summaryrefslogtreecommitdiff
path: root/arch/powerpc/crypto/aes-spe-core.S
blob: bc6ff43a9889eedd635dc1638bd97d4263fa2269 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * Fast AES implementation for SPE instruction set (PPC)
 *
 * This code makes use of the SPE SIMD instruction set as defined in
 * http://cache.freescale.com/files/32bit/doc/ref_manual/SPEPIM.pdf
 * Implementation is based on optimization guide notes from
 * http://cache.freescale.com/files/32bit/doc/app_note/AN2665.pdf
 *
 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <asm/ppc_asm.h>
#include "aes-spe-regs.h"

#define	EAD(in, bpos) \
	rlwimi		rT0,in,28-((bpos+3)%4)*8,20,27;

#define DAD(in, bpos) \
	rlwimi		rT1,in,24-((bpos+3)%4)*8,24,31;

#define LWH(out, off) \
	evlwwsplat	out,off(rT0);	/* load word high		*/

#define LWL(out, off) \
	lwz		out,off(rT0);	/* load word low		*/

#define LBZ(out, tab, off) \
	lbz		out,off(tab);	/* load byte			*/

#define LAH(out, in, bpos, off) \
	EAD(in, bpos)			/* calc addr + load word high	*/ \
	LWH(out, off)

#define LAL(out, in, bpos, off) \
	EAD(in, bpos)			/* calc addr + load word low	*/ \
	LWL(out, off)

#define LAE(out, in, bpos) \
	EAD(in, bpos)			/* calc addr + load enc byte	*/ \
	LBZ(out, rT0, 8)

#define LBE(out) \
	LBZ(out, rT0, 8)		/* load enc byte		*/

#define LAD(out, in, bpos) \
	DAD(in, bpos)			/* calc addr + load dec byte	*/ \
	LBZ(out, rT1, 0)

#define LBD(out) \
	LBZ(out, rT1, 0)

/*
 * ppc_encrypt_block: The central encryption function for a single 16 bytes
 * block. It does no stack handling or register saving to support fast calls
 * via bl/blr. It expects that caller has pre-xored input data with first
 * 4 words of encryption key into rD0-rD3. Pointer/counter registers must
 * have also been set up before (rT0, rKP, CTR). Output is stored in rD0-rD3
 * and rW0-rW3 and caller must execute a final xor on the output registers.
 * All working registers rD0-rD3 & rW0-rW7 are overwritten during processing.
 *
 */
_GLOBAL(ppc_encrypt_block)
	LAH(rW4, rD1, 2, 4)
	LAH(rW6, rD0, 3, 0)
	LAH(rW3, rD0, 1, 8)
ppc_encrypt_block_loop:
	LAH(rW0, rD3, 0, 12)
	LAL(rW0, rD0, 0, 12)
	LAH(rW1, rD1, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAL(rW3, rD1, 1, 8)
	LAL(rW4, rD2, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAH(rW5, rD3, 2, 4)
	LAL(rW5, rD0, 2, 4)
	LAH(rW7, rD2, 3, 0)
	evldw		rD1,16(rKP)
	EAD(rD3, 3)
	evxor		rW2,rW2,rW4
	LWL(rW7, 0)
	evxor		rW2,rW2,rW6
	EAD(rD2, 0)
	evxor		rD1,rD1,rW2
	LWL(rW1, 12)
	evxor		rD1,rD1,rW0
	evldw		rD3,24(rKP)
	evmergehi	rD0,rD0,rD1
	EAD(rD1, 2)
	evxor		rW3,rW3,rW5
	LWH(rW4, 4)
	evxor		rW3,rW3,rW7
	EAD(rD0, 3)
	evxor		rD3,rD3,rW3
	LWH(rW6, 0)
	evxor		rD3,rD3,rW1
	EAD(rD0, 1)
	evmergehi	rD2,rD2,rD3
	LWH(rW3, 8)
	LAH(rW0, rD3, 0, 12)
	LAL(rW0, rD0, 0, 12)
	LAH(rW1, rD1, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAL(rW3, rD1, 1, 8)
	LAL(rW4, rD2, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAH(rW5, rD3, 2, 4)
	LAL(rW5, rD0, 2, 4)
	LAH(rW7, rD2, 3, 0)
	evldw		rD1,32(rKP)
	EAD(rD3, 3)
	evxor		rW2,rW2,rW4
	LWL(rW7, 0)
	evxor		rW2,rW2,rW6
	EAD(rD2, 0)
	evxor		rD1,rD1,rW2
	LWL(rW1, 12)
	evxor		rD1,rD1,rW0
	evldw		rD3,40(rKP)
	evmergehi	rD0,rD0,rD1
	EAD(rD1, 2)
	evxor		rW3,rW3,rW5
	LWH(rW4, 4)
	evxor		rW3,rW3,rW7
	EAD(rD0, 3)
	evxor		rD3,rD3,rW3
	LWH(rW6, 0)
	evxor		rD3,rD3,rW1
	EAD(rD0, 1)
	evmergehi	rD2,rD2,rD3
	LWH(rW3, 8)
	addi		rKP,rKP,32
	bdnz		ppc_encrypt_block_loop
	LAH(rW0, rD3, 0, 12)
	LAL(rW0, rD0, 0, 12)
	LAH(rW1, rD1, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAL(rW3, rD1, 1, 8)
	LAL(rW4, rD2, 2, 4)
	LAH(rW5, rD3, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAL(rW5, rD0, 2, 4)
	LAH(rW7, rD2, 3, 0)
	evldw		rD1,16(rKP)
	EAD(rD3, 3)
	evxor		rW2,rW2,rW4
	LWL(rW7, 0)
	evxor		rW2,rW2,rW6
	EAD(rD2, 0)
	evxor		rD1,rD1,rW2
	LWL(rW1, 12)
	evxor		rD1,rD1,rW0
	evldw		rD3,24(rKP)
	evmergehi	rD0,rD0,rD1
	EAD(rD1, 0)
	evxor		rW3,rW3,rW5
	LBE(rW2)
	evxor		rW3,rW3,rW7
	EAD(rD0, 1)
	evxor		rD3,rD3,rW3
	LBE(rW6)
	evxor		rD3,rD3,rW1
	EAD(rD0, 0)
	evmergehi	rD2,rD2,rD3
	LBE(rW1)
	LAE(rW0, rD3, 0)
	LAE(rW1, rD0, 0)
	LAE(rW4, rD2, 1)
	LAE(rW5, rD3, 1)
	LAE(rW3, rD2, 0)
	LAE(rW7, rD1, 1)
	rlwimi		rW0,rW4,8,16,23
	rlwimi		rW1,rW5,8,16,23
	LAE(rW4, rD1, 2)
	LAE(rW5, rD2, 2)
	rlwimi		rW2,rW6,8,16,23
	rlwimi		rW3,rW7,8,16,23
	LAE(rW6, rD3, 2)
	LAE(rW7, rD0, 2)
	rlwimi		rW0,rW4,16,8,15
	rlwimi		rW1,rW5,16,8,15
	LAE(rW4, rD0, 3)
	LAE(rW5, rD1, 3)
	rlwimi		rW2,rW6,16,8,15
	lwz		rD0,32(rKP)
	rlwimi		rW3,rW7,16,8,15
	lwz		rD1,36(rKP)
	LAE(rW6, rD2, 3)
	LAE(rW7, rD3, 3)
	rlwimi		rW0,rW4,24,0,7
	lwz		rD2,40(rKP)
	rlwimi		rW1,rW5,24,0,7
	lwz		rD3,44(rKP)
	rlwimi		rW2,rW6,24,0,7
	rlwimi		rW3,rW7,24,0,7
	blr

/*
 * ppc_decrypt_block: The central decryption function for a single 16 bytes
 * block. It does no stack handling or register saving to support fast calls
 * via bl/blr. It expects that caller has pre-xored input data with first
 * 4 words of encryption key into rD0-rD3. Pointer/counter registers must
 * have also been set up before (rT0, rKP, CTR). Output is stored in rD0-rD3
 * and rW0-rW3 and caller must execute a final xor on the output registers.
 * All working registers rD0-rD3 & rW0-rW7 are overwritten during processing.
 *
 */
_GLOBAL(ppc_decrypt_block)
	LAH(rW0, rD1, 0, 12)
	LAH(rW6, rD0, 3, 0)
	LAH(rW3, rD0, 1, 8)
ppc_decrypt_block_loop:
	LAH(rW1, rD3, 0, 12)
	LAL(rW0, rD2, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAH(rW4, rD3, 2, 4)
	LAL(rW4, rD0, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAH(rW5, rD1, 2, 4)
	LAH(rW7, rD2, 3, 0)
	LAL(rW7, rD3, 3, 0)
	LAL(rW3, rD1, 1, 8)
	evldw		rD1,16(rKP)
	EAD(rD0, 0)
	evxor		rW4,rW4,rW6
	LWL(rW1, 12)
	evxor		rW0,rW0,rW4
	EAD(rD2, 2)
	evxor		rW0,rW0,rW2
	LWL(rW5, 4)
	evxor		rD1,rD1,rW0
	evldw		rD3,24(rKP)
	evmergehi	rD0,rD0,rD1
	EAD(rD1, 0)
	evxor		rW3,rW3,rW7
	LWH(rW0, 12)
	evxor		rW3,rW3,rW1
	EAD(rD0, 3)
	evxor		rD3,rD3,rW3
	LWH(rW6, 0)
	evxor		rD3,rD3,rW5
	EAD(rD0, 1)
	evmergehi	rD2,rD2,rD3
	LWH(rW3, 8)
	LAH(rW1, rD3, 0, 12)
	LAL(rW0, rD2, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAH(rW4, rD3, 2, 4)
	LAL(rW4, rD0, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAH(rW5, rD1, 2, 4)
	LAH(rW7, rD2, 3, 0)
	LAL(rW7, rD3, 3, 0)
	LAL(rW3, rD1, 1, 8)
	evldw		 rD1,32(rKP)
	EAD(rD0, 0)
	evxor		rW4,rW4,rW6
	LWL(rW1, 12)
	evxor		rW0,rW0,rW4
	EAD(rD2, 2)
	evxor		rW0,rW0,rW2
	LWL(rW5, 4)
	evxor		rD1,rD1,rW0
	evldw		rD3,40(rKP)
	evmergehi	rD0,rD0,rD1
	EAD(rD1, 0)
	evxor		rW3,rW3,rW7
	LWH(rW0, 12)
	evxor		rW3,rW3,rW1
	EAD(rD0, 3)
	evxor		rD3,rD3,rW3
	LWH(rW6, 0)
	evxor		rD3,rD3,rW5
	EAD(rD0, 1)
	evmergehi	rD2,rD2,rD3
	LWH(rW3, 8)
	addi		rKP,rKP,32
	bdnz		ppc_decrypt_block_loop
	LAH(rW1, rD3, 0, 12)
	LAL(rW0, rD2, 0, 12)
	LAH(rW2, rD2, 1, 8)
	LAL(rW2, rD3, 1, 8)
	LAH(rW4, rD3, 2, 4)
	LAL(rW4, rD0, 2, 4)
	LAL(rW6, rD1, 3, 0)
	LAH(rW5, rD1, 2, 4)
	LAH(rW7, rD2, 3, 0)
	LAL(rW7, rD3, 3, 0)
	LAL(rW3, rD1, 1, 8)
	evldw		 rD1,16(rKP)
	EAD(rD0, 0)
	evxor		rW4,rW4,rW6
	LWL(rW1, 12)
	evxor		rW0,rW0,rW4
	EAD(rD2, 2)
	evxor		rW0,rW0,rW2
	LWL(rW5, 4)
	evxor		rD1,rD1,rW0
	evldw		rD3,24(rKP)
	evmergehi	rD0,rD0,rD1
	DAD(rD1, 0)
	evxor		rW3,rW3,rW7
	LBD(rW0)
	evxor		rW3,rW3,rW1
	DAD(rD0, 1)
	evxor		rD3,rD3,rW3
	LBD(rW6)
	evxor		rD3,rD3,rW5
	DAD(rD0, 0)
	evmergehi	rD2,rD2,rD3
	LBD(rW3)
	LAD(rW2, rD3, 0)
	LAD(rW1, rD2, 0)
	LAD(rW4, rD2, 1)
	LAD(rW5, rD3, 1)
	LAD(rW7, rD1, 1)
	rlwimi		rW0,rW4,8,16,23
	rlwimi		rW1,rW5,8,16,23
	LAD(rW4, rD3, 2)
	LAD(rW5, rD0, 2)
	rlwimi		rW2,rW6,8,16,23
	rlwimi		rW3,rW7,8,16,23
	LAD(rW6, rD1, 2)
	LAD(rW7, rD2, 2)
	rlwimi		rW0,rW4,16,8,15
	rlwimi		rW1,rW5,16,8,15
	LAD(rW4, rD0, 3)
	LAD(rW5, rD1, 3)
	rlwimi		rW2,rW6,16,8,15
	lwz		rD0,32(rKP)
	rlwimi		rW3,rW7,16,8,15
	lwz		rD1,36(rKP)
	LAD(rW6, rD2, 3)
	LAD(rW7, rD3, 3)
	rlwimi		rW0,rW4,24,0,7
	lwz		rD2,40(rKP)
	rlwimi		rW1,rW5,24,0,7
	lwz		rD3,44(rKP)
	rlwimi		rW2,rW6,24,0,7
	rlwimi		rW3,rW7,24,0,7
	blr