summaryrefslogtreecommitdiff
path: root/README.md
blob: 980f8e025ae2f04bad41d348f8f789b7b507f7a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Welcome to libarchive!

The libarchive project develops a portable, efficient C library that
can read and write streaming archives in a variety of formats.  It
also includes implementations of the common `tar`, `cpio`, and `zcat`
command-line tools that use the libarchive library.

## Questions?  Issues?

* http://www.libarchive.org is the home for ongoing
  libarchive development, including documentation,
  and links to the libarchive mailing lists.
* To report an issue, use the issue tracker at
  https://github.com/libarchive/libarchive/issues
* To submit an enhancement to libarchive, please
  submit a pull request via GitHub: https://github.com/libarchive/libarchive/pulls

## Contents of the Distribution

This distribution bundle includes the following major components:

* **libarchive**: a library for reading and writing streaming archives
* **tar**: the 'bsdtar' program is a full-featured 'tar' implementation built on libarchive
* **cpio**: the 'bsdcpio' program is a different interface to essentially the same functionality
* **cat**: the 'bsdcat' program is a simple replacement tool for zcat, bzcat, xzcat, and such
* **examples**: Some small example programs that you may find useful.
* **examples/minitar**: a compact sample demonstrating use of libarchive.
* **contrib**:  Various items sent to me by third parties; please contact the authors with any questions.

The top-level directory contains the following information files:

* **NEWS** - highlights of recent changes
* **COPYING** - what you can do with this
* **INSTALL** - installation instructions
* **README** - this file
* **CMakeLists.txt** - input for "cmake" build tool, see INSTALL
* **configure** - configuration script, see INSTALL for details.  If your copy of the source lacks a `configure` script, you can try to construct it by running the script in `build/autogen.sh` (or use `cmake`).

The following files in the top-level directory are used by the 'configure' script:
* `Makefile.am`, `aclocal.m4`, `configure.ac` - used to build this distribution, only needed by maintainers
* `Makefile.in`, `config.h.in` - templates used by configure script

## Documentation

In addition to the informational articles and documentation
in the online [libarchive Wiki](https://github.com/libarchive/libarchive/wiki),
the distribution also includes a number of manual pages:

 * bsdtar.1 explains the use of the bsdtar program
 * bsdcpio.1 explains the use of the bsdcpio program
 * bsdcat.1 explains the use of the bsdcat program
 * libarchive.3 gives an overview of the library as a whole
 * archive_read.3, archive_write.3, archive_write_disk.3, and
   archive_read_disk.3 provide detailed calling sequences for the read
   and write APIs
 * archive_entry.3 details the "struct archive_entry" utility class
 * archive_internals.3 provides some insight into libarchive's
   internal structure and operation.
 * libarchive-formats.5 documents the file formats supported by the library
 * cpio.5, mtree.5, and tar.5 provide detailed information about these
   popular archive formats, including hard-to-find details about
   modern cpio and tar variants.

The manual pages above are provided in the 'doc' directory in
a number of different formats.

You should also read the copious comments in `archive.h` and the
source code for the sample programs for more details.  Please let us
know about any errors or omissions you find.

## Supported Formats

Currently, the library automatically detects and reads the following fomats:
  * Old V7 tar archives
  * POSIX ustar
  * GNU tar format (including GNU long filenames, long link names, and sparse files)
  * Solaris 9 extended tar format (including ACLs)
  * POSIX pax interchange format
  * POSIX octet-oriented cpio
  * SVR4 ASCII cpio
  * POSIX octet-oriented cpio
  * Binary cpio (big-endian or little-endian)
  * ISO9660 CD-ROM images (with optional Rockridge or Joliet extensions)
  * ZIP archives (with uncompressed or "deflate" compressed entries, including support for encrypted Zip archives)
  * GNU and BSD 'ar' archives
  * 'mtree' format
  * 7-Zip archives
  * Microsoft CAB format
  * LHA and LZH archives
  * RAR archives (with some limitations due to RAR's proprietary status)
  * XAR archives

The library also detects and handles any of the following before evaluating the archive:
  * uuencoded files
  * files with RPM wrapper
  * gzip compression
  * bzip2 compression
  * compress/LZW compression
  * lzma, lzip, and xz compression
  * lz4 compression
  * lzop compression

The library can create archives in any of the following formats:
  * POSIX ustar
  * POSIX pax interchange format
  * "restricted" pax format, which will create ustar archives except for
    entries that require pax extensions (for long filenames, ACLs, etc).
  * Old GNU tar format
  * Old V7 tar format
  * POSIX octet-oriented cpio
  * SVR4 "newc" cpio
  * shar archives
  * ZIP archives (with uncompressed or "deflate" compressed entries)
  * GNU and BSD 'ar' archives
  * 'mtree' format
  * ISO9660 format
  * 7-Zip archives
  * XAR archives

When creating archives, the result can be filtered with any of the following:
  * uuencode
  * gzip compression
  * bzip2 compression
  * compress/LZW compression
  * lzma, lzip, and xz compression
  * lz4 compression
  * lzop compression

## Notes about the Library Design

* This is a heavily stream-oriented system.  That means that
  it is optimized to read or write the archive in a single
  pass from beginning to end.  For example, this allows
  libarchive to process archives too large to store on disk
  by processing them on-the-fly as they are read from or
  written to a network or tape drive.  Conversely, libarchive
  does not support in-place modification or random access.

* The library is designed to be extended with new compression and
  archive formats.  The only requirement is that the format be
  readable or writable as a stream and that each archive entry be
  independent.  There are articles on the libarchive Wiki explaining
  how to extend libarchive.

* On read, compression and format are always detected automatically.

* The same API is used for all formats; in particular, it's very
  easy for software using libarchive to transparently handle
  any of libarchive's archiving formats.

* Libarchive's automatic support for decompression can be used
  without archiving by explicitly selecting the "raw" and "empty"
  formats.

* I've attempted to minimize static link pollution.  If you don't
  explicitly invoke a particular feature (such as support for a
  particular compression or format), it won't get pulled in to
  statically-linked programs.  In particular, if you don't explicitly
  enable a particular compression or decompression support, you won't
  need to link against the corresponding compression or decompression
  libraries.  This also reduces the size of statically-linked
  binaries in environments where that matters.

* On read, the library accepts whatever blocks you hand it.
  Your read callback is free to pass the library a byte at a time
  or mmap the entire archive and give it to the library at once.
  On write, the library always produces correctly-blocked output.

* The object-style approach allows you to have multiple archive streams
  open at once.  bsdtar uses this in its "@archive" extension.

* The archive itself is read/written using callback functions.
  You can read an archive directly from an in-memory buffer or
  write it to a socket, if you wish.  There are some utility
  functions to provide easy-to-use "open file," etc, capabilities.

* The read/write APIs are designed to allow individual entries
  to be read or written to any data source:  You can create
  a block of data in memory and add it to a tar archive without
  first writing a temporary file.  You can also read an entry from
  an archive and write the data directly to a socket.  If you want
  to read/write entries to disk, there are convenience functions to
  make this especially easy.

* Note: "pax interchange format" is really an extended tar format,
  despite what the name says.