diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-06-05 12:39:30 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-06-05 12:39:30 -0700 |
commit | 7ae77150d94d3b535c7b85e6b3647113095e79bf (patch) | |
tree | 90fe894e7efd92898e813d88acfd4611d79be969 /Documentation/powerpc | |
parent | 084623e468d535d98f883cc2ccf2c4fdf2108556 (diff) | |
parent | 1395375c592770fe5158a592944aaeed67fa94ff (diff) | |
download | linux-7ae77150d94d3b535c7b85e6b3647113095e79bf.tar.gz |
Merge tag 'powerpc-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Support for userspace to send requests directly to the on-chip GZIP
accelerator on Power9.
- Rework of our lockless page table walking (__find_linux_pte()) to
make it safe against parallel page table manipulations without
relying on an IPI for serialisation.
- A series of fixes & enhancements to make our machine check handling
more robust.
- Lots of plumbing to add support for "prefixed" (64-bit) instructions
on Power10.
- Support for using huge pages for the linear mapping on 8xx (32-bit).
- Remove obsolete Xilinx PPC405/PPC440 support, and an associated sound
driver.
- Removal of some obsolete 40x platforms and associated cruft.
- Initial support for booting on Power10.
- Lots of other small features, cleanups & fixes.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Andrey Abramov, Aneesh Kumar K.V, Balamuruhan S, Bharata B Rao, Bulent
Abali, Cédric Le Goater, Chen Zhou, Christian Zigotzky, Christophe
JAILLET, Christophe Leroy, Dmitry Torokhov, Emmanuel Nicolet, Erhard F.,
Gautham R. Shenoy, Geoff Levand, George Spelvin, Greg Kurz, Gustavo A.
R. Silva, Gustavo Walbon, Haren Myneni, Hari Bathini, Joel Stanley,
Jordan Niethe, Kajol Jain, Kees Cook, Leonardo Bras, Madhavan
Srinivasan., Mahesh Salgaonkar, Markus Elfring, Michael Neuling, Michal
Simek, Nathan Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin,
Oliver O'Halloran, Paul Mackerras, Pingfan Liu, Qian Cai, Ram Pai,
Raphael Moreira Zinsly, Ravi Bangoria, Sam Bobroff, Sandipan Das, Segher
Boessenkool, Stephen Rothwell, Sukadev Bhattiprolu, Tyrel Datwyler,
Wolfram Sang, Xiongfeng Wang.
* tag 'powerpc-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (299 commits)
powerpc/pseries: Make vio and ibmebus initcalls pseries specific
cxl: Remove dead Kconfig options
powerpc: Add POWER10 architected mode
powerpc/dt_cpu_ftrs: Add MMA feature
powerpc/dt_cpu_ftrs: Enable Prefixed Instructions
powerpc/dt_cpu_ftrs: Advertise support for ISA v3.1 if selected
powerpc: Add support for ISA v3.1
powerpc: Add new HWCAP bits
powerpc/64s: Don't set FSCR bits in INIT_THREAD
powerpc/64s: Save FSCR to init_task.thread.fscr after feature init
powerpc/64s: Don't let DT CPU features set FSCR_DSCR
powerpc/64s: Don't init FSCR_DSCR in __init_FSCR()
powerpc/32s: Fix another build failure with CONFIG_PPC_KUAP_DEBUG
powerpc/module_64: Use special stub for _mcount() with -mprofile-kernel
powerpc/module_64: Simplify check for -mprofile-kernel ftrace relocations
powerpc/module_64: Consolidate ftrace code
powerpc/32: Disable KASAN with pages bigger than 16k
powerpc/uaccess: Don't set KUEP by default on book3s/32
powerpc/uaccess: Don't set KUAP by default on book3s/32
powerpc/8xx: Reduce time spent in allow_user_access() and friends
...
Diffstat (limited to 'Documentation/powerpc')
-rw-r--r-- | Documentation/powerpc/bootwrapper.rst | 28 | ||||
-rw-r--r-- | Documentation/powerpc/index.rst | 1 | ||||
-rw-r--r-- | Documentation/powerpc/transactional_memory.rst | 27 | ||||
-rw-r--r-- | Documentation/powerpc/vas-api.rst | 292 |
4 files changed, 322 insertions, 26 deletions
diff --git a/Documentation/powerpc/bootwrapper.rst b/Documentation/powerpc/bootwrapper.rst index a6292afba573..cdfa2bc8425f 100644 --- a/Documentation/powerpc/bootwrapper.rst +++ b/Documentation/powerpc/bootwrapper.rst @@ -70,28 +70,6 @@ Currently, the following image format targets exist: kernel with this image type and it depends entirely on the embedded device tree for all information. - The simpleImage is useful for booting systems with - an unknown firmware interface or for booting from - a debugger when no firmware is present (such as on - the Xilinx Virtex platform). The only assumption that - simpleImage makes is that RAM is correctly initialized - and that the MMU is either off or has RAM mapped to - base address 0. - - simpleImage also supports inserting special platform - specific initialization code to the start of the bootup - sequence. The virtex405 platform uses this feature to - ensure that the cache is invalidated before caching - is enabled. Platform specific initialization code is - added as part of the wrapper script and is keyed on - the image target name. For example, all - simpleImage.virtex405-* targets will add the - virtex405-head.S initialization code (This also means - that the dts file for virtex405 targets should be - named (virtex405-<board>.dts). Search the wrapper - script for 'virtex405' and see the file - arch/powerpc/boot/virtex405-head.S for details. - treeImage.%; Image format for used with OpenBIOS firmware found on some ppc4xx hardware. This image embeds a device tree blob inside the image. @@ -116,10 +94,8 @@ Image types which embed a device tree blob (simpleImage, dtbImage, treeImage, and cuImage) all generate the device tree blob from a file in the arch/powerpc/boot/dts/ directory. The Makefile selects the correct device tree source based on the name of the target. Therefore, if the kernel is -built with 'make treeImage.walnut simpleImage.virtex405-ml403', then the -build system will use arch/powerpc/boot/dts/walnut.dts to build -treeImage.walnut and arch/powerpc/boot/dts/virtex405-ml403.dts to build -the simpleImage.virtex405-ml403. +built with 'make treeImage.walnut', then the build system will use +arch/powerpc/boot/dts/walnut.dts to build treeImage.walnut. Two special targets called 'zImage' and 'zImage.initrd' also exist. These targets build all the default images as selected by the kernel configuration. diff --git a/Documentation/powerpc/index.rst b/Documentation/powerpc/index.rst index 0d45f0fc8e57..afe2d5e54db6 100644 --- a/Documentation/powerpc/index.rst +++ b/Documentation/powerpc/index.rst @@ -30,6 +30,7 @@ powerpc syscall64-abi transactional_memory ultravisor + vas-api .. only:: subproject and html diff --git a/Documentation/powerpc/transactional_memory.rst b/Documentation/powerpc/transactional_memory.rst index 09955103acb4..b5b09bf00966 100644 --- a/Documentation/powerpc/transactional_memory.rst +++ b/Documentation/powerpc/transactional_memory.rst @@ -245,3 +245,30 @@ POWER9N DD2.2. Guest migration from POWER8 to POWER9 will work with POWER9N DD2.2 and POWER9C DD1.2. Since earlier POWER9 processors don't support TM emulation, migration from POWER8 to POWER9 is not supported there. + +Kernel implementation +===================== + +h/rfid mtmsrd quirk +------------------- + +As defined in the ISA, rfid has a quirk which is useful in early +exception handling. When in a userspace transaction and we enter the +kernel via some exception, MSR will end up as TM=0 and TS=01 (ie. TM +off but TM suspended). Regularly the kernel will want change bits in +the MSR and will perform an rfid to do this. In this case rfid can +have SRR0 TM = 0 and TS = 00 (ie. TM off and non transaction) and the +resulting MSR will retain TM = 0 and TS=01 from before (ie. stay in +suspend). This is a quirk in the architecture as this would normally +be a transition from TS=01 to TS=00 (ie. suspend -> non transactional) +which is an illegal transition. + +This quirk is described the architecture in the definition of rfid +with these lines: + + if (MSR 29:31 ¬ = 0b010 | SRR1 29:31 ¬ = 0b000) then + MSR 29:31 <- SRR1 29:31 + +hrfid and mtmsrd have the same quirk. + +The Linux kernel uses this quirk in it's early exception handling. diff --git a/Documentation/powerpc/vas-api.rst b/Documentation/powerpc/vas-api.rst new file mode 100644 index 000000000000..1217c2f1595e --- /dev/null +++ b/Documentation/powerpc/vas-api.rst @@ -0,0 +1,292 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. _VAS-API: + +=================================================== +Virtual Accelerator Switchboard (VAS) userspace API +=================================================== + +Introduction +============ + +Power9 processor introduced Virtual Accelerator Switchboard (VAS) which +allows both userspace and kernel communicate to co-processor +(hardware accelerator) referred to as the Nest Accelerator (NX). The NX +unit comprises of one or more hardware engines or co-processor types +such as 842 compression, GZIP compression and encryption. On power9, +userspace applications will have access to only GZIP Compression engine +which supports ZLIB and GZIP compression algorithms in the hardware. + +To communicate with NX, kernel has to establish a channel or window and +then requests can be submitted directly without kernel involvement. +Requests to the GZIP engine must be formatted as a co-processor Request +Block (CRB) and these CRBs must be submitted to the NX using COPY/PASTE +instructions to paste the CRB to hardware address that is associated with +the engine's request queue. + +The GZIP engine provides two priority levels of requests: Normal and +High. Only Normal requests are supported from userspace right now. + +This document explains userspace API that is used to interact with +kernel to setup channel / window which can be used to send compression +requests directly to NX accelerator. + + +Overview +======== + +Application access to the GZIP engine is provided through +/dev/crypto/nx-gzip device node implemented by the VAS/NX device driver. +An application must open the /dev/crypto/nx-gzip device to obtain a file +descriptor (fd). Then should issue VAS_TX_WIN_OPEN ioctl with this fd to +establish connection to the engine. It means send window is opened on GZIP +engine for this process. Once a connection is established, the application +should use the mmap() system call to map the hardware address of engine's +request queue into the application's virtual address space. + +The application can then submit one or more requests to the the engine by +using copy/paste instructions and pasting the CRBs to the virtual address +(aka paste_address) returned by mmap(). User space can close the +established connection or send window by closing the file descriptior +(close(fd)) or upon the process exit. + +Note that applications can send several requests with the same window or +can establish multiple windows, but one window for each file descriptor. + +Following sections provide additional details and references about the +individual steps. + +NX-GZIP Device Node +=================== + +There is one /dev/crypto/nx-gzip node in the system and it provides +access to all GZIP engines in the system. The only valid operations on +/dev/crypto/nx-gzip are: + + * open() the device for read and write. + * issue VAS_TX_WIN_OPEN ioctl + * mmap() the engine's request queue into application's virtual + address space (i.e. get a paste_address for the co-processor + engine). + * close the device node. + +Other file operations on this device node are undefined. + +Note that the copy and paste operations go directly to the hardware and +do not go through this device. Refer COPY/PASTE document for more +details. + +Although a system may have several instances of the NX co-processor +engines (typically, one per P9 chip) there is just one +/dev/crypto/nx-gzip device node in the system. When the nx-gzip device +node is opened, Kernel opens send window on a suitable instance of NX +accelerator. It finds CPU on which the user process is executing and +determine the NX instance for the corresponding chip on which this CPU +belongs. + +Applications may chose a specific instance of the NX co-processor using +the vas_id field in the VAS_TX_WIN_OPEN ioctl as detailed below. + +A userspace library libnxz is available here but still in development: + https://github.com/abalib/power-gzip + +Applications that use inflate / deflate calls can link with libnxz +instead of libz and use NX GZIP compression without any modification. + +Open /dev/crypto/nx-gzip +======================== + +The nx-gzip device should be opened for read and write. No special +privileges are needed to open the device. Each window corresponds to one +file descriptor. So if the userspace process needs multiple windows, +several open calls have to be issued. + +See open(2) system call man pages for other details such as return values, +error codes and restrictions. + +VAS_TX_WIN_OPEN ioctl +===================== + +Applications should use the VAS_TX_WIN_OPEN ioctl as follows to establish +a connection with NX co-processor engine: + + :: + struct vas_tx_win_open_attr { + __u32 version; + __s16 vas_id; /* specific instance of vas or -1 + for default */ + __u16 reserved1; + __u64 flags; /* For future use */ + __u64 reserved2[6]; + }; + + version: The version field must be currently set to 1. + vas_id: If '-1' is passed, kernel will make a best-effort attempt + to assign an optimal instance of NX for the process. To + select the specific VAS instance, refer + "Discovery of available VAS engines" section below. + + flags, reserved1 and reserved2[6] fields are for future extension + and must be set to 0. + + The attributes attr for the VAS_TX_WIN_OPEN ioctl are defined as + follows: + #define VAS_MAGIC 'v' + #define VAS_TX_WIN_OPEN _IOW(VAS_MAGIC, 1, + struct vas_tx_win_open_attr) + + struct vas_tx_win_open_attr attr; + rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr); + + The VAS_TX_WIN_OPEN ioctl returns 0 on success. On errors, it + returns -1 and sets the errno variable to indicate the error. + + Error conditions: + EINVAL fd does not refer to a valid VAS device. + EINVAL Invalid vas ID + EINVAL version is not set with proper value + EEXIST Window is already opened for the given fd + ENOMEM Memory is not available to allocate window + ENOSPC System has too many active windows (connections) + opened + EINVAL reserved fields are not set to 0. + + See the ioctl(2) man page for more details, error codes and + restrictions. + +mmap() NX-GZIP device +===================== + +The mmap() system call for a NX-GZIP device fd returns a paste_address +that the application can use to copy/paste its CRB to the hardware engines. + :: + + paste_addr = mmap(addr, size, prot, flags, fd, offset); + + Only restrictions on mmap for a NX-GZIP device fd are: + * size should be PAGE_SIZE + * offset parameter should be 0ULL + + Refer to mmap(2) man page for additional details/restrictions. + In addition to the error conditions listed on the mmap(2) man + page, can also fail with one of the following error codes: + + EINVAL fd is not associated with an open window + (i.e mmap() does not follow a successful call + to the VAS_TX_WIN_OPEN ioctl). + EINVAL offset field is not 0ULL. + +Discovery of available VAS engines +================================== + +Each available VAS instance in the system will have a device tree node +like /proc/device-tree/vas@* or /proc/device-tree/xscom@*/vas@*. +Determine the chip or VAS instance and use the corresponding ibm,vas-id +property value in this node to select specific VAS instance. + +Copy/Paste operations +===================== + +Applications should use the copy and paste instructions to send CRB to NX. +Refer section 4.4 in PowerISA for Copy/Paste instructions: +https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0 + +CRB Specification and use NX +============================ + +Applications should format requests to the co-processor using the +co-processor Request Block (CRBs). Refer NX-GZIP user's manual for the format +of CRB and use NX from userspace such as sending requests and checking +request status. + +NX Fault handling +================= + +Applications send requests to NX and wait for the status by polling on +co-processor Status Block (CSB) flags. NX updates status in CSB after each +request is processed. Refer NX-GZIP user's manual for the format of CSB and +status flags. + +In case if NX encounters translation error (called NX page fault) on CSB +address or any request buffer, raises an interrupt on the CPU to handle the +fault. Page fault can happen if an application passes invalid addresses or +request buffers are not in memory. The operating system handles the fault by +updating CSB with the following data: + + csb.flags = CSB_V; + csb.cc = CSB_CC_TRANSLATION; + csb.ce = CSB_CE_TERMINATION; + csb.address = fault_address; + +When an application receives translation error, it can touch or access +the page that has a fault address so that this page will be in memory. Then +the application can resend this request to NX. + +If the OS can not update CSB due to invalid CSB address, sends SEGV signal +to the process who opened the send window on which the original request was +issued. This signal returns with the following siginfo struct: + + siginfo.si_signo = SIGSEGV; + siginfo.si_errno = EFAULT; + siginfo.si_code = SEGV_MAPERR; + siginfo.si_addr = CSB adress; + +In the case of multi-thread applications, NX send windows can be shared +across all threads. For example, a child thread can open a send window, +but other threads can send requests to NX using this window. These +requests will be successful even in the case of OS handling faults as long +as CSB address is valid. If the NX request contains an invalid CSB address, +the signal will be sent to the child thread that opened the window. But if +the thread is exited without closing the window and the request is issued +using this window. the signal will be issued to the thread group leader +(tgid). It is up to the application whether to ignore or handle these +signals. + +NX-GZIP User's Manual: +https://github.com/libnxz/power-gzip/blob/master/power_nx_gzip_um.pdf + +Simple example +============== + + :: + int use_nx_gzip() + { + int rc, fd; + void *addr; + struct vas_setup_attr txattr; + + fd = open("/dev/crypto/nx-gzip", O_RDWR); + if (fd < 0) { + fprintf(stderr, "open nx-gzip failed\n"); + return -1; + } + memset(&txattr, 0, sizeof(txattr)); + txattr.version = 1; + txattr.vas_id = -1 + rc = ioctl(fd, VAS_TX_WIN_OPEN, + (unsigned long)&txattr); + if (rc < 0) { + fprintf(stderr, "ioctl() n %d, error %d\n", + rc, errno); + return rc; + } + addr = mmap(NULL, 4096, PROT_READ|PROT_WRITE, + MAP_SHARED, fd, 0ULL); + if (addr == MAP_FAILED) { + fprintf(stderr, "mmap() failed, errno %d\n", + errno); + return -errno; + } + do { + //Format CRB request with compression or + //uncompression + // Refer tests for vas_copy/vas_paste + vas_copy((&crb, 0, 1); + vas_paste(addr, 0, 1); + // Poll on csb.flags with timeout + // csb address is listed in CRB + } while (true) + close(fd) or window can be closed upon process exit + } + + Refer https://github.com/abalib/power-gzip for tests or more + use cases. |