summaryrefslogtreecommitdiff
path: root/camlibs/stv0680/bayer.c
blob: 65af26e452701e7c59ed571b04f81ae89bde1e71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
 * STV0680 Vision Camera Chipset Driver
 * Copyright 2000 Adam Harrison <adam@antispin.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the
 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301  USA
 */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "bayer.h"

/* Enhanced by Kurt Garloff to do scaling and debayering at the same time. */
void bayer_unshuffle_preview(int w, int h, int scale, unsigned char *raw, unsigned char *output)
{

    int x, y, nx, ny;
    int colour; int rgb[3];
    int nw = w >> scale;
    int nh = h >> scale;
    int incr = 1<<scale;

    for (ny = 0; ny < nh; ++ny, raw += w<<scale) {
	for (nx = 0; nx < nw; ++nx, output += 3) {
	    rgb[0] = 0; rgb[1] = 0; rgb[2] = 0;
	    for (y = 0; y < incr; ++y) {
		for (x = 0; x < incr; ++x) {
		    colour = 1 - (x&1) + (y&1);
		    rgb[colour] += raw[y*w + (nx<<(scale-1))+(x>>1) + ((x&1)? 0: (w>>1))];
		}
	    }
	    output[0] = rgb[0]>>(2*scale-2);
	    output[1] = rgb[1]>>(2*scale-1);
	    output[2] = rgb[2]>>(2*scale-2);
	}
    }
}

/****** gamma correction from trans[], plus hardcoded white balance */
/* Thanks to Alexander Schwartx <alexander.schwartx@gmx.net> for this code.
   Gamma correction (trans[] values generated by (pow((i-17)/239, GAMMA)*254)
   where GAMMA=0.5x, 1<i<255. */
/* KG: Looking at very dark parts of images, the sensor seems to produce
 * only very few points below 0x11 and almost none below 14. Therefore we map everything
 * below 14 to 0 and ev'thing below 17 to 1; then the power function reigns.
 */

#define ZERO0 14 /* 0--13 mapped to 0 */
#define ZERO1 17 /* 14--16 mapped to 1 */

typedef struct _rgbgamma {
	float ampl, gamma;
} rgbgamma;


/* KG: Some notes on these:
 * - Try to avoid strong deviations from 1.00 for the amplification,
 *   because this potentially results in not using the full range
 *   of colours (<1) or in clipping (>1) multiple colours to max,
 *   which would be a loss of information.
 * - The gamma mainly determines how fast values increase after ZERO1.
 *   Influence on the highlights is small; therefore the description
 *   with amplifiaction and gamma seems not very appropriate; a better
 *   correction function would allow to influence the slope for small
 *   and for large values independently without incurring loss of
 *   accuracy/information. It should not be hard to construct such a
 *   thing. (Splines or Bézier or Triginometric/Hyperbolic functions
 *   could be used, e.g.)
 * - The below parameters have been found by lots of experiments with
 *   pictures taken at different light levels. They're optimized for
 *   my PenCam (and my screens), of course. No theory behind this;
 *   I don't have insight into the physics of the imaging sensor.
 *   CCDs are linear, basically; but higher order effects may play
 *   a role as well as the electronics that controls the shutter
 *   and the one doing the readout.
 */
static const rgbgamma gampar[6][3] = {
	{ { 1.02, 0.56 }, { 1.00, 0.61 }, { 0.99, 0.65 } }, /* cold */
	{ { 1.01, 0.56 }, { 1.00, 0.58 }, { 1.00, 0.61 } }, /* coldish */
	{ { 1.00, 0.55 }, { 1.00, 0.57 }, { 1.00, 0.59 } }, /* mid */
	{ { 1.00, 0.55 }, { 1.00, 0.56 }, { 1.01, 0.55 } }, /* warmish */
	{ { 1.01, 0.56 }, { 0.99, 0.57 }, { 1.03, 0.50 } }, /* warm */
	{ { 1.03, 0.52 }, { 0.97, 0.57 }, { 1.04, 0.49 } }  /* warm bright */
};

void light_enhance(int vw, int vh, int coarse, int fine,
		   unsigned char avg_pix, unsigned char *output)
{
    unsigned long int i;
    int lt=3; /* 3 is auto */
    /* float wb[3][3]; */
    unsigned char trans[3][256];
    unsigned char col;
    /* int tmp1, tmp2, tmp3, whitex=20, whitey=20, j, k; */

    double brightness = 1.00; /* FIXME: configurable? */

    /* fprintf(stderr, "(FineExp=%i CoarseExp=%i => filter=", fine, coarse); */

#if 0
    if (fine >= (coarse<<1)) {
	lt = 0;
	/* fprintf(stderr, "natural)\n"); */
    } else if (((fine<<1) < coarse) && (coarse < 400)) {
	lt = 2;
	/* fprintf(stderr, "incandescent)\n"); */
    } else {
	lt = 1;
	/* fprintf(stderr, "fluorescent)\n"); */
    }
    wb[0][0] = 1.08 * x;  wb[0][1] = 1.00 * x;  wb[0][2] = 0.95 * x; /* natural */
    wb[1][0] = 1.00 * x;  wb[1][1] = 1.00 * x;  wb[1][2] = 1.00 * x; /* fluorescent */
    wb[2][0] = 0.90 * x;  wb[2][1] = 1.00 * x;  wb[2][2] = 1.11 * x; /* incandescent */
#else
    if (fine > coarse) {
	lt = 0; /* fprintf (stderr, "cold)\n"); */
    } else if (coarse < 100) {
	lt = 1; /* fprintf (stderr, "coldish)\n"); */
    } else if (coarse < 200) {
	lt = 2; /* fprintf (stderr, "mid)\n"); */
    } else if (coarse < 400) {
	lt = 3; /* fprintf (stderr, "warmish)\n"); */
    } else if (avg_pix < 94) {
	lt = 4; /* fprintf (stderr, "warm)\n"); */
    } else {
	lt = 5; /* fprintf (stderr, "warm, bright)\n"); */
    }
#endif

#if 0
    /* find white pixel */
    for (j=0;j<vh;j++)
    {
	for (k=0; k<vw; k++)
	{
	    i = (j*vw + k)*3;
	    tmp1 = abs(*(output+i) - *(output+i+1));
	    tmp2 = abs(*(output+i) - *(output+i+2));
	    tmp3 = abs(*(output+i+1) - *(output+i+2));
	    if ((tmp1<16) && (tmp2<16) && (tmp3<16) && (*(output+i)>=160)) {
		whitex = k;  whitey = j;
		break;
	    }
	}
    }
#endif

    for (col = 0; col < 3; col++) {
	double y;
	const rgbgamma *gp = gampar[lt] + col;
	for(i=0; i<256; ++i) {
		if (i < ZERO0)
			y = 0;
		else if (i < ZERO1)
			y = 1;
		else
			y = brightness * gp->ampl * (2 + pow((i-ZERO1)/((double)254-ZERO1),gp->gamma) * 253.5);
		if (y > 255.0)
			y = 255.0;
		trans[col][i] = (unsigned char) y;
	}
    }

    for (i=0;i<(vw*vh*3);i+=3)
    {
	int r,g,b;
	r = *(output+i);
	g = *(output+i+1);
	b = *(output+i+2);
	/* this (adjusting white) isn't quite right yet, so I turned it off */
	if ( 0 && (abs(r-g) < 8) &&
	          (abs(r-b) < 8) &&
	          (abs(b-g) < 8)) {
		int v = trans[1][(r+b+g+1)/3];
		*(output+i) =   (unsigned char) (v);
		*(output+i+1) = (unsigned char) (v);
		*(output+i+2) = (unsigned char) (v);
		fprintf(stderr,"Adjusting white\n");
	} else {          /* this is OK */
		*(output+i)   = trans[0][r];
		*(output+i+1) = trans[1][g];
		*(output+i+2) = trans[2][b];
	}
    }  /* for */

}  /* light_enhance */