summaryrefslogtreecommitdiff
path: root/libgphoto2/ahd_bayer.c
blob: 5254d28dced5039638ebbe59e8535832d92e35f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/** \file ahd_bayer.c
 *  
 * \brief Adaptive Homogeneity-Directed Bayer array conversion routine.
 *
 * \author Copyright March 12, 2008 Theodore Kilgore <kilgota@auburn.edu>
 *
 * \par
 * gp_ahd_interpolate() from Eero Salminen <esalmine@gmail.com>
 * and Theodore Kilgore. The work of Eero Salminen is for partial completion 
 * of a Diploma in Information and Computer Science, 
 * Helsinki University of Technology, Finland.
 *
 * \par
 * The algorithm is based upon the paper
 *
 * \par
 * Adaptive Homogeneity-Directed Democsaicing Algoritm, 
 * Keigo Hirakawa and Thomas W. Parks, presented in the 
 * IEEE Transactions on Image Processing, vol. 14, no. 3, March 2005. 
 *
 * \par License
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * \par
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * \par
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301  USA
 */
 


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

#include "config.h"
#include "bayer.h"
#include <gphoto2/gphoto2-result.h>
#include <gphoto2/gphoto2-port-log.h>

#define MAX(x,y) ((x < y) ? (y) : (x))
#define MIN(x,y) ((x > y) ? (y) : (x))
#define CLAMP(x) MAX(MIN(x,0xff),0)
#define RED	0
#define GREEN 	1
#define BLUE 	2

static
int dRGB(int i1, int i2, unsigned char *RGB);
static
int do_rb_ctr_row(unsigned char *image_h, unsigned char *image_v, int w, 
					int h, int y, int *pos_code);
static
int do_green_ctr_row(unsigned char *image, unsigned char *image_h, 
		    unsigned char *image_v, int w, int h, int y, int *pos_code);
static
int get_diffs_row2(unsigned char * hom_buffer_h, unsigned char *hom_buffer_v, 
		    unsigned char * buffer_h, unsigned char *buffer_v, int w);

#define AD(x, y, w) ((y)*(w)*3+3*(x))
/**
 * \brief This function computes distance^2 between two sets of pixel data. 
 * \param i1 location of a pixel
 * \param i2 location of another pixel
 * \param RGB some RGB data. 
 */
static
int dRGB(int i1, int i2, unsigned char *RGB) {
	int dR,dG,dB;
	dR=RGB[i1+RED]-RGB[i2+RED];
	dG=RGB[i1+GREEN]-RGB[i2+GREEN];
	dB=RGB[i1+BLUE]-RGB[i2+BLUE];
	return dR*dR+dG*dG+dB*dB;
}
/**
 * \brief Missing reds and/or blues are reconstructed on a single row
 * \param image_h three-row window, horizontal interpolation of row 1 is done
 * \param image_v three-row window, vertical interpolation of row 1 is done
 * \param w width of image
 * \param h height of image. 
 * \param y row number from image which is under construction
 * \param pos_code position code related to Bayer tiling in use
 */
static
int do_rb_ctr_row(unsigned char *image_h, unsigned char *image_v, int w, 
					int h, int y, int *pos_code) 
{
	int x, bayer;
	int value,value2,div,color;
	/*
	 * pos_code[0] = red. green lrtb, blue diagonals 
	 * pos_code[1] = green. red lr, blue tb 
	 * pos_code[2] = green. blue lr, red tb 
	 * pos_code[3] = blue. green lrtb, red diagonals 
	 *
	 * The Red channel reconstruction is R=G+L(Rs-Gs), in which
	 *	G = interpolated & known Green
	 *	Rs = known Red
	 *	Gs = values of G at the positions of Rs
	 *	L()= should be a 2D lowpass filter, now we'll check 
	 *	them from a 3x3 square
	 *	L-functions' convolution matrix is 
	 *	[1/4 1/2 1/4;1/2 1 1/2; 1/4 1/2 1/4]
	 * 
	 * The Blue channel reconstruction uses exactly the same methods.
	 */
	for (x = 0; x < w; x++) 
	{
		bayer = (x&1?0:1) + (y&1?0:2);
		for (color=0; color < 3; color+=2) {
			if ((color==RED && bayer == pos_code[3]) 
					|| (color==BLUE 
						    && bayer == pos_code[0])) {
				value=value2=div=0;
				if (x > 0 && y > 0) {
					value += image_h[AD(x-1,0,w)+color]
						-image_h[AD(x-1,0,w)+GREEN];
					value2+= image_v[AD(x-1,0,w)+color]
						-image_v[AD(x-1,0,w)+GREEN];
					div++;
				}
				if (x > 0 && y < h-1) {
					value += image_h[AD(x-1,2,w)+color]
						-image_h[AD(x-1,2,w)+GREEN];
					value2+= image_v[AD(x-1,2,w)+color]
						-image_v[AD(x-1,2,w)+GREEN];
					div++;
				}
				if (x < w-1 && y > 0) {
					value += image_h[AD(x+1,0,w)+color]
						-image_h[AD(x+1,0,w)+GREEN];
					value2+= image_v[AD(x+1,0,w)+color]
						-image_v[AD(x+1,0,w)+GREEN];
					div++;
				}
				if (x < w-1 && y < h-1) {
					value += image_h[AD(x+1,2,w)+color]
					        -image_h[AD(x+1,2,w)+GREEN];
					value2+= image_v[AD(x+1,2,w)+color]
						-image_v[AD(x+1,2,w)+GREEN];
								div++;
				}
				image_h[AD(x,1,w)+color]=
						CLAMP(
						image_h[AD(x,1,w)+GREEN]
						+value/div);
				image_v[AD(x,1,w)+color]=
						CLAMP(image_v[AD(x,1,w)+GREEN]
						+value2/div);
			} else if ((color==RED && bayer == pos_code[2]) 
					|| (color==BLUE 
						    && bayer == pos_code[1])) {
				value=value2=div=0;
				if (y > 0) {
					value += image_h[AD(x,0,w)+color]
						-image_h[AD(x,0,w)+GREEN];
					value2+= image_v[AD(x,0,w)+color]
						-image_v[AD(x,0,w)+GREEN];
						div++;
				}
				if (y < h-1) {
					value += image_h[AD(x,2,w)+color]
						-image_h[AD(x,2,w)+GREEN];
					value2+= image_v[AD(x,2,w)+color]
						-image_v[AD(x,2,w)+GREEN];
					div++;
				}
				image_h[AD(x,1,w)+color]=
						CLAMP(
						image_h[AD(x,1,w)+GREEN]
						+value/div);
				image_v[AD(x,1,w)+color]=
						CLAMP(
						image_v[AD(x,1,w)+GREEN]
						+value2/div);
			} else if ((color==RED && bayer == pos_code[1]) 
					|| (color==BLUE 
						    && bayer == pos_code[2])) {
					value=value2=div=0;
				if (x > 0) {
					value += image_h[AD(x-1,1,w)+color]
						-image_h[AD(x-1,1,w)+GREEN];
					value2+= image_v[AD(x-1,1,w)+color]
						-image_v[AD(x-1,1,w)+GREEN];
					div++;
				}
				if (x < w-1) {
					value += image_h[AD(x+1,1,w)+color]
						-image_h[AD(x+1,1,w)+GREEN];
					value2+= image_v[AD(x+1,1,w)+color]
						-image_v[AD(x+1,1,w)+GREEN];
					div++;
				}
				image_h[AD(x,1,w)+color]=
						CLAMP(
						image_h[AD(x,1,w)+GREEN]
						+value/div);
				image_v[AD(x,1,w)+color]=
						CLAMP(
						image_v[AD(x,1,w)+GREEN]
						+value2/div);
			}
		}
	}
	return GP_OK;
}


/**
 * \brief Missing greens are reconstructed on a single row
 * \param image the image which is being reconstructed
 * \param image_h three-row window, horizontal interpolation of row 1 is done
 * \param image_v three-row window, vertical interpolation of row 1 is done
 * \param w width of image
 * \param h height of image. 
 * \param y row number from image which is under construction
 * \param pos_code position code related to Bayer tiling in use
 */

static
int do_green_ctr_row(unsigned char *image, unsigned char *image_h, 
		    unsigned char *image_v, int w, int h, int y, int *pos_code)
{
	int x, bayer;
	int value,div;
	/*
	 * The horizontal green estimation on a red-green row is 
	 * G(x) = (2*R(x)+2*G(x+1)+2*G(x-1)-R(x-2)-R(x+2))/4
	 * The estimation on a green-blue row works in the same
	 * way.
	 */
	for (x = 0; x < w; x++) {
		bayer = (x&1?0:1) + (y&1?0:2);
		/* pos_code[0] = red. green lrtb, blue diagonals */
		/* pos_code[3] = blue. green lrtb, red diagonals */
		if ( bayer == pos_code[0] || bayer == pos_code[3]) {
			div=value=0;
			if (bayer==pos_code[0])
				value += 2*image[AD(x,y,w)+RED];
			else
				value += 2*image[AD(x,y,w)+BLUE];
			div+=2;
			if (x < (w-1)) {
				value += 2*image[AD(x+1,y,w)+GREEN];
				div+=2;	
			}
			if (x < (w-2)) {
				if (bayer==pos_code[0])
					value -= image[AD(x+2,y,w)+RED];
				else
					value -= image[AD(x+2,y,w)+BLUE];
				div--;
			}
			if (x > 0) {
				value += 2*image[AD(x-1,y,w)+GREEN];
				div+=2;
			}
			if (x > 1) {
				if (bayer==pos_code[0])
					value -= image[AD(x-2,y,w)+RED];
				else
					value -= image[AD(x-2,y,w)+BLUE];
				div--;
			}
			image_h[AD(x,1,w)+GREEN] = CLAMP(value / div);
			/* The method for vertical estimation is just like 
			 * what is done for horizontal estimation, with only  
			 * the obvious difference that it is done vertically. 
			 */
			div=value=0;
			if (bayer==pos_code[0])
				value += 2*image[AD(x,y,w)+RED];
			else
				value += 2*image[AD(x,y,w)+BLUE];
			div+=2;
			if (y < (h-1)) {
				value += 2*image[AD(x,y+1,w)+GREEN];
				div+=2;	
			}
			if (y < (h-2)) {
				if (bayer==pos_code[0])
					value -= image[AD(x,y+2,w)+RED];
				else
					value -= image[AD(x,y+2,w)+BLUE];
				div--;
			}
			if (y > 0) {
				value += 2*image[AD(x,y-1,w)+GREEN];
				div+=2;
			}
			if (y > 1) {
				if (bayer==pos_code[0])
					value -= image[AD(x,y-2,w)+RED];
				else
					value -= image[AD(x,y-2,w)+BLUE];
				div--;
			}
			image_v[AD(x,1,w)+GREEN] = CLAMP(value / div);
			
		}
	}
	return GP_OK;
}

/**
 * \brief Differences are assigned scores across row 2 of buffer_v, buffer_h
 * \param hom_buffer_h tabulation of scores for buffer_h
 * \param hom_buffer_v tabulation of scores for buffer_v
 * \param buffer_h three-row window, scores assigned for pixels in row 2
 * \param buffer_v three-row window, scores assigned for pixels in row 2
 * \param w pixel width of image and buffers
 */

static
int get_diffs_row2(unsigned char * hom_buffer_h, unsigned char *hom_buffer_v, 
		    unsigned char * buffer_h, unsigned char *buffer_v, int w)
{
	int i,j;
	int RGBeps;
	unsigned char Usize_h, Usize_v;

	for (j = 1; j < w-1; j++) {
		i=3*j+9*w;
		Usize_h=0;
		Usize_v=0;

		/* 
		 * Data collected here for adaptive estimates. First we take 
		 * at the given pixel vertical diffs if working in window_v;
		 * left and right diffs if working in window_h. We then choose
		 * of these two diffs as a permissible epsilon-radius within 
		 * which to work. Checking within this radius, we will 
		 * compute scores for the various possibilities. The score 
		 * added in each step is either 1, if the directional change 
		 * is within the prescribed epsilon, or 0 if it is not. 
		 */
		 
		RGBeps=MIN(
			MAX(dRGB(i,i-3,buffer_h),dRGB(i,i+3,buffer_h)),
			MAX(dRGB(i,i-3*w,buffer_v),dRGB(i,i+3*w,buffer_v))
			);
		/*
		 * The scores for the homogeneity mapping. These will be used 
		 * in the choice algorithm to choose the best value.
		 */

		if (dRGB(i,i-3,buffer_h) <= RGBeps)
			Usize_h++;
		if (dRGB(i,i-3,buffer_v) <= RGBeps)
			Usize_v++;
		if (dRGB(i,i+3,buffer_h) <= RGBeps)
			Usize_h++;
		if (dRGB(i,i+3,buffer_v) <= RGBeps)
			Usize_v++;
		if (dRGB(i,i-3*w,buffer_h)<= RGBeps)
			Usize_h++;
		if (dRGB(i,i-3*w,buffer_v) <= RGBeps)
			Usize_v++;
		if (dRGB(i,i+3*w,buffer_h) <= RGBeps)
			Usize_h++;
		if (dRGB(i,i+3*w,buffer_v) <= RGBeps)
			Usize_v++;
		hom_buffer_h[j+2*w]=Usize_h;
		hom_buffer_v[j+2*w]=Usize_v;
	}
	return GP_OK;
}

/**
 * \brief Interpolate a expanded bayer array into an RGB image.
 *
 * \param image the linear RGB array as both input and output
 * \param w width of the above array
 * \param h height of the above array
 * \param tile how the 2x2 bayer array is layed out
 *
 * This function interpolates a bayer array which has been pre-expanded
 * by gp_bayer_expand() to an RGB image. It applies the method of adaptive 
 * homogeneity-directed demosaicing. 
 *
 * \return a gphoto error code
 *
 * \par
 * In outline, the interpolation algorithm used here does the 
 * following:
 *
 * \par
 * In principle, the first thing which is done is to split off from the 
 * image two copies. In one of these, interpolation will be done in the 
 * vertical direction only, and in the other copy only in the 
 * horizontal direction. "Cross-color" data is used throughout, on the 
 * principle that it can be used as a corrector for brightness even if it is 
 * derived from the "wrong" color. Finally, at each pixel there is a choice 
 * criterion to decide whether to use the result of the vertical 
 * interpolation, the horizontal interpolation, or an average of the two. 
 *
 * \par
 * Memory use and speed are optimized by using two sliding windows, one  
 * for the vertical interpolation and the other for the horizontal 
 * interpolation instead of using two copies of the entire input image. The 
 * nterpolation and the choice algorithm are then implemented entirely within
 * these windows, too. When this has been done, a completed row is written back
 * to the image. Then the windows are moved, and the process repeats. 
 */

int gp_ahd_interpolate (unsigned char *image, int w, int h, BayerTile tile) 
{
	int i, j, k, x, y;
	int p[4];
	int color;
	unsigned char *window_h, *window_v, *cur_window_h, *cur_window_v;
	unsigned char *homo_h, *homo_v;
	unsigned char *homo_ch, *homo_cv;

	window_h = calloc (w * 18, 1);
	window_v = calloc (w * 18, 1);
	homo_h = calloc (w*3, 1);
	homo_v = calloc (w*3, 1);
	homo_ch = calloc (w, 1);
	homo_cv = calloc (w, 1);
	if (!window_h || !window_v || !homo_h || !homo_v || !homo_ch || !homo_cv) {
		free (window_h);
		free (window_v);
		free (homo_h);
		free (homo_v);
		free (homo_ch);
		free (homo_cv);
		GP_LOG_E ("Out of memory");
		return GP_ERROR_NO_MEMORY;
	}
	switch (tile) {
	default:
	case BAYER_TILE_RGGB:
	case BAYER_TILE_RGGB_INTERLACED:
		p[0] = 0; p[1] = 1; p[2] = 2; p[3] = 3;
		break;
	case BAYER_TILE_GRBG:
	case BAYER_TILE_GRBG_INTERLACED:
		p[0] = 1; p[1] = 0; p[2] = 3; p[3] = 2;
		break;
	case BAYER_TILE_BGGR:
	case BAYER_TILE_BGGR_INTERLACED:
		p[0] = 3; p[1] = 2; p[2] = 1; p[3] = 0;
		break;
	case BAYER_TILE_GBRG:
	case BAYER_TILE_GBRG_INTERLACED:
		p[0] = 2; p[1] = 3; p[2] = 0; p[3] = 1;
		break;
	}

	/* 
	 * Once the algorithm is initialized and running, one cycle of the 
	 * algorithm can be described thus:
	 * 
	 * Step 1
	 * Write from row y+3 of the image to row 5 in window_v and in 
	 * window_h. 
	 *
	 * Step 2
	 * Interpolate missing green data on row 5 in each window. Data from
	 * the image only is needed for this, not data from the windows. 
	 *
	 * Step 3
	 * Now interpolate the missing red or blue data on row 4 in both 
	 * windows. We need to do this inside the windows; what is required 
	 * is the real or interpolated green data from rows 3 and 5, and the 
	 * real data on rows 3 and 5 about the color being interpolated on 
	 * row 4, so all of this information is available in the two windows. 
	 * Note that for this operation we are interpolating the center row 
	 * of cur_window_v and cur_window_h. 
	 * 
	 * Step 4
	 * Now we have five completed rows in each window, 0 through 4 (rows
	 * 0 - 3 having been done in previous cycles). Completed rows 0 - 4 
	 * are what is required in order to run the choice algorithm at 
	 * each pixel location across row 2, to decide whether to choose the 
	 * data for that pixel from window_v or from window_h. We run the 
	 * choice algorithm, sending the data from row 2 over to row y of the 
	 * image, pixel by pixel. 
	 *
	 * Step 5
	 * Move the windows down (or the data in them up) by one row.
	 * Increment y, the row counter for the image. Go to Step 1.
	 * 
	 * Initialization of the algorithm clearly requires some special 
	 * steps, which are described below as they occur. 
	 */
	cur_window_h = window_h+9*w; 
	cur_window_v = window_v+9*w; 
	/*
	 * Getting started. Copy row 0 from image to line 4 of windows
	 * and row 1 from image to line 5 of windows. 
	 */
	memcpy (window_h+12*w, image, 6*w);
	memcpy (window_v+12*w, image, 6*w);
	/*
	 * Now do the green interpolation in row 4 of the windows, the 
	 * "center" row of cur_window_v and  _h, with the help of image row 0
	 * and image row 1.
	 */
	do_green_ctr_row(image, cur_window_h, cur_window_v, w, h, 0, p);
	/* this does the green interpolation in row 5 of the windows */
	do_green_ctr_row(image, cur_window_h+3*w, cur_window_v+3*w, w, h, 1, p);
	/*
	 * we are now ready to do the rb interpolation on row 4 of the 
	 * windows, which relates to row 0 of the image. 
	 */ 
	do_rb_ctr_row(cur_window_h, cur_window_v, w, h, 0, p);
	/*
	 * Row row 4, which will be mapped to image row 0, is finished in both
	 * windows. Row 5 has had only the green interpolation. 
	 */
	memmove(window_h, window_h+3*w,15*w);
	memmove(window_v, window_v+3*w,15*w);
	memcpy (window_h+15*w, image+6*w, 3*w);
	memcpy (window_v+15*w, image+6*w, 3*w);
	/*
	 * now we have shifted backwards and we have row 0 of the image in 
	 * row 3 of the windows. Row 4 of the window contains row 1 of image
	 * and needs the rb interpolation. We have copied row 2 of the image 
	 * into row 5 of the windows and need to do green interpolation. 
	 */
	do_green_ctr_row(image, cur_window_h+3*w, cur_window_v+3*w, w, h, 2, p);
	do_rb_ctr_row(cur_window_h, cur_window_v, w, h, 1, p);
	memmove (window_h, window_h+3*w, 15*w);
	memmove(window_v, window_v+3*w,15*w); 
	/*
	 * We have shifted one more time. Row 2 of the two windows is 
	 * the original row 0 of the image, now fully interpolated. Rows 3 
	 * and 4 of the windows contain the original rows 1 and 2 of the 
	 * image, also fully interpolated. They will be used while applying 
	 * the choice algorithm on row 2, in order to write it back to row
	 * 0 of the image. The algorithm is now fully initialized. We enter 
	 * the loop which will complete the algorithm for the whole image.
	 */
	 
	for (y = 0; y < h; y++) {
		if(y<h-3) {
			memcpy (window_v+15*w,image+3*y*w+9*w, 3*w);
			memcpy (window_h+15*w,image+3*y*w+9*w, 3*w);
		} else {
			memset(window_v+15*w, 0, 3*w);
			memset(window_h+15*w, 0, 3*w);
		}
		if (y<h-3) 
			do_green_ctr_row(image, cur_window_h+3*w, 
					cur_window_v+3*w, w, h, y+3, p);
		if (y<h-2) 
			do_rb_ctr_row(cur_window_h, cur_window_v, w, h, y+2, p);
		/*
		 * The next function writes row 2 of diffs, which is the set of 
		 * diff scores for row y+1 of the image, which is row 3 of our 
		 * windows. When starting with row 0 of the image, this is all
		 * we need. As we continue, the results of this calculation 
		 * will also be rotated; in general we need the diffs for rows
		 * y-1, y, and y+1 in order to carry out the choice algorithm
		 * for writing row y.
		 */
		get_diffs_row2(homo_h, homo_v, window_h, window_v, w);
		memset(homo_ch, 0, w);
		memset(homo_cv, 0, w);

		/* The choice algorithm now will use the sum of the nine diff 
		 * scores computed at the pixel location and at its eight 
		 * nearest neighbors. The direction with highest score will 
		 * be used; if the scores are equal an average is used. 
		 */
		for (x=0; x < w; x++) {
			for (i=-1; i < 2;i++) {
				for (k=0; k < 3;k++) {
					j=i+x+w*k; 
					if ((j >= 0) && ( j < w*3)) {
						homo_ch[x]+=homo_h[j];
						homo_cv[x]+=homo_v[j];
					}
				}
			}
			for (color=0; color < 3; color++) {
				if (homo_ch[x] > homo_cv[x])
					image[3*y*w+3*x+color]
					= window_h[3*x+6*w+color];
				else if (homo_ch[x] < homo_cv[x])
					image[3*y*w+3*x+color]
					= window_v[3*x+6*w+color];
				else
					image[3*y*w+3*x+color]
					= (window_v[3*x+6*w+color]+
						window_h[3*x+6*w+color])/2;
			}
		}
		/* Move the windows; loop back if not finished. */
		memmove(window_v, window_v+3*w, 15*w);
		memmove(window_h, window_h+3*w, 15*w);
		memmove (homo_h,homo_h+w,2*w);
		memmove (homo_v,homo_v+w,2*w);
	}
	free(window_v);
	free(window_h);
	free(homo_h);
	free(homo_v);
	free(homo_ch);
	free(homo_cv);
	return GP_OK;
}

/**
 * \brief Convert a bayer raster style image to a RGB raster.
 *
 * \param input the bayer CCD array as linear input
 * \param w width of the above array
 * \param h height of the above array
 * \param output RGB output array (linear, 3 bytes of R,G,B for every pixel)
 * \param tile how the 2x2 bayer array is layed out
 *
 * A regular CCD uses a raster of 2 green, 1 blue and 1 red components to
 * cover a 2x2 pixel area. The camera or the driver then interpolates a
 * 2x2 RGB pixel set out of this data.
 *
 * This function expands and interpolates the bayer array to 3 times larger
 * bitmap with RGB values interpolated. It does the same job as  
 * gp_bayer_decode() but it calls gp_ahd_interpolate() instead of calling
 * gp_bayer_interpolate(). Use this instead of gp_bayer_decode() if you 
 * want to use or to test AHD interpolation in a camera library. 
 * \return a gphoto error code
 */

int
gp_ahd_decode (unsigned char *input, int w, int h, unsigned char *output,
		 BayerTile tile)
{
	gp_bayer_expand (input, w, h, output, tile);
	gp_ahd_interpolate (output, w, h, tile);
	return GP_OK;
}