summaryrefslogtreecommitdiff
path: root/crypto/apr_crypto.c
diff options
context:
space:
mode:
authorminfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68>2008-09-07 20:06:42 +0000
committerminfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68>2008-09-07 20:06:42 +0000
commit69fb31e9a20ae26dbb54bdd6818b7f6b9df29283 (patch)
tree6aa93d44ca12f05e47dd98b8600c80ae1fa9698f /crypto/apr_crypto.c
parent903373a697b2dc46fb309f6795e03dc248e89321 (diff)
downloadlibapr-util-69fb31e9a20ae26dbb54bdd6818b7f6b9df29283.tar.gz
Add the apr_crypto interface, a rewrite of the earlier apr_ssl code,
based on the modular dso interface used for dbd and ldap. Initially, the interface supports symmetrical encryption and decryption. The purpose of the interface is to offer portable and interoperable access to basic crypto using the native crypto libraries present on each platform. git-svn-id: http://svn.apache.org/repos/asf/apr/apr-util/trunk@692929 13f79535-47bb-0310-9956-ffa450edef68
Diffstat (limited to 'crypto/apr_crypto.c')
-rw-r--r--crypto/apr_crypto.c439
1 files changed, 439 insertions, 0 deletions
diff --git a/crypto/apr_crypto.c b/crypto/apr_crypto.c
new file mode 100644
index 00000000..7e794caa
--- /dev/null
+++ b/crypto/apr_crypto.c
@@ -0,0 +1,439 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <ctype.h>
+#include <stdio.h>
+
+#include "apu_config.h"
+#include "apu.h"
+
+#include "apr_pools.h"
+#include "apr_dso.h"
+#include "apr_strings.h"
+#include "apr_hash.h"
+#include "apr_thread_mutex.h"
+#include "apr_lib.h"
+
+#if APU_HAVE_CRYPTO
+
+#include "apu_internal.h"
+#include "apr_crypto_internal.h"
+#include "apr_crypto.h"
+#include "apu_version.h"
+
+static apr_hash_t *drivers = NULL;
+
+#define ERROR_SIZE 1024
+
+#define CLEANUP_CAST (apr_status_t (*)(void*))
+
+#if !APU_DSO_BUILD
+#define DRIVER_LOAD(name,driver,pool,params) \
+ { \
+ extern const apr_crypto_driver_t driver; \
+ apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver); \
+ if (driver.init) { \
+ driver.init(pool, params); \
+ } \
+ }
+#endif
+
+static apr_status_t apr_crypto_term(void *ptr) {
+ /* set drivers to NULL so init can work again */
+ drivers = NULL;
+
+ /* Everything else we need is handled by cleanups registered
+ * when we created mutexes and loaded DSOs
+ */
+ return APR_SUCCESS;
+}
+
+APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool,
+ const apr_array_header_t *params) {
+ apr_status_t ret = APR_SUCCESS;
+ apr_pool_t *parent;
+
+ if (drivers != NULL) {
+ return APR_SUCCESS;
+ }
+
+ /* Top level pool scope, need process-scope lifetime */
+ for (parent = pool; parent; parent = apr_pool_parent_get(pool))
+ pool = parent;
+#if APU_DSO_BUILD
+ /* deprecate in 2.0 - permit implicit initialization */
+ apu_dso_init(pool);
+#endif
+ drivers = apr_hash_make(pool);
+
+#if !APU_DSO_BUILD
+ /* Load statically-linked drivers: */
+#if APU_HAVE_OPENSSL
+ DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params);
+#endif
+#if APU_HAVE_NSS
+ DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params);
+#endif
+#if APU_HAVE_MSCAPI
+ DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params);
+#endif
+#if APU_HAVE_MSCNG
+ DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params);
+#endif
+#endif /* APU_DSO_BUILD */
+
+ apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
+ apr_pool_cleanup_null);
+
+ return ret;
+}
+
+APU_DECLARE(apr_status_t) apr_crypto_get_driver(apr_pool_t *pool, const char *name,
+ const apr_crypto_driver_t **driver, const apr_array_header_t *params,
+ const apu_err_t **result) {
+#if APU_DSO_BUILD
+ char modname[32];
+ char symname[34];
+ apr_dso_handle_t *dso;
+ apr_dso_handle_sym_t symbol;
+#endif
+ apr_status_t rv;
+
+#if APU_DSO_BUILD
+ rv = apu_dso_mutex_lock();
+ if (rv) {
+ return rv;
+ }
+#endif
+ *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
+ if (*driver) {
+#if APU_DSO_BUILD
+ apu_dso_mutex_unlock();
+#endif
+ return APR_SUCCESS;
+ }
+
+#if APU_DSO_BUILD
+ /* The driver DSO must have exactly the same lifetime as the
+ * drivers hash table; ignore the passed-in pool */
+ pool = apr_hash_pool_get(drivers);
+
+#if defined(NETWARE)
+ apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
+#elif defined(WIN32)
+ apr_snprintf(modname, sizeof(modname),
+ "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
+#else
+ apr_snprintf(modname, sizeof(modname), "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
+#endif
+ apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
+ rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
+ if (rv != APR_SUCCESS) { /* APR_EDSOOPEN or APR_ESYMNOTFOUND? */
+ if (rv == APR_EINIT) { /* previously loaded?!? */
+ name = apr_pstrdup(pool, name);
+ apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
+ rv = APR_SUCCESS;
+ }
+ goto unlock;
+ }
+ *driver = symbol;
+ if ((*driver)->init) {
+ (*driver)->init(pool, params);
+ }
+ name = apr_pstrdup(pool, name);
+ apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
+
+ unlock: apu_dso_mutex_unlock();
+
+ if (APR_SUCCESS != rv && result) {
+ char *buffer = apr_pcalloc(pool, ERROR_SIZE);
+ apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
+ if (err && buffer) {
+ apr_dso_error(dso, buffer, ERROR_SIZE - 1);
+ err->msg = buffer;
+ err->reason = modname;
+ *result = err;
+ }
+ }
+
+#else /* not builtin and !APR_HAS_DSO => not implemented */
+ rv = APR_ENOTIMPL;
+#endif
+
+ return rv;
+}
+
+/**
+ * @brief Return the name of the driver.
+ *
+ * @param pool - pool to register any shutdown cleanups, etc
+ * @return APR_SUCCESS for success.
+ */
+APU_DECLARE(const char *)apr_crypto_driver_name (const apr_crypto_driver_t *driver)
+{
+ return driver->name;
+}
+
+/**
+ * @brief Get the result of a previous operation on this context.
+ * @param pool - process pool
+ * @param params - array of key parameters
+ * @param factory - factory pointer will be written here
+ */
+APU_DECLARE(apr_status_t) apr_crypto_error(const apr_crypto_t *f,
+ const apu_err_t **result) {
+ *result = f->result;
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Create a general encryption context
+ * @param driver - driver to use
+ * @param pool - process pool
+ * @param params - array of key parameters
+ * @param factory - factory pointer will be written here
+ */
+APU_DECLARE(apr_status_t) apr_crypto_factory(const apr_crypto_driver_t *driver,
+ apr_pool_t *pool, const apr_array_header_t *params, apr_crypto_t **f) {
+ return driver->factory(pool, params, f);
+}
+
+/**
+ * @brief Create a key from the given passphrase. By default, the PBKDF2
+ * algorithm is used to generate the key from the passphrase. It is expected
+ * that the same pass phrase will generate the same key, regardless of the
+ * backend crypto platform used. The key is cleaned up when the context
+ * is cleaned, and may be reused with multiple encryption or decryption
+ * operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param driver - driver to use
+ * @param p The pool to use.
+ * @param f The context to use.
+ * @param pass The passphrase to use.
+ * @param passLen The passphrase length in bytes
+ * @param salt The salt to use.
+ * @param saltLen The salt length in bytes
+ * @param type 3DES_192, AES_128, AES_192, AES_256.
+ * @param mode Electronic Code Book / Cipher Block Chaining.
+ * @param doPad Pad if necessary.
+ * @param key The key returned, see note.
+ * @param ivSize The size of the initialisation vector will be returned, based
+ * on whether an IV is relevant for this type of crypto.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_passphrase(const apr_crypto_driver_t *driver,
+ apr_pool_t *p, const apr_crypto_t *f, const char *pass,
+ apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen,
+ const apr_crypto_block_key_type_e type,
+ const apr_crypto_block_key_mode_e mode, const int doPad,
+ const int iterations, apr_crypto_key_t **key, apr_size_t *ivSize) {
+ return driver->passphrase(p, f, pass, passLen, salt, saltLen, type, mode,
+ doPad, iterations, key, ivSize);
+}
+
+/**
+ * @brief Initialise a context for encrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param driver - driver to use
+ * @param p The pool to use.
+ * @param f The block factory to use.
+ * @param key The key structure to use.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer pointed to is not NULL, the IV in the buffer will be
+ * used.
+ * @param ctx The block context returned, see note.
+ * @param blockSize The block size of the cipher.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
+ const apr_crypto_driver_t *driver, apr_pool_t *p,
+ const apr_crypto_t *f, const apr_crypto_key_t *key,
+ const unsigned char **iv, apr_crypto_block_t **ctx,
+ apr_size_t *blockSize) {
+ return driver->block_encrypt_init(p, f, key, iv, ctx, blockSize);
+}
+
+/**
+ * @brief Encrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_encrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param driver - driver to use
+ * @param ctx The block context to use.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(
+ const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
+ unsigned char **out, apr_size_t *outlen, const unsigned char *in,
+ apr_size_t inlen) {
+ return driver->block_encrypt(ctx, out, outlen, in, inlen);
+}
+
+/**
+ * @brief Encrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_encrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_encrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_encrypt_init().
+ * @param driver - driver to use
+ * @param ctx The block context to use.
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(
+ const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
+ unsigned char *out, apr_size_t *outlen) {
+ return driver->block_encrypt_finish(ctx, out, outlen);
+}
+
+/**
+ * @brief Initialise a context for decrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param driver - driver to use
+ * @param p The pool to use.
+ * @param f The block factory to use.
+ * @param key The key structure to use.
+ * @param iv Optional initialisation vector.
+ * @param ctx The block context returned, see note.
+ * @param blockSize The block size of the cipher.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
+ const apr_crypto_driver_t *driver, apr_pool_t *p,
+ const apr_crypto_t *f, const apr_crypto_key_t *key,
+ const unsigned char *iv, apr_crypto_block_t **ctx,
+ apr_size_t *blockSize) {
+ return driver->block_decrypt_init(p, f, key, iv, ctx, blockSize);
+}
+
+/**
+ * @brief Decrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_decrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param driver - driver to use
+ * @param ctx The block context to use.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(
+ const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
+ unsigned char **out, apr_size_t *outlen, const unsigned char *in,
+ apr_size_t inlen) {
+ return driver->block_decrypt(ctx, out, outlen, in, inlen);
+}
+
+/**
+ * @brief Decrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_decrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_decrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_decrypt_init().
+ * @param driver - driver to use
+ * @param ctx The block context to use.
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(
+ const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx,
+ unsigned char *out, apr_size_t *outlen) {
+ return driver->block_decrypt_finish(ctx, out, outlen);
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param driver - driver to use
+ * @param ctx The block context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(
+ const apr_crypto_driver_t *driver, apr_crypto_block_t *ctx) {
+ return driver->block_cleanup(ctx);
+}
+
+/**
+ * @brief Clean encryption / decryption factory.
+ * @note After cleanup, a factory is free to be reused if necessary.
+ * @param driver - driver to use
+ * @param f The factory to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_cleanup(const apr_crypto_driver_t *driver,
+ apr_crypto_t *f) {
+ return driver->cleanup(f);
+}
+
+/**
+ * @brief Shutdown the crypto library.
+ * @note After shutdown, it is expected that the init function can be called again.
+ * @param driver - driver to use
+ * @param p The pool to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver,
+ apr_pool_t *p) {
+ return driver->shutdown(p);
+}
+
+#endif /* APU_HAVE_CRYPTO */