summaryrefslogtreecommitdiff
path: root/src/prof_data.c
blob: 56d3dc88c8b0eab3162afdd001bb38b27078e6cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"

#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/prof_data.h"

/*
 * This file defines and manages the core profiling data structures.
 *
 * Conceptually, profiling data can be imagined as a table with three columns:
 * thread, stack trace, and current allocation size.  (When prof_accum is on,
 * there's one additional column which is the cumulative allocation size.)
 *
 * Implementation wise, each thread maintains a hash recording the stack trace
 * to allocation size correspondences, which are basically the individual rows
 * in the table.  In addition, two global "indices" are built to make data
 * aggregation efficient (for dumping): bt2gctx and tdatas, which are basically
 * the "grouped by stack trace" and "grouped by thread" views of the same table,
 * respectively.  Note that the allocation size is only aggregated to the two
 * indices at dumping time, so as to optimize for performance.
 */

/******************************************************************************/

malloc_mutex_t bt2gctx_mtx;
malloc_mutex_t tdatas_mtx;
malloc_mutex_t prof_dump_mtx;

/*
 * Table of mutexes that are shared among gctx's.  These are leaf locks, so
 * there is no problem with using them for more than one gctx at the same time.
 * The primary motivation for this sharing though is that gctx's are ephemeral,
 * and destroying mutexes causes complications for systems that allocate when
 * creating/destroying mutexes.
 */
malloc_mutex_t *gctx_locks;
static atomic_u_t cum_gctxs; /* Atomic counter. */

/*
 * Table of mutexes that are shared among tdata's.  No operations require
 * holding multiple tdata locks, so there is no problem with using them for more
 * than one tdata at the same time, even though a gctx lock may be acquired
 * while holding a tdata lock.
 */
malloc_mutex_t *tdata_locks;

/*
 * Global hash of (prof_bt_t *)-->(prof_gctx_t *).  This is the master data
 * structure that knows about all backtraces currently captured.
 */
static ckh_t bt2gctx;

/*
 * Tree of all extant prof_tdata_t structures, regardless of state,
 * {attached,detached,expired}.
 */
static prof_tdata_tree_t tdatas;

size_t prof_unbiased_sz[PROF_SC_NSIZES];
size_t prof_shifted_unbiased_cnt[PROF_SC_NSIZES];

/******************************************************************************/
/* Red-black trees. */

static int
prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) {
	uint64_t a_thr_uid = a->thr_uid;
	uint64_t b_thr_uid = b->thr_uid;
	int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid);
	if (ret == 0) {
		uint64_t a_thr_discrim = a->thr_discrim;
		uint64_t b_thr_discrim = b->thr_discrim;
		ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim <
		    b_thr_discrim);
		if (ret == 0) {
			uint64_t a_tctx_uid = a->tctx_uid;
			uint64_t b_tctx_uid = b->tctx_uid;
			ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid <
			    b_tctx_uid);
		}
	}
	return ret;
}

rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t,
    tctx_link, prof_tctx_comp)

static int
prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) {
	unsigned a_len = a->bt.len;
	unsigned b_len = b->bt.len;
	unsigned comp_len = (a_len < b_len) ? a_len : b_len;
	int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *));
	if (ret == 0) {
		ret = (a_len > b_len) - (a_len < b_len);
	}
	return ret;
}

rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link,
    prof_gctx_comp)

static int
prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) {
	int ret;
	uint64_t a_uid = a->thr_uid;
	uint64_t b_uid = b->thr_uid;

	ret = ((a_uid > b_uid) - (a_uid < b_uid));
	if (ret == 0) {
		uint64_t a_discrim = a->thr_discrim;
		uint64_t b_discrim = b->thr_discrim;

		ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim));
	}
	return ret;
}

rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link,
    prof_tdata_comp)

/******************************************************************************/

static malloc_mutex_t *
prof_gctx_mutex_choose(void) {
	unsigned ngctxs = atomic_fetch_add_u(&cum_gctxs, 1, ATOMIC_RELAXED);

	return &gctx_locks[(ngctxs - 1) % PROF_NCTX_LOCKS];
}

static malloc_mutex_t *
prof_tdata_mutex_choose(uint64_t thr_uid) {
	return &tdata_locks[thr_uid % PROF_NTDATA_LOCKS];
}

bool
prof_data_init(tsd_t *tsd) {
	tdata_tree_new(&tdatas);
	return ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS,
	    prof_bt_hash, prof_bt_keycomp);
}

static void
prof_enter(tsd_t *tsd, prof_tdata_t *tdata) {
	cassert(config_prof);
	assert(tdata == prof_tdata_get(tsd, false));

	if (tdata != NULL) {
		assert(!tdata->enq);
		tdata->enq = true;
	}

	malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
}

static void
prof_leave(tsd_t *tsd, prof_tdata_t *tdata) {
	cassert(config_prof);
	assert(tdata == prof_tdata_get(tsd, false));

	malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);

	if (tdata != NULL) {
		bool idump, gdump;

		assert(tdata->enq);
		tdata->enq = false;
		idump = tdata->enq_idump;
		tdata->enq_idump = false;
		gdump = tdata->enq_gdump;
		tdata->enq_gdump = false;

		if (idump) {
			prof_idump(tsd_tsdn(tsd));
		}
		if (gdump) {
			prof_gdump(tsd_tsdn(tsd));
		}
	}
}

static prof_gctx_t *
prof_gctx_create(tsdn_t *tsdn, prof_bt_t *bt) {
	/*
	 * Create a single allocation that has space for vec of length bt->len.
	 */
	size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *));
	prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsdn, size,
	    sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true),
	    true);
	if (gctx == NULL) {
		return NULL;
	}
	gctx->lock = prof_gctx_mutex_choose();
	/*
	 * Set nlimbo to 1, in order to avoid a race condition with
	 * prof_tctx_destroy()/prof_gctx_try_destroy().
	 */
	gctx->nlimbo = 1;
	tctx_tree_new(&gctx->tctxs);
	/* Duplicate bt. */
	memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *));
	gctx->bt.vec = gctx->vec;
	gctx->bt.len = bt->len;
	return gctx;
}

static void
prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self,
    prof_gctx_t *gctx) {
	cassert(config_prof);

	/*
	 * Check that gctx is still unused by any thread cache before destroying
	 * it.  prof_lookup() increments gctx->nlimbo in order to avoid a race
	 * condition with this function, as does prof_tctx_destroy() in order to
	 * avoid a race between the main body of prof_tctx_destroy() and entry
	 * into this function.
	 */
	prof_enter(tsd, tdata_self);
	malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
	assert(gctx->nlimbo != 0);
	if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) {
		/* Remove gctx from bt2gctx. */
		if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) {
			not_reached();
		}
		prof_leave(tsd, tdata_self);
		/* Destroy gctx. */
		malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
		idalloctm(tsd_tsdn(tsd), gctx, NULL, NULL, true, true);
	} else {
		/*
		 * Compensate for increment in prof_tctx_destroy() or
		 * prof_lookup().
		 */
		gctx->nlimbo--;
		malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
		prof_leave(tsd, tdata_self);
	}
}

static bool
prof_gctx_should_destroy(prof_gctx_t *gctx) {
	if (opt_prof_accum) {
		return false;
	}
	if (!tctx_tree_empty(&gctx->tctxs)) {
		return false;
	}
	if (gctx->nlimbo != 0) {
		return false;
	}
	return true;
}

static bool
prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata,
    void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) {
	union {
		prof_gctx_t	*p;
		void		*v;
	} gctx, tgctx;
	union {
		prof_bt_t	*p;
		void		*v;
	} btkey;
	bool new_gctx;

	prof_enter(tsd, tdata);
	if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
		/* bt has never been seen before.  Insert it. */
		prof_leave(tsd, tdata);
		tgctx.p = prof_gctx_create(tsd_tsdn(tsd), bt);
		if (tgctx.v == NULL) {
			return true;
		}
		prof_enter(tsd, tdata);
		if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
			gctx.p = tgctx.p;
			btkey.p = &gctx.p->bt;
			if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) {
				/* OOM. */
				prof_leave(tsd, tdata);
				idalloctm(tsd_tsdn(tsd), gctx.v, NULL, NULL,
				    true, true);
				return true;
			}
			new_gctx = true;
		} else {
			new_gctx = false;
		}
	} else {
		tgctx.v = NULL;
		new_gctx = false;
	}

	if (!new_gctx) {
		/*
		 * Increment nlimbo, in order to avoid a race condition with
		 * prof_tctx_destroy()/prof_gctx_try_destroy().
		 */
		malloc_mutex_lock(tsd_tsdn(tsd), gctx.p->lock);
		gctx.p->nlimbo++;
		malloc_mutex_unlock(tsd_tsdn(tsd), gctx.p->lock);
		new_gctx = false;

		if (tgctx.v != NULL) {
			/* Lost race to insert. */
			idalloctm(tsd_tsdn(tsd), tgctx.v, NULL, NULL, true,
			    true);
		}
	}
	prof_leave(tsd, tdata);

	*p_btkey = btkey.v;
	*p_gctx = gctx.p;
	*p_new_gctx = new_gctx;
	return false;
}

prof_tctx_t *
prof_lookup(tsd_t *tsd, prof_bt_t *bt) {
	union {
		prof_tctx_t	*p;
		void		*v;
	} ret;
	prof_tdata_t *tdata;
	bool not_found;

	cassert(config_prof);

	tdata = prof_tdata_get(tsd, false);
	assert(tdata != NULL);

	malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
	not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v);
	if (!not_found) { /* Note double negative! */
		ret.p->prepared = true;
	}
	malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
	if (not_found) {
		void *btkey;
		prof_gctx_t *gctx;
		bool new_gctx, error;

		/*
		 * This thread's cache lacks bt.  Look for it in the global
		 * cache.
		 */
		if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx,
		    &new_gctx)) {
			return NULL;
		}

		/* Link a prof_tctx_t into gctx for this thread. */
		ret.v = iallocztm(tsd_tsdn(tsd), sizeof(prof_tctx_t),
		    sz_size2index(sizeof(prof_tctx_t)), false, NULL, true,
		    arena_ichoose(tsd, NULL), true);
		if (ret.p == NULL) {
			if (new_gctx) {
				prof_gctx_try_destroy(tsd, tdata, gctx);
			}
			return NULL;
		}
		ret.p->tdata = tdata;
		ret.p->thr_uid = tdata->thr_uid;
		ret.p->thr_discrim = tdata->thr_discrim;
		ret.p->recent_count = 0;
		memset(&ret.p->cnts, 0, sizeof(prof_cnt_t));
		ret.p->gctx = gctx;
		ret.p->tctx_uid = tdata->tctx_uid_next++;
		ret.p->prepared = true;
		ret.p->state = prof_tctx_state_initializing;
		malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
		error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v);
		malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
		if (error) {
			if (new_gctx) {
				prof_gctx_try_destroy(tsd, tdata, gctx);
			}
			idalloctm(tsd_tsdn(tsd), ret.v, NULL, NULL, true, true);
			return NULL;
		}
		malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
		ret.p->state = prof_tctx_state_nominal;
		tctx_tree_insert(&gctx->tctxs, ret.p);
		gctx->nlimbo--;
		malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
	}

	return ret.p;
}

/* Used in unit tests. */
static prof_tdata_t *
prof_tdata_count_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
    void *arg) {
	size_t *tdata_count = (size_t *)arg;

	(*tdata_count)++;

	return NULL;
}

/* Used in unit tests. */
size_t
prof_tdata_count(void) {
	size_t tdata_count = 0;
	tsdn_t *tsdn;

	tsdn = tsdn_fetch();
	malloc_mutex_lock(tsdn, &tdatas_mtx);
	tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter,
	    (void *)&tdata_count);
	malloc_mutex_unlock(tsdn, &tdatas_mtx);

	return tdata_count;
}

/* Used in unit tests. */
size_t
prof_bt_count(void) {
	size_t bt_count;
	tsd_t *tsd;
	prof_tdata_t *tdata;

	tsd = tsd_fetch();
	tdata = prof_tdata_get(tsd, false);
	if (tdata == NULL) {
		return 0;
	}

	malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
	bt_count = ckh_count(&bt2gctx);
	malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);

	return bt_count;
}

char *
prof_thread_name_alloc(tsd_t *tsd, const char *thread_name) {
	char *ret;
	size_t size;

	if (thread_name == NULL) {
		return NULL;
	}

	size = strlen(thread_name) + 1;
	ret = iallocztm(tsd_tsdn(tsd), size, sz_size2index(size), false, NULL,
	    true, arena_get(TSDN_NULL, 0, true), true);
	if (ret == NULL) {
		return NULL;
	}

	memcpy(ret, thread_name, size);
	ret[size - 1] = '\0';

	return ret;
}

int
prof_thread_name_set_impl(tsd_t *tsd, const char *thread_name) {
	assert(tsd_reentrancy_level_get(tsd) == 0);

	prof_tdata_t *tdata;
	unsigned i;
	char *s;

	tdata = prof_tdata_get(tsd, true);
	if (tdata == NULL) {
		return EAGAIN;
	}

	/* Validate input. */
	if (thread_name == NULL) {
		return EFAULT;
	}
	for (i = 0; thread_name[i] != '\0'; i++) {
		char c = thread_name[i];
		if (!isgraph(c) && !isblank(c)) {
			return EFAULT;
		}
	}

	s = prof_thread_name_alloc(tsd, thread_name);
	if (s == NULL) {
		return EAGAIN;
	}

	char *old_thread_name = tdata->thread_name;
	tdata->thread_name = s;
	if (old_thread_name != NULL) {
		idalloctm(tsd_tsdn(tsd), old_thread_name, /* tcache */ NULL,
		    /* alloc_ctx */ NULL, /* is_internal */ true,
		    /* slow_path */ true);
	}

	return 0;
}

JEMALLOC_FORMAT_PRINTF(3, 4)
static void
prof_dump_printf(write_cb_t *prof_dump_write, void *cbopaque,
    const char *format, ...) {
	va_list ap;
	char buf[PROF_PRINTF_BUFSIZE];

	va_start(ap, format);
	malloc_vsnprintf(buf, sizeof(buf), format, ap);
	va_end(ap);
	prof_dump_write(cbopaque, buf);
}

/*
 * Casting a double to a uint64_t may not necessarily be in range; this can be
 * UB.  I don't think this is practically possible with the cur counters, but
 * plausibly could be with the accum counters.
 */
#ifdef JEMALLOC_PROF
static uint64_t
prof_double_uint64_cast(double d) {
	/*
	 * Note: UINT64_MAX + 1 is exactly representable as a double on all
	 * reasonable platforms (certainly those we'll support).  Writing this
	 * as !(a < b) instead of (a >= b) means that we're NaN-safe.
	 */
	double rounded = round(d);
	if (!(rounded < (double)UINT64_MAX)) {
		return UINT64_MAX;
	}
	return (uint64_t)rounded;
}
#endif

void prof_unbias_map_init() {
	/* See the comment in prof_sample_new_event_wait */
#ifdef JEMALLOC_PROF
	for (szind_t i = 0; i < SC_NSIZES; i++) {
		double sz = (double)sz_index2size(i);
		double rate = (double)(ZU(1) << lg_prof_sample);
		double div_val = 1.0 - exp(-sz / rate);
		double unbiased_sz = sz / div_val;
		/*
		 * The "true" right value for the unbiased count is
		 * 1.0/(1 - exp(-sz/rate)).  The problem is, we keep the counts
		 * as integers (for a variety of reasons -- rounding errors
		 * could trigger asserts, and not all libcs can properly handle
		 * floating point arithmetic during malloc calls inside libc).
		 * Rounding to an integer, though, can lead to rounding errors
		 * of over 30% for sizes close to the sampling rate.  So
		 * instead, we multiply by a constant, dividing the maximum
		 * possible roundoff error by that constant.  To avoid overflow
		 * in summing up size_t values, the largest safe constant we can
		 * pick is the size of the smallest allocation.
		 */
		double cnt_shift = (double)(ZU(1) << SC_LG_TINY_MIN);
		double shifted_unbiased_cnt = cnt_shift / div_val;
		prof_unbiased_sz[i] = (size_t)round(unbiased_sz);
		prof_shifted_unbiased_cnt[i] = (size_t)round(
		    shifted_unbiased_cnt);
	}
#else
	unreachable();
#endif
}

/*
 * The unbiasing story is long.  The jeprof unbiasing logic was copied from
 * pprof.  Both shared an issue: they unbiased using the average size of the
 * allocations at a particular stack trace.  This can work out OK if allocations
 * are mostly of the same size given some stack, but not otherwise.  We now
 * internally track what the unbiased results ought to be.  We can't just report
 * them as they are though; they'll still go through the jeprof unbiasing
 * process.  Instead, we figure out what values we can feed *into* jeprof's
 * unbiasing mechanism that will lead to getting the right values out.
 *
 * It'll unbias count and aggregate size as:
 *
 *   c_out = c_in * 1/(1-exp(-s_in/c_in/R)
 *   s_out = s_in * 1/(1-exp(-s_in/c_in/R)
 *
 * We want to solve for the values of c_in and s_in that will
 * give the c_out and s_out that we've computed internally.
 *
 * Let's do a change of variables (both to make the math easier and to make it
 * easier to write):
 *   x = s_in / c_in
 *   y = s_in
 *   k = 1/R.
 *
 * Then
 *   c_out = y/x * 1/(1-exp(-k*x))
 *   s_out = y * 1/(1-exp(-k*x))
 *
 * The first equation gives:
 *   y = x * c_out * (1-exp(-k*x))
 * The second gives:
 *   y = s_out * (1-exp(-k*x))
 * So we have
 *   x = s_out / c_out.
 * And all the other values fall out from that.
 *
 * This is all a fair bit of work.  The thing we get out of it is that we don't
 * break backwards compatibility with jeprof (and the various tools that have
 * copied its unbiasing logic).  Eventually, we anticipate a v3 heap profile
 * dump format based on JSON, at which point I think much of this logic can get
 * cleaned up (since we'll be taking a compatibility break there anyways).
 */
static void
prof_do_unbias(uint64_t c_out_shifted_i, uint64_t s_out_i, uint64_t *r_c_in,
    uint64_t *r_s_in) {
#ifdef JEMALLOC_PROF
	if (c_out_shifted_i == 0 || s_out_i == 0) {
		*r_c_in = 0;
		*r_s_in = 0;
		return;
	}
	/*
	 * See the note in prof_unbias_map_init() to see why we take c_out in a
	 * shifted form.
	 */
	double c_out = (double)c_out_shifted_i
	    / (double)(ZU(1) << SC_LG_TINY_MIN);
	double s_out = (double)s_out_i;
	double R = (double)(ZU(1) << lg_prof_sample);

	double x = s_out / c_out;
	double y = s_out * (1.0 - exp(-x / R));

	double c_in = y / x;
	double s_in = y;

	*r_c_in = prof_double_uint64_cast(c_in);
	*r_s_in = prof_double_uint64_cast(s_in);
#else
	unreachable();
#endif
}

static void
prof_dump_print_cnts(write_cb_t *prof_dump_write, void *cbopaque,
    const prof_cnt_t *cnts) {
	uint64_t curobjs;
	uint64_t curbytes;
	uint64_t accumobjs;
	uint64_t accumbytes;
	if (opt_prof_unbias) {
		prof_do_unbias(cnts->curobjs_shifted_unbiased,
		    cnts->curbytes_unbiased, &curobjs, &curbytes);
		prof_do_unbias(cnts->accumobjs_shifted_unbiased,
		    cnts->accumbytes_unbiased, &accumobjs, &accumbytes);
	} else {
		curobjs = cnts->curobjs;
		curbytes = cnts->curbytes;
		accumobjs = cnts->accumobjs;
		accumbytes = cnts->accumbytes;
	}
	prof_dump_printf(prof_dump_write, cbopaque,
	    "%"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]",
	    curobjs, curbytes, accumobjs, accumbytes);
}

static void
prof_tctx_merge_tdata(tsdn_t *tsdn, prof_tctx_t *tctx, prof_tdata_t *tdata) {
	malloc_mutex_assert_owner(tsdn, tctx->tdata->lock);

	malloc_mutex_lock(tsdn, tctx->gctx->lock);

	switch (tctx->state) {
	case prof_tctx_state_initializing:
		malloc_mutex_unlock(tsdn, tctx->gctx->lock);
		return;
	case prof_tctx_state_nominal:
		tctx->state = prof_tctx_state_dumping;
		malloc_mutex_unlock(tsdn, tctx->gctx->lock);

		memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t));

		tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
		tdata->cnt_summed.curobjs_shifted_unbiased
		    += tctx->dump_cnts.curobjs_shifted_unbiased;
		tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
		tdata->cnt_summed.curbytes_unbiased
		    += tctx->dump_cnts.curbytes_unbiased;
		if (opt_prof_accum) {
			tdata->cnt_summed.accumobjs +=
			    tctx->dump_cnts.accumobjs;
			tdata->cnt_summed.accumobjs_shifted_unbiased +=
			    tctx->dump_cnts.accumobjs_shifted_unbiased;
			tdata->cnt_summed.accumbytes +=
			    tctx->dump_cnts.accumbytes;
			tdata->cnt_summed.accumbytes_unbiased +=
			    tctx->dump_cnts.accumbytes_unbiased;
		}
		break;
	case prof_tctx_state_dumping:
	case prof_tctx_state_purgatory:
		not_reached();
	}
}

static void
prof_tctx_merge_gctx(tsdn_t *tsdn, prof_tctx_t *tctx, prof_gctx_t *gctx) {
	malloc_mutex_assert_owner(tsdn, gctx->lock);

	gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
	gctx->cnt_summed.curobjs_shifted_unbiased
	    += tctx->dump_cnts.curobjs_shifted_unbiased;
	gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
	gctx->cnt_summed.curbytes_unbiased += tctx->dump_cnts.curbytes_unbiased;
	if (opt_prof_accum) {
		gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs;
		gctx->cnt_summed.accumobjs_shifted_unbiased
		    += tctx->dump_cnts.accumobjs_shifted_unbiased;
		gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes;
		gctx->cnt_summed.accumbytes_unbiased
		    += tctx->dump_cnts.accumbytes_unbiased;
	}
}

static prof_tctx_t *
prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
	tsdn_t *tsdn = (tsdn_t *)arg;

	malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);

	switch (tctx->state) {
	case prof_tctx_state_nominal:
		/* New since dumping started; ignore. */
		break;
	case prof_tctx_state_dumping:
	case prof_tctx_state_purgatory:
		prof_tctx_merge_gctx(tsdn, tctx, tctx->gctx);
		break;
	default:
		not_reached();
	}

	return NULL;
}

typedef struct prof_dump_iter_arg_s prof_dump_iter_arg_t;
struct prof_dump_iter_arg_s {
	tsdn_t *tsdn;
	write_cb_t *prof_dump_write;
	void *cbopaque;
};

static prof_tctx_t *
prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *opaque) {
	prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
	malloc_mutex_assert_owner(arg->tsdn, tctx->gctx->lock);

	switch (tctx->state) {
	case prof_tctx_state_initializing:
	case prof_tctx_state_nominal:
		/* Not captured by this dump. */
		break;
	case prof_tctx_state_dumping:
	case prof_tctx_state_purgatory:
		prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
		    "  t%"FMTu64": ", tctx->thr_uid);
		prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
		    &tctx->dump_cnts);
		arg->prof_dump_write(arg->cbopaque, "\n");
		break;
	default:
		not_reached();
	}
	return NULL;
}

static prof_tctx_t *
prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
	tsdn_t *tsdn = (tsdn_t *)arg;
	prof_tctx_t *ret;

	malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);

	switch (tctx->state) {
	case prof_tctx_state_nominal:
		/* New since dumping started; ignore. */
		break;
	case prof_tctx_state_dumping:
		tctx->state = prof_tctx_state_nominal;
		break;
	case prof_tctx_state_purgatory:
		ret = tctx;
		goto label_return;
	default:
		not_reached();
	}

	ret = NULL;
label_return:
	return ret;
}

static void
prof_dump_gctx_prep(tsdn_t *tsdn, prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) {
	cassert(config_prof);

	malloc_mutex_lock(tsdn, gctx->lock);

	/*
	 * Increment nlimbo so that gctx won't go away before dump.
	 * Additionally, link gctx into the dump list so that it is included in
	 * prof_dump()'s second pass.
	 */
	gctx->nlimbo++;
	gctx_tree_insert(gctxs, gctx);

	memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t));

	malloc_mutex_unlock(tsdn, gctx->lock);
}

typedef struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg_t;
struct prof_gctx_merge_iter_arg_s {
	tsdn_t *tsdn;
	size_t *leak_ngctx;
};

static prof_gctx_t *
prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
	prof_gctx_merge_iter_arg_t *arg = (prof_gctx_merge_iter_arg_t *)opaque;

	malloc_mutex_lock(arg->tsdn, gctx->lock);
	tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter,
	    (void *)arg->tsdn);
	if (gctx->cnt_summed.curobjs != 0) {
		(*arg->leak_ngctx)++;
	}
	malloc_mutex_unlock(arg->tsdn, gctx->lock);

	return NULL;
}

static void
prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) {
	prof_tdata_t *tdata = prof_tdata_get(tsd, false);
	prof_gctx_t *gctx;

	/*
	 * Standard tree iteration won't work here, because as soon as we
	 * decrement gctx->nlimbo and unlock gctx, another thread can
	 * concurrently destroy it, which will corrupt the tree.  Therefore,
	 * tear down the tree one node at a time during iteration.
	 */
	while ((gctx = gctx_tree_first(gctxs)) != NULL) {
		gctx_tree_remove(gctxs, gctx);
		malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
		{
			prof_tctx_t *next;

			next = NULL;
			do {
				prof_tctx_t *to_destroy =
				    tctx_tree_iter(&gctx->tctxs, next,
				    prof_tctx_finish_iter,
				    (void *)tsd_tsdn(tsd));
				if (to_destroy != NULL) {
					next = tctx_tree_next(&gctx->tctxs,
					    to_destroy);
					tctx_tree_remove(&gctx->tctxs,
					    to_destroy);
					idalloctm(tsd_tsdn(tsd), to_destroy,
					    NULL, NULL, true, true);
				} else {
					next = NULL;
				}
			} while (next != NULL);
		}
		gctx->nlimbo--;
		if (prof_gctx_should_destroy(gctx)) {
			gctx->nlimbo++;
			malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
			prof_gctx_try_destroy(tsd, tdata, gctx);
		} else {
			malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
		}
	}
}

typedef struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg_t;
struct prof_tdata_merge_iter_arg_s {
	tsdn_t *tsdn;
	prof_cnt_t *cnt_all;
};

static prof_tdata_t *
prof_tdata_merge_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
    void *opaque) {
	prof_tdata_merge_iter_arg_t *arg =
	    (prof_tdata_merge_iter_arg_t *)opaque;

	malloc_mutex_lock(arg->tsdn, tdata->lock);
	if (!tdata->expired) {
		size_t tabind;
		union {
			prof_tctx_t	*p;
			void		*v;
		} tctx;

		tdata->dumping = true;
		memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t));
		for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL,
		    &tctx.v);) {
			prof_tctx_merge_tdata(arg->tsdn, tctx.p, tdata);
		}

		arg->cnt_all->curobjs += tdata->cnt_summed.curobjs;
		arg->cnt_all->curobjs_shifted_unbiased
		    += tdata->cnt_summed.curobjs_shifted_unbiased;
		arg->cnt_all->curbytes += tdata->cnt_summed.curbytes;
		arg->cnt_all->curbytes_unbiased
		    += tdata->cnt_summed.curbytes_unbiased;
		if (opt_prof_accum) {
			arg->cnt_all->accumobjs += tdata->cnt_summed.accumobjs;
			arg->cnt_all->accumobjs_shifted_unbiased
			    += tdata->cnt_summed.accumobjs_shifted_unbiased;
			arg->cnt_all->accumbytes +=
			    tdata->cnt_summed.accumbytes;
			arg->cnt_all->accumbytes_unbiased +=
			    tdata->cnt_summed.accumbytes_unbiased;
		}
	} else {
		tdata->dumping = false;
	}
	malloc_mutex_unlock(arg->tsdn, tdata->lock);

	return NULL;
}

static prof_tdata_t *
prof_tdata_dump_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
    void *opaque) {
	if (!tdata->dumping) {
		return NULL;
	}

	prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
	prof_dump_printf(arg->prof_dump_write, arg->cbopaque, "  t%"FMTu64": ",
	    tdata->thr_uid);
	prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
	    &tdata->cnt_summed);
	if (tdata->thread_name != NULL) {
		arg->prof_dump_write(arg->cbopaque, " ");
		arg->prof_dump_write(arg->cbopaque, tdata->thread_name);
	}
	arg->prof_dump_write(arg->cbopaque, "\n");
	return NULL;
}

static void
prof_dump_header(prof_dump_iter_arg_t *arg, const prof_cnt_t *cnt_all) {
	prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
	    "heap_v2/%"FMTu64"\n  t*: ", ((uint64_t)1U << lg_prof_sample));
	prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque, cnt_all);
	arg->prof_dump_write(arg->cbopaque, "\n");

	malloc_mutex_lock(arg->tsdn, &tdatas_mtx);
	tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter, arg);
	malloc_mutex_unlock(arg->tsdn, &tdatas_mtx);
}

static void
prof_dump_gctx(prof_dump_iter_arg_t *arg, prof_gctx_t *gctx,
    const prof_bt_t *bt, prof_gctx_tree_t *gctxs) {
	cassert(config_prof);
	malloc_mutex_assert_owner(arg->tsdn, gctx->lock);

	/* Avoid dumping such gctx's that have no useful data. */
	if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) ||
	    (opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) {
		assert(gctx->cnt_summed.curobjs == 0);
		assert(gctx->cnt_summed.curbytes == 0);
		/*
		 * These asserts would not be correct -- see the comment on races
		 * in prof.c
		 * assert(gctx->cnt_summed.curobjs_unbiased == 0);
		 * assert(gctx->cnt_summed.curbytes_unbiased == 0);
		*/
		assert(gctx->cnt_summed.accumobjs == 0);
		assert(gctx->cnt_summed.accumobjs_shifted_unbiased == 0);
		assert(gctx->cnt_summed.accumbytes == 0);
		assert(gctx->cnt_summed.accumbytes_unbiased == 0);
		return;
	}

	arg->prof_dump_write(arg->cbopaque, "@");
	for (unsigned i = 0; i < bt->len; i++) {
		prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
		    " %#"FMTxPTR, (uintptr_t)bt->vec[i]);
	}

	arg->prof_dump_write(arg->cbopaque, "\n  t*: ");
	prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
	    &gctx->cnt_summed);
	arg->prof_dump_write(arg->cbopaque, "\n");

	tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter, arg);
}

/*
 * See prof_sample_new_event_wait() comment for why the body of this function
 * is conditionally compiled.
 */
static void
prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx) {
#ifdef JEMALLOC_PROF
	/*
	 * Scaling is equivalent AdjustSamples() in jeprof, but the result may
	 * differ slightly from what jeprof reports, because here we scale the
	 * summary values, whereas jeprof scales each context individually and
	 * reports the sums of the scaled values.
	 */
	if (cnt_all->curbytes != 0) {
		double sample_period = (double)((uint64_t)1 << lg_prof_sample);
		double ratio = (((double)cnt_all->curbytes) /
		    (double)cnt_all->curobjs) / sample_period;
		double scale_factor = 1.0 / (1.0 - exp(-ratio));
		uint64_t curbytes = (uint64_t)round(((double)cnt_all->curbytes)
		    * scale_factor);
		uint64_t curobjs = (uint64_t)round(((double)cnt_all->curobjs) *
		    scale_factor);

		malloc_printf("<jemalloc>: Leak approximation summary: ~%"FMTu64
		    " byte%s, ~%"FMTu64" object%s, >= %zu context%s\n",
		    curbytes, (curbytes != 1) ? "s" : "", curobjs, (curobjs !=
		    1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : "");
		malloc_printf(
		    "<jemalloc>: Run jeprof on dump output for leak detail\n");
		if (opt_prof_leak_error) {
			malloc_printf(
			    "<jemalloc>: Exiting with error code because memory"
			    " leaks were detected\n");
			/*
			 * Use _exit() with underscore to avoid calling atexit()
			 * and entering endless cycle.
			 */
			_exit(1);
		}
	}
#endif
}

static prof_gctx_t *
prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
	prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
	malloc_mutex_lock(arg->tsdn, gctx->lock);
	prof_dump_gctx(arg, gctx, &gctx->bt, gctxs);
	malloc_mutex_unlock(arg->tsdn, gctx->lock);
	return NULL;
}

static void
prof_dump_prep(tsd_t *tsd, prof_tdata_t *tdata, prof_cnt_t *cnt_all,
    size_t *leak_ngctx, prof_gctx_tree_t *gctxs) {
	size_t tabind;
	union {
		prof_gctx_t	*p;
		void		*v;
	} gctx;

	prof_enter(tsd, tdata);

	/*
	 * Put gctx's in limbo and clear their counters in preparation for
	 * summing.
	 */
	gctx_tree_new(gctxs);
	for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) {
		prof_dump_gctx_prep(tsd_tsdn(tsd), gctx.p, gctxs);
	}

	/*
	 * Iterate over tdatas, and for the non-expired ones snapshot their tctx
	 * stats and merge them into the associated gctx's.
	 */
	memset(cnt_all, 0, sizeof(prof_cnt_t));
	prof_tdata_merge_iter_arg_t prof_tdata_merge_iter_arg = {tsd_tsdn(tsd),
	    cnt_all};
	malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
	tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter,
	    &prof_tdata_merge_iter_arg);
	malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);

	/* Merge tctx stats into gctx's. */
	*leak_ngctx = 0;
	prof_gctx_merge_iter_arg_t prof_gctx_merge_iter_arg = {tsd_tsdn(tsd),
	    leak_ngctx};
	gctx_tree_iter(gctxs, NULL, prof_gctx_merge_iter,
	    &prof_gctx_merge_iter_arg);

	prof_leave(tsd, tdata);
}

void
prof_dump_impl(tsd_t *tsd, write_cb_t *prof_dump_write, void *cbopaque,
    prof_tdata_t *tdata, bool leakcheck) {
	malloc_mutex_assert_owner(tsd_tsdn(tsd), &prof_dump_mtx);
	prof_cnt_t cnt_all;
	size_t leak_ngctx;
	prof_gctx_tree_t gctxs;
	prof_dump_prep(tsd, tdata, &cnt_all, &leak_ngctx, &gctxs);
	prof_dump_iter_arg_t prof_dump_iter_arg = {tsd_tsdn(tsd),
	    prof_dump_write, cbopaque};
	prof_dump_header(&prof_dump_iter_arg, &cnt_all);
	gctx_tree_iter(&gctxs, NULL, prof_gctx_dump_iter, &prof_dump_iter_arg);
	prof_gctx_finish(tsd, &gctxs);
	if (leakcheck) {
		prof_leakcheck(&cnt_all, leak_ngctx);
	}
}

/* Used in unit tests. */
void
prof_cnt_all(prof_cnt_t *cnt_all) {
	tsd_t *tsd = tsd_fetch();
	prof_tdata_t *tdata = prof_tdata_get(tsd, false);
	if (tdata == NULL) {
		memset(cnt_all, 0, sizeof(prof_cnt_t));
	} else {
		size_t leak_ngctx;
		prof_gctx_tree_t gctxs;
		prof_dump_prep(tsd, tdata, cnt_all, &leak_ngctx, &gctxs);
		prof_gctx_finish(tsd, &gctxs);
	}
}

void
prof_bt_hash(const void *key, size_t r_hash[2]) {
	prof_bt_t *bt = (prof_bt_t *)key;

	cassert(config_prof);

	hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash);
}

bool
prof_bt_keycomp(const void *k1, const void *k2) {
	const prof_bt_t *bt1 = (prof_bt_t *)k1;
	const prof_bt_t *bt2 = (prof_bt_t *)k2;

	cassert(config_prof);

	if (bt1->len != bt2->len) {
		return false;
	}
	return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
}

prof_tdata_t *
prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim,
    char *thread_name, bool active) {
	assert(tsd_reentrancy_level_get(tsd) == 0);

	prof_tdata_t *tdata;

	cassert(config_prof);

	/* Initialize an empty cache for this thread. */
	size_t tdata_sz = ALIGNMENT_CEILING(sizeof(prof_tdata_t), QUANTUM);
	size_t total_sz = tdata_sz + sizeof(void *) * opt_prof_bt_max;
	tdata = (prof_tdata_t *)iallocztm(tsd_tsdn(tsd),
	    total_sz, sz_size2index(total_sz), false, NULL, true,
	    arena_get(TSDN_NULL, 0, true), true);
	if (tdata == NULL) {
		return NULL;
	}

	tdata->vec = (void **)((uintptr_t)tdata + tdata_sz);
	tdata->lock = prof_tdata_mutex_choose(thr_uid);
	tdata->thr_uid = thr_uid;
	tdata->thr_discrim = thr_discrim;
	tdata->thread_name = thread_name;
	tdata->attached = true;
	tdata->expired = false;
	tdata->tctx_uid_next = 0;

	if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash,
	    prof_bt_keycomp)) {
		idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
		return NULL;
	}

	tdata->enq = false;
	tdata->enq_idump = false;
	tdata->enq_gdump = false;

	tdata->dumping = false;
	tdata->active = active;

	malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
	tdata_tree_insert(&tdatas, tdata);
	malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);

	return tdata;
}

static bool
prof_tdata_should_destroy_unlocked(prof_tdata_t *tdata, bool even_if_attached) {
	if (tdata->attached && !even_if_attached) {
		return false;
	}
	if (ckh_count(&tdata->bt2tctx) != 0) {
		return false;
	}
	return true;
}

static bool
prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata,
    bool even_if_attached) {
	malloc_mutex_assert_owner(tsdn, tdata->lock);

	return prof_tdata_should_destroy_unlocked(tdata, even_if_attached);
}

static void
prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata,
    bool even_if_attached) {
	malloc_mutex_assert_owner(tsd_tsdn(tsd), &tdatas_mtx);
	malloc_mutex_assert_not_owner(tsd_tsdn(tsd), tdata->lock);

	tdata_tree_remove(&tdatas, tdata);

	assert(prof_tdata_should_destroy_unlocked(tdata, even_if_attached));

	if (tdata->thread_name != NULL) {
		idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true,
		    true);
	}
	ckh_delete(tsd, &tdata->bt2tctx);
	idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
}

static void
prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) {
	malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
	prof_tdata_destroy_locked(tsd, tdata, even_if_attached);
	malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
}

void
prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) {
	bool destroy_tdata;

	malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
	if (tdata->attached) {
		destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata,
		    true);
		/*
		 * Only detach if !destroy_tdata, because detaching would allow
		 * another thread to win the race to destroy tdata.
		 */
		if (!destroy_tdata) {
			tdata->attached = false;
		}
		tsd_prof_tdata_set(tsd, NULL);
	} else {
		destroy_tdata = false;
	}
	malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
	if (destroy_tdata) {
		prof_tdata_destroy(tsd, tdata, true);
	}
}

static bool
prof_tdata_expire(tsdn_t *tsdn, prof_tdata_t *tdata) {
	bool destroy_tdata;

	malloc_mutex_lock(tsdn, tdata->lock);
	if (!tdata->expired) {
		tdata->expired = true;
		destroy_tdata = prof_tdata_should_destroy(tsdn, tdata, false);
	} else {
		destroy_tdata = false;
	}
	malloc_mutex_unlock(tsdn, tdata->lock);

	return destroy_tdata;
}

static prof_tdata_t *
prof_tdata_reset_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
    void *arg) {
	tsdn_t *tsdn = (tsdn_t *)arg;

	return (prof_tdata_expire(tsdn, tdata) ? tdata : NULL);
}

void
prof_reset(tsd_t *tsd, size_t lg_sample) {
	prof_tdata_t *next;

	assert(lg_sample < (sizeof(uint64_t) << 3));

	malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx);
	malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);

	lg_prof_sample = lg_sample;
	prof_unbias_map_init();

	next = NULL;
	do {
		prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next,
		    prof_tdata_reset_iter, (void *)tsd);
		if (to_destroy != NULL) {
			next = tdata_tree_next(&tdatas, to_destroy);
			prof_tdata_destroy_locked(tsd, to_destroy, false);
		} else {
			next = NULL;
		}
	} while (next != NULL);

	malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
	malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx);
}

static bool
prof_tctx_should_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
	malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);

	if (opt_prof_accum) {
		return false;
	}
	if (tctx->cnts.curobjs != 0) {
		return false;
	}
	if (tctx->prepared) {
		return false;
	}
	if (tctx->recent_count != 0) {
		return false;
	}
	return true;
}

static void
prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
	malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);

	assert(tctx->cnts.curobjs == 0);
	assert(tctx->cnts.curbytes == 0);
	/*
	 * These asserts are not correct -- see the comment about races in
	 * prof.c
	 *
	 * assert(tctx->cnts.curobjs_shifted_unbiased == 0);
	 * assert(tctx->cnts.curbytes_unbiased == 0);
	 */
	assert(!opt_prof_accum);
	assert(tctx->cnts.accumobjs == 0);
	assert(tctx->cnts.accumbytes == 0);
	/*
	 * These ones are, since accumbyte counts never go down.  Either
	 * prof_accum is off (in which case these should never have changed from
	 * their initial value of zero), or it's on (in which case we shouldn't
	 * be destroying this tctx).
	 */
	assert(tctx->cnts.accumobjs_shifted_unbiased == 0);
	assert(tctx->cnts.accumbytes_unbiased == 0);

	prof_gctx_t *gctx = tctx->gctx;

	{
		prof_tdata_t *tdata = tctx->tdata;
		tctx->tdata = NULL;
		ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL);
		bool destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd),
		    tdata, false);
		malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
		if (destroy_tdata) {
			prof_tdata_destroy(tsd, tdata, false);
		}
	}

	bool destroy_tctx, destroy_gctx;

	malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
	switch (tctx->state) {
	case prof_tctx_state_nominal:
		tctx_tree_remove(&gctx->tctxs, tctx);
		destroy_tctx = true;
		if (prof_gctx_should_destroy(gctx)) {
			/*
			 * Increment gctx->nlimbo in order to keep another
			 * thread from winning the race to destroy gctx while
			 * this one has gctx->lock dropped.  Without this, it
			 * would be possible for another thread to:
			 *
			 * 1) Sample an allocation associated with gctx.
			 * 2) Deallocate the sampled object.
			 * 3) Successfully prof_gctx_try_destroy(gctx).
			 *
			 * The result would be that gctx no longer exists by the
			 * time this thread accesses it in
			 * prof_gctx_try_destroy().
			 */
			gctx->nlimbo++;
			destroy_gctx = true;
		} else {
			destroy_gctx = false;
		}
		break;
	case prof_tctx_state_dumping:
		/*
		 * A dumping thread needs tctx to remain valid until dumping
		 * has finished.  Change state such that the dumping thread will
		 * complete destruction during a late dump iteration phase.
		 */
		tctx->state = prof_tctx_state_purgatory;
		destroy_tctx = false;
		destroy_gctx = false;
		break;
	default:
		not_reached();
		destroy_tctx = false;
		destroy_gctx = false;
	}
	malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
	if (destroy_gctx) {
		prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx);
	}
	if (destroy_tctx) {
		idalloctm(tsd_tsdn(tsd), tctx, NULL, NULL, true, true);
	}
}

void
prof_tctx_try_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
	malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
	if (prof_tctx_should_destroy(tsd, tctx)) {
		/* tctx->tdata->lock will be released in prof_tctx_destroy(). */
		prof_tctx_destroy(tsd, tctx);
	} else {
		malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock);
	}
}

/******************************************************************************/