asm/ptrace.h>
#include <asm/asm-const.h>
@@ -152,25 +153,6 @@ extern unsigned long profile_pc(struct pt_regs *regs);
long do_syscall_trace_enter(struct pt_regs *regs);
void do_syscall_trace_leave(struct pt_regs *regs);
-#define kernel_stack_pointer(regs) ((regs)->gpr[1])
-static inline int is_syscall_success(struct pt_regs *regs)
-{
- return !(regs->ccr & 0x10000000);
-}
-
-static inline long regs_return_value(struct pt_regs *regs)
-{
- if (is_syscall_success(regs))
- return regs->gpr[3];
- else
- return -regs->gpr[3];
-}
-
-static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc)
-{
- regs->gpr[3] = rc;
-}
-
#ifdef __powerpc64__
#define user_mode(regs) ((((regs)->msr) >> MSR_PR_LG) & 0x1)
#else
@@ -235,6 +217,31 @@ static __always_inline void set_trap_norestart(struct pt_regs *regs)
regs->trap |= 0x1;
}
+#define kernel_stack_pointer(regs) ((regs)->gpr[1])
+static inline int is_syscall_success(struct pt_regs *regs)
+{
+ if (trap_is_scv(regs))
+ return !IS_ERR_VALUE((unsigned long)regs->gpr[3]);
+ else
+ return !(regs->ccr & 0x10000000);
+}
+
+static inline long regs_return_value(struct pt_regs *regs)
+{
+ if (trap_is_scv(regs))
+ return regs->gpr[3];
+
+ if (is_syscall_success(regs))
+ return regs->gpr[3];
+ else
+ return -regs->gpr[3];
+}
+
+static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc)
+{
+ regs->gpr[3] = rc;
+}
+
#define arch_has_single_step() (1)
#define arch_has_block_step() (true)
#define ARCH_HAS_USER_SINGLE_STEP_REPORT
diff --git a/arch/powerpc/include/asm/syscall.h b/arch/powerpc/include/asm/syscall.h
index fd1b518eed17..ba0f88f3a30d 100644
--- a/arch/powerpc/include/asm/syscall.h
+++ b/arch/powerpc/include/asm/syscall.h
@@ -41,11 +41,17 @@ static inline void syscall_rollback(struct task_struct *task,
static inline long syscall_get_error(struct task_struct *task,
struct pt_regs *regs)
{
- /*
- * If the system call failed,
- * regs->gpr[3] contains a positive ERRORCODE.
- */
- return (regs->ccr & 0x10000000UL) ? -regs->gpr[3] : 0;
+ if (trap_is_scv(regs)) {
+ unsigned long error = regs->gpr[3];
+
+ return IS_ERR_VALUE(error) ? error : 0;
+ } else {
+ /*
+ * If the system call failed,
+ * regs->gpr[3] contains a positive ERRORCODE.
+ */
+ return (regs->ccr & 0x10000000UL) ? -regs->gpr[3] : 0;
+ }
}
static inline long syscall_get_return_value(struct task_struct *task,
@@ -58,18 +64,22 @@ static inline void syscall_set_return_value(struct task_struct *task,
struct pt_regs *regs,
int error, long val)
{
- /*
- * In the general case it's not obvious that we must deal with CCR
- * here, as the syscall exit path will also do that for us. However
- * there are some places, eg. the signal code, which check ccr to
- * decide if the value in r3 is actually an error.
- */
- if (error) {
- regs->ccr |= 0x10000000L;
- regs->gpr[3] = error;
+ if (trap_is_scv(regs)) {
+ regs->gpr[3] = (long) error ?: val;
} else {
- regs->ccr &= ~0x10000000L;
- regs->gpr[3] = val;
+ /*
+ * In the general case it's not obvious that we must deal with
+ * CCR here, as the syscall exit path will also do that for us.
+ * However there are some places, eg. the signal code, which
+ * check ccr to decide if the value in r3 is actually an error.
+ */
+ if (error) {
+ regs->ccr |= 0x10000000L;
+ regs->gpr[3] = error;
+ } else {
+ regs->ccr &= ~0x10000000L;
+ regs->gpr[3] = val;
+ }
}
}
diff --git a/arch/powerpc/include/asm/uaccess.h b/arch/powerpc/include/asm/uaccess.h
index a09e4240c5b1..22c79ab40006 100644
--- a/arch/powerpc/include/asm/uaccess.h
+++ b/arch/powerpc/include/asm/uaccess.h
@@ -157,7 +157,7 @@ do { \
"2: lwz%X1 %L0, %L1\n" \
EX_TABLE(1b, %l2) \
EX_TABLE(2b, %l2) \
- : "=r" (x) \
+ : "=&r" (x) \
: "m" (*addr) \
: \
: label)