summaryrefslogtreecommitdiff
path: root/common/JackFilters.h
blob: 70611d3cb97756b7d76e84a956ec7aee9613da0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
Copyright (C) 2008 Grame

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#ifndef __JackFilters__
#define __JackFilters__

#ifdef __APPLE__
#include <TargetConditionals.h>
#endif

#include "jack.h"
#ifndef MY_TARGET_OS_IPHONE
#include "JackAtomicState.h"
#endif
#include <math.h>
#include <stdlib.h>

namespace Jack
{

#ifndef TARGET_OS_IPHONE

    #define MAX_SIZE 64

    PRE_PACKED_STRUCTURE
    struct JackFilter
    {

        jack_time_t fTable[MAX_SIZE];

        JackFilter()
        {
            for (int i = 0; i < MAX_SIZE; i++) {
                fTable[i] = 0;
            }
        }

        void AddValue(jack_time_t val)
        {
            memcpy(&fTable[1], &fTable[0], sizeof(jack_time_t) * (MAX_SIZE - 1));
            fTable[0] = val;
        }

        jack_time_t GetVal()
        {
            jack_time_t mean = 0;
            for (int i = 0; i < MAX_SIZE; i++) {
                mean += fTable[i];
            }
            return mean / MAX_SIZE;
        }

    } POST_PACKED_STRUCTURE;

    PRE_PACKED_STRUCTURE
    class JackDelayLockedLoop
    {

        private:

            jack_nframes_t fFrames;
            jack_time_t	fCurrentWakeup;
            jack_time_t	fCurrentCallback;
            jack_time_t	fNextWakeUp;
            float fSecondOrderIntegrator;
            jack_nframes_t fBufferSize;
            jack_nframes_t fSampleRate;
            jack_time_t fPeriodUsecs;
            float fFilterCoefficient;	/* set once, never altered */
            bool fUpdating;

        public:

            JackDelayLockedLoop()
            {}

            JackDelayLockedLoop(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
            {
                Init(buffer_size, sample_rate);
            }

            void Init(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
            {
                fFrames = 0;
                fCurrentWakeup = 0;
                fCurrentCallback = 0;
                fNextWakeUp = 0;
                fFilterCoefficient = 0.01f;
                fSecondOrderIntegrator = 0.0f;
                fBufferSize = buffer_size;
                fSampleRate = sample_rate;
                fPeriodUsecs = jack_time_t(1000000.f / fSampleRate * fBufferSize);	// in microsec
            }

            void Init(jack_time_t callback_usecs)
            {
                fFrames = 0;
                fCurrentWakeup = 0;
                fSecondOrderIntegrator = 0.0f;
                fCurrentCallback = callback_usecs;
                fNextWakeUp = callback_usecs + fPeriodUsecs;
            }

            void IncFrame(jack_time_t callback_usecs)
            {
                float delta = (int64_t)callback_usecs - (int64_t)fNextWakeUp;
                fCurrentWakeup = fNextWakeUp;
                fCurrentCallback = callback_usecs;
                fFrames += fBufferSize;
                fSecondOrderIntegrator += 0.5f * fFilterCoefficient * delta;
                fNextWakeUp = fCurrentWakeup + fPeriodUsecs + (int64_t) floorf((fFilterCoefficient * (delta + fSecondOrderIntegrator)));
            }

            jack_nframes_t Time2Frames(jack_time_t time)
            {
                long delta = (long) rint(((double) ((long long)(time - fCurrentWakeup)) / ((long long)(fNextWakeUp - fCurrentWakeup))) * fBufferSize);
                return (delta < 0) ? ((fFrames > 0) ? fFrames : 1) : (fFrames + delta);
            }

            jack_time_t Frames2Time(jack_nframes_t frames)
            {
                long delta = (long) rint(((double) ((long long)(frames - fFrames)) * ((long long)(fNextWakeUp - fCurrentWakeup))) / fBufferSize);
                return (delta < 0) ? ((fCurrentWakeup > 0) ? fCurrentWakeup : 1) : (fCurrentWakeup + delta);
            }

            jack_nframes_t CurFrame()
            {
                return fFrames;
            }

            jack_time_t CurTime()
            {
                return fCurrentWakeup;
            }

    } POST_PACKED_STRUCTURE;

    PRE_PACKED_STRUCTURE
    class JackAtomicDelayLockedLoop : public JackAtomicState<JackDelayLockedLoop>
    {
         public:

            JackAtomicDelayLockedLoop(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
            {
                fState[0].Init(buffer_size, sample_rate);
                fState[1].Init(buffer_size, sample_rate);
            }

            void Init(jack_time_t callback_usecs)
            {
                JackDelayLockedLoop* dll = WriteNextStateStart();
                dll->Init(callback_usecs);
                WriteNextStateStop();
                TrySwitchState(); // always succeed since there is only one writer
            }

            void Init(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
            {
                JackDelayLockedLoop* dll = WriteNextStateStart();
                dll->Init(buffer_size, sample_rate);
                WriteNextStateStop();
                TrySwitchState(); // always succeed since there is only one writer
            }

            void IncFrame(jack_time_t callback_usecs)
            {
                JackDelayLockedLoop* dll = WriteNextStateStart();
                dll->IncFrame(callback_usecs);
                WriteNextStateStop();
                TrySwitchState(); // always succeed since there is only one writer
            }

            jack_nframes_t Time2Frames(jack_time_t time)
            {
                UInt16 next_index = GetCurrentIndex();
                UInt16 cur_index;
                jack_nframes_t res;

                do {
                    cur_index = next_index;
                    res = ReadCurrentState()->Time2Frames(time);
                    next_index = GetCurrentIndex();
                } while (cur_index != next_index); // Until a coherent state has been read

                return res;
            }

            jack_time_t Frames2Time(jack_nframes_t frames)
            {
                UInt16 next_index = GetCurrentIndex();
                UInt16 cur_index;
                jack_time_t res;

                do {
                    cur_index = next_index;
                    res = ReadCurrentState()->Frames2Time(frames);
                    next_index = GetCurrentIndex();
                } while (cur_index != next_index); // Until a coherent state has been read

                return res;
            }
    } POST_PACKED_STRUCTURE;

#endif

    /*
    Torben Hohn PI controller from JACK1
    */

    struct JackPIControler {

        double resample_mean;
        double static_resample_factor;

        double* offset_array;
        double* window_array;
        int offset_differential_index;

        double offset_integral;

        double catch_factor;
        double catch_factor2;
        double pclamp;
        double controlquant;
        int smooth_size;

        double hann(double x)
        {
            return 0.5 * (1.0 - cos(2 * M_PI * x));
        }

        JackPIControler(double resample_factor, int fir_size)
        {
            resample_mean = resample_factor;
            static_resample_factor = resample_factor;
            offset_array = new double[fir_size];
            window_array = new double[fir_size];
            offset_differential_index = 0;
            offset_integral = 0.0;
            smooth_size = fir_size;

            for (int i = 0; i < fir_size; i++) {
                offset_array[i] = 0.0;
                window_array[i] = hann(double(i) / (double(fir_size) - 1.0));
            }

            // These values could be configurable
            catch_factor = 100000;
            catch_factor2 = 10000;
            pclamp = 15.0;
            controlquant = 10000.0;
        }

        ~JackPIControler()
        {
            delete[] offset_array;
            delete[] window_array;
        }

        void Init(double resample_factor)
        {
            resample_mean = resample_factor;
            static_resample_factor = resample_factor;
        }

        /*
        double GetRatio(int fill_level)
        {
            double offset = fill_level;

            // Save offset.
            offset_array[(offset_differential_index++) % smooth_size] = offset;

            // Build the mean of the windowed offset array basically fir lowpassing.
            double smooth_offset = 0.0;
            for (int i = 0; i < smooth_size; i++) {
                smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i];
            }
            smooth_offset /= double(smooth_size);

            // This is the integral of the smoothed_offset
            offset_integral += smooth_offset;

            // Clamp offset : the smooth offset still contains unwanted noise which would go straight onto the resample coeff.
            // It only used in the P component and the I component is used for the fine tuning anyways.
            if (fabs(smooth_offset) < pclamp)
                smooth_offset = 0.0;

            // Ok, now this is the PI controller.
            // u(t) = K * (e(t) + 1/T \int e(t') dt')
            // Kp = 1/catch_factor and T = catch_factor2  Ki = Kp/T
            double current_resample_factor
                = static_resample_factor - smooth_offset / catch_factor - offset_integral / catch_factor / catch_factor2;

            // Now quantize this value around resample_mean, so that the noise which is in the integral component doesn't hurt.
            current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;

            // Calculate resample_mean so we can init ourselves to saner values.
            resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
            return current_resample_factor;
        }
        */

        double GetRatio(int error)
        {
            double smooth_offset = error;

            // This is the integral of the smoothed_offset
            offset_integral += smooth_offset;

            // Ok, now this is the PI controller.
            // u(t) = K * (e(t) + 1/T \int e(t') dt')
            // Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T
            return static_resample_factor - smooth_offset/catch_factor - offset_integral/catch_factor/catch_factor2;
        }

        void OurOfBounds()
        {
            int i;
            // Set the resample_rate... we need to adjust the offset integral, to do this.
            // first look at the PI controller, this code is just a special case, which should never execute once
            // everything is swung in.
            offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
            // Also clear the array. we are beginning a new control cycle.
            for (i = 0; i < smooth_size; i++) {
                offset_array[i] = 0.0;
            }
        }

    };

}

#endif