summaryrefslogtreecommitdiff
path: root/vp10/encoder/temporal_filter.c
blob: 5278d3b7366b694f8cf0899038527ec365434ba5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <limits.h>

#include "vp10/common/alloccommon.h"
#include "vp10/common/onyxc_int.h"
#include "vp10/common/quant_common.h"
#include "vp10/common/reconinter.h"
#include "vp10/encoder/extend.h"
#include "vp10/encoder/firstpass.h"
#include "vp10/encoder/mcomp.h"
#include "vp10/encoder/encoder.h"
#include "vp10/encoder/quantize.h"
#include "vp10/encoder/ratectrl.h"
#include "vp10/encoder/segmentation.h"
#include "vp10/encoder/temporal_filter.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_scale/vpx_scale.h"

static int fixed_divide[512];

static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
                                            uint8_t *y_mb_ptr,
                                            uint8_t *u_mb_ptr,
                                            uint8_t *v_mb_ptr,
                                            int stride,
                                            int uv_block_width,
                                            int uv_block_height,
                                            int mv_row,
                                            int mv_col,
                                            uint8_t *pred,
                                            struct scale_factors *scale,
                                            int x, int y) {
  const int which_mv = 0;
  const MV mv = { mv_row, mv_col };
  const InterpKernel *const kernel =
    vp10_filter_kernels[xd->mi[0]->mbmi.interp_filter];

  enum mv_precision mv_precision_uv;
  int uv_stride;
  if (uv_block_width == 8) {
    uv_stride = (stride + 1) >> 1;
    mv_precision_uv = MV_PRECISION_Q4;
  } else {
    uv_stride = stride;
    mv_precision_uv = MV_PRECISION_Q3;
  }

#if CONFIG_VP9_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    vp10_highbd_build_inter_predictor(y_mb_ptr, stride,
                                     &pred[0], 16,
                                     &mv,
                                     scale,
                                     16, 16,
                                     which_mv,
                                     kernel, MV_PRECISION_Q3, x, y, xd->bd);

    vp10_highbd_build_inter_predictor(u_mb_ptr, uv_stride,
                                     &pred[256], uv_block_width,
                                     &mv,
                                     scale,
                                     uv_block_width, uv_block_height,
                                     which_mv,
                                     kernel, mv_precision_uv, x, y, xd->bd);

    vp10_highbd_build_inter_predictor(v_mb_ptr, uv_stride,
                                     &pred[512], uv_block_width,
                                     &mv,
                                     scale,
                                     uv_block_width, uv_block_height,
                                     which_mv,
                                     kernel, mv_precision_uv, x, y, xd->bd);
    return;
  }
#endif  // CONFIG_VP9_HIGHBITDEPTH
  vp10_build_inter_predictor(y_mb_ptr, stride,
                            &pred[0], 16,
                            &mv,
                            scale,
                            16, 16,
                            which_mv,
                            kernel, MV_PRECISION_Q3, x, y);

  vp10_build_inter_predictor(u_mb_ptr, uv_stride,
                            &pred[256], uv_block_width,
                            &mv,
                            scale,
                            uv_block_width, uv_block_height,
                            which_mv,
                            kernel, mv_precision_uv, x, y);

  vp10_build_inter_predictor(v_mb_ptr, uv_stride,
                            &pred[512], uv_block_width,
                            &mv,
                            scale,
                            uv_block_width, uv_block_height,
                            which_mv,
                            kernel, mv_precision_uv, x, y);
}

void vp10_temporal_filter_init(void) {
  int i;

  fixed_divide[0] = 0;
  for (i = 1; i < 512; ++i)
    fixed_divide[i] = 0x80000 / i;
}

void vp10_temporal_filter_apply_c(uint8_t *frame1,
                                 unsigned int stride,
                                 uint8_t *frame2,
                                 unsigned int block_width,
                                 unsigned int block_height,
                                 int strength,
                                 int filter_weight,
                                 unsigned int *accumulator,
                                 uint16_t *count) {
  unsigned int i, j, k;
  int modifier;
  int byte = 0;
  const int rounding = strength > 0 ? 1 << (strength - 1) : 0;

  for (i = 0, k = 0; i < block_height; i++) {
    for (j = 0; j < block_width; j++, k++) {
      int src_byte = frame1[byte];
      int pixel_value = *frame2++;

      modifier   = src_byte - pixel_value;
      // This is an integer approximation of:
      // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
      // modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
      modifier  *= modifier;
      modifier  *= 3;
      modifier  += rounding;
      modifier >>= strength;

      if (modifier > 16)
        modifier = 16;

      modifier = 16 - modifier;
      modifier *= filter_weight;

      count[k] += modifier;
      accumulator[k] += modifier * pixel_value;

      byte++;
    }

    byte += stride - block_width;
  }
}

#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_temporal_filter_apply_c(uint8_t *frame1_8,
                                        unsigned int stride,
                                        uint8_t *frame2_8,
                                        unsigned int block_width,
                                        unsigned int block_height,
                                        int strength,
                                        int filter_weight,
                                        unsigned int *accumulator,
                                        uint16_t *count) {
  uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
  uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
  unsigned int i, j, k;
  int modifier;
  int byte = 0;
  const int rounding = strength > 0 ? 1 << (strength - 1) : 0;

  for (i = 0, k = 0; i < block_height; i++) {
    for (j = 0; j < block_width; j++, k++) {
      int src_byte = frame1[byte];
      int pixel_value = *frame2++;

      modifier   = src_byte - pixel_value;
      // This is an integer approximation of:
      // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
      // modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
      modifier *= modifier;
      modifier *= 3;
      modifier += rounding;
      modifier >>= strength;

      if (modifier > 16)
        modifier = 16;

      modifier = 16 - modifier;
      modifier *= filter_weight;

      count[k] += modifier;
      accumulator[k] += modifier * pixel_value;

      byte++;
    }

    byte += stride - block_width;
  }
}
#endif  // CONFIG_VP9_HIGHBITDEPTH

static int temporal_filter_find_matching_mb_c(VP10_COMP *cpi,
                                              uint8_t *arf_frame_buf,
                                              uint8_t *frame_ptr_buf,
                                              int stride) {
  MACROBLOCK *const x = &cpi->td.mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
  int step_param;
  int sadpb = x->sadperbit16;
  int bestsme = INT_MAX;
  int distortion;
  unsigned int sse;
  int cost_list[5];

  MV best_ref_mv1 = {0, 0};
  MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
  MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;

  // Save input state
  struct buf_2d src = x->plane[0].src;
  struct buf_2d pre = xd->plane[0].pre[0];

  best_ref_mv1_full.col = best_ref_mv1.col >> 3;
  best_ref_mv1_full.row = best_ref_mv1.row >> 3;

  // Setup frame pointers
  x->plane[0].src.buf = arf_frame_buf;
  x->plane[0].src.stride = stride;
  xd->plane[0].pre[0].buf = frame_ptr_buf;
  xd->plane[0].pre[0].stride = stride;

  step_param = mv_sf->reduce_first_step_size;
  step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);

  // Ignore mv costing by sending NULL pointer instead of cost arrays
  vp10_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
                 cond_cost_list(cpi, cost_list),
                 &cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv);

  // Ignore mv costing by sending NULL pointer instead of cost array
  bestsme = cpi->find_fractional_mv_step(x, ref_mv,
                                         &best_ref_mv1,
                                         cpi->common.allow_high_precision_mv,
                                         x->errorperbit,
                                         &cpi->fn_ptr[BLOCK_16X16],
                                         0, mv_sf->subpel_iters_per_step,
                                         cond_cost_list(cpi, cost_list),
                                         NULL, NULL,
                                         &distortion, &sse, NULL, 0, 0);

  // Restore input state
  x->plane[0].src = src;
  xd->plane[0].pre[0] = pre;

  return bestsme;
}

static void temporal_filter_iterate_c(VP10_COMP *cpi,
                                      YV12_BUFFER_CONFIG **frames,
                                      int frame_count,
                                      int alt_ref_index,
                                      int strength,
                                      struct scale_factors *scale) {
  int byte;
  int frame;
  int mb_col, mb_row;
  unsigned int filter_weight;
  int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
  int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
  int mb_y_offset = 0;
  int mb_uv_offset = 0;
  DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
  DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
  MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
  YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
  uint8_t *dst1, *dst2;
#if CONFIG_VP9_HIGHBITDEPTH
  DECLARE_ALIGNED(16, uint16_t,  predictor16[16 * 16 * 3]);
  DECLARE_ALIGNED(16, uint8_t,  predictor8[16 * 16 * 3]);
  uint8_t *predictor;
#else
  DECLARE_ALIGNED(16, uint8_t,  predictor[16 * 16 * 3]);
#endif
  const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
  const int mb_uv_width  = 16 >> mbd->plane[1].subsampling_x;

  // Save input state
  uint8_t* input_buffer[MAX_MB_PLANE];
  int i;
#if CONFIG_VP9_HIGHBITDEPTH
  if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    predictor = CONVERT_TO_BYTEPTR(predictor16);
  } else {
    predictor = predictor8;
  }
#endif

  for (i = 0; i < MAX_MB_PLANE; i++)
    input_buffer[i] = mbd->plane[i].pre[0].buf;

  for (mb_row = 0; mb_row < mb_rows; mb_row++) {
    // Source frames are extended to 16 pixels. This is different than
    //  L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
    // A 6/8 tap filter is used for motion search.  This requires 2 pixels
    //  before and 3 pixels after.  So the largest Y mv on a border would
    //  then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
    //  Y and therefore only extended by 8.  The largest mv that a UV block
    //  can support is 8 - VP9_INTERP_EXTEND.  A UV mv is half of a Y mv.
    //  (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
    //  8 - VP9_INTERP_EXTEND.
    // To keep the mv in play for both Y and UV planes the max that it
    //  can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
    cpi->td.mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
    cpi->td.mb.mv_row_max = ((mb_rows - 1 - mb_row) * 16)
                         + (17 - 2 * VP9_INTERP_EXTEND);

    for (mb_col = 0; mb_col < mb_cols; mb_col++) {
      int i, j, k;
      int stride;

      memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
      memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));

      cpi->td.mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
      cpi->td.mb.mv_col_max = ((mb_cols - 1 - mb_col) * 16)
                           + (17 - 2 * VP9_INTERP_EXTEND);

      for (frame = 0; frame < frame_count; frame++) {
        const int thresh_low  = 10000;
        const int thresh_high = 20000;

        if (frames[frame] == NULL)
          continue;

        mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
        mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;

        if (frame == alt_ref_index) {
          filter_weight = 2;
        } else {
          // Find best match in this frame by MC
          int err = temporal_filter_find_matching_mb_c(cpi,
              frames[alt_ref_index]->y_buffer + mb_y_offset,
              frames[frame]->y_buffer + mb_y_offset,
              frames[frame]->y_stride);

          // Assign higher weight to matching MB if it's error
          // score is lower. If not applying MC default behavior
          // is to weight all MBs equal.
          filter_weight = err < thresh_low
                          ? 2 : err < thresh_high ? 1 : 0;
        }

        if (filter_weight != 0) {
          // Construct the predictors
          temporal_filter_predictors_mb_c(mbd,
              frames[frame]->y_buffer + mb_y_offset,
              frames[frame]->u_buffer + mb_uv_offset,
              frames[frame]->v_buffer + mb_uv_offset,
              frames[frame]->y_stride,
              mb_uv_width, mb_uv_height,
              mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
              mbd->mi[0]->bmi[0].as_mv[0].as_mv.col,
              predictor, scale,
              mb_col * 16, mb_row * 16);

#if CONFIG_VP9_HIGHBITDEPTH
          if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
            int adj_strength = strength + 2 * (mbd->bd - 8);
            // Apply the filter (YUV)
            vp10_highbd_temporal_filter_apply(f->y_buffer + mb_y_offset,
                                             f->y_stride,
                                             predictor, 16, 16, adj_strength,
                                             filter_weight,
                                             accumulator, count);
            vp10_highbd_temporal_filter_apply(f->u_buffer + mb_uv_offset,
                                             f->uv_stride, predictor + 256,
                                             mb_uv_width, mb_uv_height,
                                             adj_strength,
                                             filter_weight, accumulator + 256,
                                             count + 256);
            vp10_highbd_temporal_filter_apply(f->v_buffer + mb_uv_offset,
                                             f->uv_stride, predictor + 512,
                                             mb_uv_width, mb_uv_height,
                                             adj_strength, filter_weight,
                                             accumulator + 512, count + 512);
          } else {
            // Apply the filter (YUV)
            vp10_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
                                      predictor, 16, 16,
                                      strength, filter_weight,
                                      accumulator, count);
            vp10_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
                                      predictor + 256,
                                      mb_uv_width, mb_uv_height, strength,
                                      filter_weight, accumulator + 256,
                                      count + 256);
            vp10_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
                                      predictor + 512,
                                      mb_uv_width, mb_uv_height, strength,
                                      filter_weight, accumulator + 512,
                                      count + 512);
          }
#else
          // Apply the filter (YUV)
          vp10_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
                                    predictor, 16, 16,
                                    strength, filter_weight,
                                    accumulator, count);
          vp10_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
                                    predictor + 256,
                                    mb_uv_width, mb_uv_height, strength,
                                    filter_weight, accumulator + 256,
                                    count + 256);
          vp10_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
                                    predictor + 512,
                                    mb_uv_width, mb_uv_height, strength,
                                    filter_weight, accumulator + 512,
                                    count + 512);
#endif  // CONFIG_VP9_HIGHBITDEPTH
        }
      }

#if CONFIG_VP9_HIGHBITDEPTH
      if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        uint16_t *dst1_16;
        uint16_t *dst2_16;
        // Normalize filter output to produce AltRef frame
        dst1 = cpi->alt_ref_buffer.y_buffer;
        dst1_16 = CONVERT_TO_SHORTPTR(dst1);
        stride = cpi->alt_ref_buffer.y_stride;
        byte = mb_y_offset;
        for (i = 0, k = 0; i < 16; i++) {
          for (j = 0; j < 16; j++, k++) {
            unsigned int pval = accumulator[k] + (count[k] >> 1);
            pval *= fixed_divide[count[k]];
            pval >>= 19;

            dst1_16[byte] = (uint16_t)pval;

            // move to next pixel
            byte++;
          }

          byte += stride - 16;
        }

        dst1 = cpi->alt_ref_buffer.u_buffer;
        dst2 = cpi->alt_ref_buffer.v_buffer;
        dst1_16 = CONVERT_TO_SHORTPTR(dst1);
        dst2_16 = CONVERT_TO_SHORTPTR(dst2);
        stride = cpi->alt_ref_buffer.uv_stride;
        byte = mb_uv_offset;
        for (i = 0, k = 256; i < mb_uv_height; i++) {
          for (j = 0; j < mb_uv_width; j++, k++) {
            int m = k + 256;

            // U
            unsigned int pval = accumulator[k] + (count[k] >> 1);
            pval *= fixed_divide[count[k]];
            pval >>= 19;
            dst1_16[byte] = (uint16_t)pval;

            // V
            pval = accumulator[m] + (count[m] >> 1);
            pval *= fixed_divide[count[m]];
            pval >>= 19;
            dst2_16[byte] = (uint16_t)pval;

            // move to next pixel
            byte++;
          }

          byte += stride - mb_uv_width;
        }
      } else {
        // Normalize filter output to produce AltRef frame
        dst1 = cpi->alt_ref_buffer.y_buffer;
        stride = cpi->alt_ref_buffer.y_stride;
        byte = mb_y_offset;
        for (i = 0, k = 0; i < 16; i++) {
          for (j = 0; j < 16; j++, k++) {
            unsigned int pval = accumulator[k] + (count[k] >> 1);
            pval *= fixed_divide[count[k]];
            pval >>= 19;

            dst1[byte] = (uint8_t)pval;

            // move to next pixel
            byte++;
          }
          byte += stride - 16;
        }

        dst1 = cpi->alt_ref_buffer.u_buffer;
        dst2 = cpi->alt_ref_buffer.v_buffer;
        stride = cpi->alt_ref_buffer.uv_stride;
        byte = mb_uv_offset;
        for (i = 0, k = 256; i < mb_uv_height; i++) {
          for (j = 0; j < mb_uv_width; j++, k++) {
            int m = k + 256;

            // U
            unsigned int pval = accumulator[k] + (count[k] >> 1);
            pval *= fixed_divide[count[k]];
            pval >>= 19;
            dst1[byte] = (uint8_t)pval;

            // V
            pval = accumulator[m] + (count[m] >> 1);
            pval *= fixed_divide[count[m]];
            pval >>= 19;
            dst2[byte] = (uint8_t)pval;

            // move to next pixel
            byte++;
          }
          byte += stride - mb_uv_width;
        }
      }
#else
      // Normalize filter output to produce AltRef frame
      dst1 = cpi->alt_ref_buffer.y_buffer;
      stride = cpi->alt_ref_buffer.y_stride;
      byte = mb_y_offset;
      for (i = 0, k = 0; i < 16; i++) {
        for (j = 0; j < 16; j++, k++) {
          unsigned int pval = accumulator[k] + (count[k] >> 1);
          pval *= fixed_divide[count[k]];
          pval >>= 19;

          dst1[byte] = (uint8_t)pval;

          // move to next pixel
          byte++;
        }
        byte += stride - 16;
      }

      dst1 = cpi->alt_ref_buffer.u_buffer;
      dst2 = cpi->alt_ref_buffer.v_buffer;
      stride = cpi->alt_ref_buffer.uv_stride;
      byte = mb_uv_offset;
      for (i = 0, k = 256; i < mb_uv_height; i++) {
        for (j = 0; j < mb_uv_width; j++, k++) {
          int m = k + 256;

          // U
          unsigned int pval = accumulator[k] + (count[k] >> 1);
          pval *= fixed_divide[count[k]];
          pval >>= 19;
          dst1[byte] = (uint8_t)pval;

          // V
          pval = accumulator[m] + (count[m] >> 1);
          pval *= fixed_divide[count[m]];
          pval >>= 19;
          dst2[byte] = (uint8_t)pval;

          // move to next pixel
          byte++;
        }
        byte += stride - mb_uv_width;
      }
#endif  // CONFIG_VP9_HIGHBITDEPTH
      mb_y_offset += 16;
      mb_uv_offset += mb_uv_width;
    }
    mb_y_offset += 16 * (f->y_stride - mb_cols);
    mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
  }

  // Restore input state
  for (i = 0; i < MAX_MB_PLANE; i++)
    mbd->plane[i].pre[0].buf = input_buffer[i];
}

// Apply buffer limits and context specific adjustments to arnr filter.
static void adjust_arnr_filter(VP10_COMP *cpi,
                               int distance, int group_boost,
                               int *arnr_frames, int *arnr_strength) {
  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
  const int frames_after_arf =
      vp10_lookahead_depth(cpi->lookahead) - distance - 1;
  int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
  int frames_bwd;
  int q, frames, strength;

  // Define the forward and backwards filter limits for this arnr group.
  if (frames_fwd > frames_after_arf)
    frames_fwd = frames_after_arf;
  if (frames_fwd > distance)
    frames_fwd = distance;

  frames_bwd = frames_fwd;

  // For even length filter there is one more frame backward
  // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
  if (frames_bwd < distance)
    frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;

  // Set the baseline active filter size.
  frames = frames_bwd + 1 + frames_fwd;

  // Adjust the strength based on active max q.
  if (cpi->common.current_video_frame > 1)
    q = ((int)vp10_convert_qindex_to_q(
        cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth));
  else
    q = ((int)vp10_convert_qindex_to_q(
        cpi->rc.avg_frame_qindex[KEY_FRAME], cpi->common.bit_depth));
  if (q > 16) {
    strength = oxcf->arnr_strength;
  } else {
    strength = oxcf->arnr_strength - ((16 - q) / 2);
    if (strength < 0)
      strength = 0;
  }

  // Adjust number of frames in filter and strength based on gf boost level.
  if (frames > group_boost / 150) {
    frames = group_boost / 150;
    frames += !(frames & 1);
  }

  if (strength > group_boost / 300) {
    strength = group_boost / 300;
  }

  // Adjustments for second level arf in multi arf case.
  if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) {
    const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
    if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) {
      strength >>= 1;
    }
  }

  *arnr_frames = frames;
  *arnr_strength = strength;
}

void vp10_temporal_filter(VP10_COMP *cpi, int distance) {
  RATE_CONTROL *const rc = &cpi->rc;
  int frame;
  int frames_to_blur;
  int start_frame;
  int strength;
  int frames_to_blur_backward;
  int frames_to_blur_forward;
  struct scale_factors sf;
  YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = {NULL};

  // Apply context specific adjustments to the arnr filter parameters.
  adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength);
  frames_to_blur_backward = (frames_to_blur / 2);
  frames_to_blur_forward = ((frames_to_blur - 1) / 2);
  start_frame = distance + frames_to_blur_forward;

  // Setup frame pointers, NULL indicates frame not included in filter.
  for (frame = 0; frame < frames_to_blur; ++frame) {
    const int which_buffer = start_frame - frame;
    struct lookahead_entry *buf = vp10_lookahead_peek(cpi->lookahead,
                                                     which_buffer);
    frames[frames_to_blur - 1 - frame] = &buf->img;
  }

  if (frames_to_blur > 0) {
    // Setup scaling factors. Scaling on each of the arnr frames is not
    // supported.
    // ARF is produced at the native frame size and resized when coded.
#if CONFIG_VP9_HIGHBITDEPTH
    vp10_setup_scale_factors_for_frame(&sf,
                                      frames[0]->y_crop_width,
                                      frames[0]->y_crop_height,
                                      frames[0]->y_crop_width,
                                      frames[0]->y_crop_height,
                                      cpi->common.use_highbitdepth);
#else
    vp10_setup_scale_factors_for_frame(&sf,
                                      frames[0]->y_crop_width,
                                      frames[0]->y_crop_height,
                                      frames[0]->y_crop_width,
                                      frames[0]->y_crop_height);
#endif  // CONFIG_VP9_HIGHBITDEPTH
  }

  temporal_filter_iterate_c(cpi, frames, frames_to_blur,
                            frames_to_blur_backward, strength, &sf);
}